找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

JW030B-M

型号:

JW030B-M

描述:

JW030系列电源模块36 VDC至75 VDC输入30瓦[ JW030-Series Power Modules 36 Vdc to 75 Vdc Inputs 30 W ]

品牌:

VISHAY[ VISHAY ]

页数:

20 页

PDF大小:

765 K

Data Sheet  
March 26, 2008  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Features  
n Small size: 61.0 mm x 57.9 mm x 12.7 mm  
(2.40 in. x 2.28 in. x 0.50 in.)  
n Low output noise  
n Constant frequency  
n Industry-standard pinout  
n Metal case  
n Case ground pin  
n 2:1 input voltage range  
n High efficiency: 83% typical  
n Overcurrent protection  
n Remote on/off  
n Remote sense  
The JW030-Series Power Modules use advanced, surface-  
mount technology and deliver high-quality, compact,  
dc-dc conversion at an economical price.  
n Adjustable output voltage: 80% to 110% of VO, nom  
n Output overvoltage protection  
n UL* 1950 Recognized, CSA C22.2 No. 950-95  
Certified, VDE 0805 (EN60950, IEC950) Licensed  
Options  
n CE mark meets 73/23/EEC and 93/68/EEC  
n Heat sinks available for extended operation  
n Choice of remote on/off logic configuration  
directives‡  
n Within FCC Class A radiated limits  
n Short pins: 2.79 mm ± 0.25 mm  
(0.110 in. ± 0.010 in.)  
Applications  
n Short pins: 3.68 mm ± 0.25 mm  
(0.145 in. ± 0.010 in.)  
n Distributed power architectures  
n Communications equipment  
Description  
The JW030-Series Power Modules are dc-dc converters that operate over an input voltage range of 36 Vdc to  
75 Vdc and provide precisely regulated outputs. The outputs are isolated from the inputs, allowing versatile  
polarity configurations and grounding connections. The modules have maximum power ratings of up to 30 W at  
a typical full-load efficiency of up to 83%.  
These power modules feature remote on/off, output sense (both negative and positive leads), and output volt-  
age adjustment, which allows output voltage adjustment from 80% to 110% for the JW030A-M, D-M, F-M, G-M  
and 60% to 110% for the JW030B-M, C-M of the nominal output voltage. For disk-drive applications, the  
JW030B-M Power Module provides a motor-start surge current of 3 A. The modules are PC board-mountable  
and encapsulated in metal cases. The modules are rated to full load at 100 °C case temperature. No external  
filtering is required.  
* UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Association.  
‡ This product is intended for integration into end-use equipment. All the required procedures for CE marking of end-use equipment should  
be followed. (The CE mark is placed on selected products.)  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Input Voltage Continuous  
Symbol  
Min  
Max  
80  
Unit  
Vdc  
°C  
VI  
Operating Case Temperature  
TC  
–40  
100  
(See Thermal Considerations section.)  
Storage Temperature  
Tstg  
–40  
110  
°C  
I/O Isolation Voltage:  
Continuous  
500  
1500  
Vdc  
V
Transient  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Table 1. Input Specifications  
Parameter  
Operating Input Voltage  
Symbol  
VI  
Min  
36  
Typ  
48  
Max  
75  
Unit  
Vdc  
A
Maximum Input Current  
II, max  
1.6  
(VI = 0 V to 75 V; IO = IO, max; see Figure 1.)  
Inrush Transient  
i2t  
II  
0.2  
A2s  
Input Reflected-ripple Current, Peak-to-peak  
(5 Hz to 20 MHz, 12 µH source impedance;  
TC = 25 °C; see Figure 20 and Design  
Considerations section.)  
25  
mAp-p  
Input Ripple Rejection (120 Hz)  
50  
dB  
Fusing Considerations  
CAUTION: This power module is not internally fused. An input line fuse must always be used.  
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone  
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fus-  
ing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The  
safety agencies require a normal-blow fuse with a maximum rating of 5 A (see Safety Considerations section).  
Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same  
type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.  
2
Lineage Power  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Electrical Specifications (continued)  
Table 2. Output Specifications  
Device Code or  
Code Suffix  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set Point  
(VI = 48 V; IO = IO, max; TC = 25 °C)  
JW030D-M  
JW030G-M  
JW030F-M  
JW030A-M  
JW030B-M  
JW030C-M  
VO, set  
VO, set  
VO, set  
VO, set  
VO, set  
VO, set  
1.97  
2.46  
3.25  
4.95  
11.82  
14.77  
2.0  
2.5  
3.3  
5.0  
12.0  
15.0  
2.03  
2.54  
3.35  
5.05  
12.18  
15.23  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Output Voltage  
JW030D-M  
JW030G-M  
JW030F-M  
JW030A-M  
JW030B-M  
JW030C-M  
VO  
VO  
VO  
VO  
VO  
VO  
1.94  
2.42  
3.20  
4.85  
11.64  
14.55  
2.06  
2.57  
3.40  
5.15  
12.36  
15.45  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
(Over all operating input voltage,  
resistive load, and temperature  
conditions until end of life. See  
Figure 22.)  
Output Regulation:  
Line (VI = 36 V to 75 V)  
Load (IO = IO, min to IO, max)  
Temperature  
All  
All  
0.01  
0.05  
0.5  
0.1  
0.2  
1.5  
1.5  
%VO  
%VO  
%VO  
%VO  
A-M, B-M, C-M  
D-M, F-M, G-M  
(TC = –40 °C to +100 °C)  
0.75  
Output Ripple and Noise Voltage  
(See Figure 21.):  
RMS  
A-M, D-M, F-M, G-M  
B-M, C-M  
A-M, D-M, F-M, G-M  
B-M, C-M  
20  
25  
150  
200  
mVrms  
mVrms  
mVp-p  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
Output Current  
JW030D-M, F-M, G-M  
JW030A-M  
IO  
IO  
IO  
IO, trans  
IO  
0.6  
0.6  
0.3  
6.5  
6.0  
2.5  
3.0  
2.0  
A
A
A
A
A
(At IO < IO, min, the modules may  
exceed output ripple specifications;  
see Figures 3 through 8.)  
JW030B-M  
JW030B-M  
JW030C-M  
0.2  
Output Current-limit Inception  
(VO = 90% of VO, nom)  
JW030D-M, F-M, G-M  
JW030A-M  
IO  
IO  
IO  
IO  
7.5  
6.9  
3.6  
2.5  
A
A
A
A
JW030B-M  
JW030C-M  
Output Short-circuit Current  
(VO = 250 mV)  
JW030D-M, F-M, G-M  
JW030A-M  
8.0  
8.0  
4.0  
3.0  
10.0  
9.5  
5.5  
A
A
A
A
JW030B-M  
JW030C-M  
4.5  
Efficiency  
(VI = 48 V; IO = IO, max; TC = 25 °C;  
see Figures 9 through 14 and 22.)  
JW030D-M  
JW030G-M  
JW030F-M  
η
η
η
η
η
64  
70  
72  
79  
80  
69  
72  
75  
81  
83  
%
%
%
%
%
JW030A-M  
JW030B-M, C-M  
Switching Frequency  
(secondary circuit)  
All  
250  
kHz  
Lineage Power  
3
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26,2008  
Electrical Specifications (continued)  
Table 2. Output Specifications (continued)  
Device Code or  
Code Suffix  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Dynamic Response  
(ýIO/ýt = 1 A/10 µs, VI = 48 V,  
TC = 25 °C; see Figures 15 and 18.):  
Load Change from IO = 50% to 75%  
of IO, max:  
Peak Deviation  
JW030D-M, F-M, G-M  
JW030A-M, B-M, C-M  
All  
5
2
0.5  
%VO, set  
%VO, set  
ms  
Settling Time  
(VO < 10% peak deviation)  
Load Change from IO = 50% to 25%  
of IO, max:  
Peak Deviation  
JW030D-M, F-M, G-M  
JW030A-M, B-M, C-M  
All  
5
2
0.5  
%VO, set  
%VO, set  
ms  
Settling Time  
(VO < 10% of peak deviation)  
Table 3. Isolation Specifications  
Parameter  
Isolation Capacitance  
Min  
Typ  
Max  
Unit  
pF  
0.02  
Isolation Resistance  
10  
M¾  
General Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
hours  
g (oz.)  
Calculated MTBF (IO = 80% of IO, max; TC = 40 °C)  
Weight  
3,000,000  
113 (4.0)  
4
Lineage Power  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions and Design Considerations for further information.  
Device Code or  
Code Suffix  
Parameter  
Symbol Min  
Typ Max  
Unit  
Remote On/Off  
(VI = 36 V to 75 V; open collector or  
equivalent compatible; signal referenced to  
VI(–) terminal. See Figure 23 and Feature  
Descriptions.):  
JW030x1-M Negative Logic:  
Logic Low—Module On  
Logic High—Module Off  
JW030x-M Positive Logic:  
Logic Low—Module Off  
Logic High—Module On  
Module Specifications:  
On/Off Current—Logic Low  
On/Off Voltage:  
All  
Ion/off  
1.0  
mA  
Logic Low  
Logic High (Ion/off = 0)  
All  
All  
Von/off  
Von/off  
–0.7  
1.2  
6
V
V
Open Collector Switch Specifications:  
Leakage Current During Logic High  
(Von/off = 10 V)  
Output Low Voltage During Logic Low  
(Ion/off = 1 mA)  
Turn-on Time (@ 80% of IO, max;  
TA = 25 °C; VO within ±1% of steady  
state; see Figure 19.)  
All  
All  
All  
Ion/off  
Von/off  
80  
50  
1.2  
150  
µA  
V
ms  
Output Voltage Overshoot  
All  
All  
0
5
%
Output Voltage Sense Range  
10  
%VO, nom  
Output Voltage Set-point Adjustment Range D-M, G-M, F-M, A-M  
80  
60  
110  
110  
%VO, nom  
%VO, nom  
(See Feature Descriptions.)  
B-M, C-M  
Output Overvoltage Protection (clamp)  
JW030D-M  
JW030G-M  
JW030F-M  
JW030A-M  
JW030B-M  
JW030C-M  
VO, clamp  
VO, clamp  
VO, clamp  
VO, clamp  
VO, clamp 13.5  
VO, clamp 17.0  
2.5  
2.9  
4.0  
5.6  
4.0  
3.8  
5.7  
7.0  
16.0  
20.0  
V
V
V
V
V
V
Lineage Power  
5
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Characteristic Curves  
2.5  
2.0  
1.6  
1.4  
1.5  
1.0  
0.5  
0
VI = 36 V  
VI = 72 V  
VI = 54 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
1
2
3
4
5
6
7
8
9
OUTPUT CURRENT, IO (A)  
8-1331(C)  
Figure 3. JW030D-M Typical Output  
Characteristics  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT VOLTAGE, VI (V)  
8-740(C)  
3.0  
2.5  
Figure 1. JW030-Series Typical Input Characteris-  
tics  
2.0  
VI= 36 V  
VI= 48 V  
VI = 75 V  
1.5  
1.002  
1.001  
1.000  
1.0  
0.5  
0.0  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0
1
2
3
4
5
6
8
9
10  
7
OUTPUT CURRENT, IO (A)  
0.993  
0.992  
8-2557(C)  
-40  
-20  
0
20  
40  
60  
80  
100  
CASE TEMPERATURE,  
T
(˚C)  
Figure 4. JW030G-M Typical Output  
Characteristics  
8-852(C).a  
Figure 2. JW030 Family Typical Output Voltage  
Variation over Ambient Temperature  
Range  
6
Lineage Power  
Data Sheet  
March 26, 2008  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Characteristic Curves (continued)  
12  
10  
8
3.5  
3.0  
VI = 72 V  
VI = 54 V  
VI = 36 V  
6
2.5  
2.0  
1.5  
VI = 36 V  
VI = 54 V  
VI = 72 V  
4
2
0
1.0  
0.5  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT, IO(A)  
8-738(C)  
0
1
2
3
4
5
6
7
8
9
10  
Figure 7. JW030B-M Typical Output  
Characteristics  
OUTPUT CURRENT, IO (A)  
8-1194(C)  
Figure 5. JW030F-M Typical Output Characteristics  
16  
14  
12  
10  
5
4
8
VI = 36 V  
6
3
VI = 54 V  
VI = 72 V  
4
VI = 36 V  
2
1
0
VI = 54 V  
VI = 72 V  
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT, IO(A)  
0
1
2
3
4
5
6
7
8
9
10  
8-739(C)  
OUTPUT CURRENT, IO (A)  
Figure 8. JW030C-M Typical Output  
Characteristics  
8-737(C)  
Figure 6. JW030A-M Typical Output  
Characteristics  
Lineage Power  
7
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Characteristic Curves (continued)  
80  
75  
80  
VI = 54 V  
VI = 36 V  
70  
65  
60  
75  
VI = 54 V  
70  
65  
VI = 72 V  
55  
50  
60  
VI = 36 V  
55  
50  
0
1
2
3
4
5
6
VI = 72 V  
OUTPUT CURRENT, IO (A)  
8-1193(C)  
45  
Figure 11. JW030F-M Typical Converter Efficiency  
vs. Output Current  
40  
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
OUTPUT CURRENT, IO (A)  
8-1330(C)  
90  
80  
Figure 9. JW030D-M Typical Converter Efficiency  
vs. Output Current  
70  
VI = 36 V  
VI = 54 V  
VI = 72 V  
74  
72  
70  
68  
60  
50  
40  
0
1
2
3
4
5
6
OUTPUT CURRENT, IO  
(A)  
66  
VI= 36 V  
8-742(C)  
VI = 48 V  
VI= 75 V  
64  
Figure 12. JW030A-M Typical Converter Efficiency  
vs. Output Current  
62  
60  
0.6  
1.6  
2.6  
3.6  
4.6  
5.6  
6.6  
OUTPUT CURRENT, IO(A)  
8-2558(C)  
Figure 10. JW030G-M Typical Converter Efficiency  
vs. Output Current  
8
Lineage Power  
Data Sheet  
March 26, 2008  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Characteristic Curves (continued)  
105  
100  
95  
90  
80  
70  
VI = 36 V  
VI = 54 V  
VI = 72 V  
75  
50  
Δl  
Δt  
o
60  
= 1 A/10 µs  
50  
25  
500 µs  
40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TIME, t (500 µs/div)  
OUTPUT CURRENT, IO (A)  
8-731(C).a  
8-741(C)  
Figure 15. JW030D-M, F-M, G-M Typical Output  
Voltage for a Step Load Change from  
50% to 75%  
Figure 13. JW030B-M Typical Converter Efficiency  
vs. Output Current  
90  
80  
70  
102  
100  
98  
VI = 36 V  
VI = 54 V  
VI = 72 V  
60  
50  
40  
75  
Δl  
Δt  
o
= 1 A/10 µs  
50  
25  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
500 µs  
OUTPUT CURRENT, IO (A)  
8-743(C)  
TIME, t (500 µs/div)  
Figure 14. JW030C-M Typical Converter Efficiency  
vs. Output Current  
8-731(C)  
Figure 16. JW030A-M, B-M, C-M Typical Output  
Voltage for a Step Load Change from  
50% to 75%  
Lineage Power  
9
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Characteristic Curves (continued)  
100  
50  
0
102  
100  
98  
4
2
75  
50  
0
1 ms  
o
Δl  
Δt  
= 1 A/10 µs  
25  
TIME, t (20 ms/div)  
500 µs  
8-733(C).a  
TIME, t (500 µs/div)  
Figure 19. Typical Output Voltage Start-Up when  
Signal Applied to Remote On/Off  
8-732(C).a  
Figure 17. JW030D-M, F-M, G-M Typical Output  
Voltage for a Step Load Change from  
50% to 25%  
102  
100  
98  
75  
50  
ΔIO  
Δt  
= 1 A/10 µs  
25  
500 µs  
TIME, t (500 µs/div)  
8-732(C)  
Figure 18. JW030A-M, B-M, C-M Typical Output  
Voltage for a Step Load Change from  
50% to 25%  
10  
Lineage Power  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26,2008  
Test Configurations  
Design Considerations  
Grounding Considerations  
TO OSCILLOSCOPE  
CURRENT  
PROBE  
The case is not connected internally allowing the user  
flexibility in grounding.  
L
TEST  
VI(+)  
12 µH  
CS 220 µF  
IMPEDANCE < 0.1 Ω  
@ 20 ˚C, 100 kHz  
BATTERY  
Input Source Impedance  
VI(-)  
The power module should be connected to a low ac-  
impedance input source. Highly inductive source  
impedances can affect the stability of the power mod-  
ule. A 33 µF electrolytic capacitor (ESR < 0.7 ¾ at  
100 kHz) mounted close to the power module helps  
ensure stability of the unit. (See Figure 20.)  
8-489(C)  
Note: Input reflected-ripple current is measured with a simulated  
source impedance of 12 µH. Capacitor CS offsets possible  
battery impedance. Current is measured at the input of the  
module.  
Figure 20. Input Reflected-Ripple Test Setup  
Safety Considerations  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL 1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
COPPER STRIP  
VO(+)  
RESISTIVE  
LOAD  
0.1 µF  
SCOPE  
VO(–)  
If the input source is non-SELV (ELV or a hazardous  
voltage greater than 60 Vdc and less than or equal to  
75 Vdc), for the module's output to be considered  
meeting the requirements of safety extra-low voltage  
(SELV), all of the following must be true:  
8-513(C)  
Note:Use a 0.1 µF ceramic capacitor. Scope measurement should  
be made using a BNC socket. Position the load between  
50 mm and 75 mm (2 in. and 3 in.) from the module.  
n The input source is to be provided with reinforced  
insulation from any other hazardous voltages, includ-  
ing the ac mains.  
Figure 21. Peak-to-Peak Output Noise  
Measurement Test Setup  
n One VI pin and one VO pin are to be grounded or  
both the input and output pins are to be kept floating.  
SENSE(+)  
CONTACT AND  
n The input pins of the module are not operator acces-  
DISTRIBUTION LOSSES  
VI (+)/CASE VO (+)  
sible.  
IO  
I I  
n Another SELV reliability test is conducted on the  
whole system, as required by the safety agencies, on  
the combination of supply source and the subject  
module to verify that under a single fault, hazardous  
voltages do not appear at the module's output.  
LOAD  
SUPPLY  
VI(–)  
VO (–)  
CONTACT  
RESISTANCE  
SENSE(–)  
8-749(C).a  
Note: Do not ground either of the input pins of the  
module without grounding one of the output  
pins. This may allow a non-SELV voltage to  
appear between the output pins and ground.  
Note:All measurements are taken at the module terminals. When  
socketing, place Kelvin connections at module terminals to  
avoid measurement errors due to socket contact resistance.  
[VO(+) VO(–)] IO  
[VI(+) VI(–)] II  
----------------------------------------------------  
η =  
× 100  
%
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
Figure 22. Output Voltage and Efficiency  
Measurement Test Setup  
The input to these units is to be provided with a maxi-  
mum 5 A normal-blow fuse in the ungrounded lead.  
Lineage Power  
11  
JW030-Series Power Modules:  
Lineage Power36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Feature Descriptions  
Overcurrent Protection  
VI(+)  
VI(-)  
Von/off  
SENSE(+)  
To provide protection in a fault (output overload) condi-  
tion, the unit is equipped with internal current-limiting  
circuitry and can endure current limiting for an unlim-  
ited duration. At the point of current-limit inception, the  
unit shifts from voltage control to current control. If the  
output voltage is pulled very low during a severe fault,  
the current-limit circuit can exhibit either foldback or  
tailout characteristics (output current decrease or  
increase). The unit operates normally once the output  
current is brought back into its specified range.  
VO(+)  
VO(–)  
+
LOAD  
REMOTE  
ON/OFF  
Ion/off  
SENSE(–)  
8-720(C).h  
Figure 23. Remote On/Off Implementation  
Remote Sense  
Remote On/Off  
Remote sense minimizes the effects of distribution  
losses by regulating the voltage at the remote-sense  
connections. The voltage between the remote-sense  
pins and the output terminals must not exceed the out-  
put voltage sense range given in the Feature Specifica-  
tions table, i.e.:  
Two remote on/off options are available. Positive logic  
remote on/off turns the module on during a logic-high  
voltage on the REMOTE ON/OFF pin, and off during a  
logic low. Negative logic remote on/off turns the module  
off during a logic high and on during a logic low. Nega-  
tive logic, device code suffix “1,” is the factory-preferred  
configuration.  
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] ð 0.2 V  
To turn the power module on and off, the user must  
supply a switch to control the voltage between the  
on/off terminal and the VI(–) terminal (Von/off). The  
switch can be an open collector or equivalent (see Fig-  
ure 23). A logic low is Von/off = –0.7 V to 1.2 V, during  
which the module is off. The maximum Ion/off during a  
logic low is 1 mA. The switch should maintain a logic-  
low voltage while sinking 1 mA.  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum output overvoltage shut-  
down voltage as indicated in the Feature Specifications  
table. This limit includes any increase in voltage due to  
remote-sense compensation and output voltage set-  
point adjustment (trim). See Figure 24.  
If not using the remote-sense feature to regulate the  
output at the point of load, then connect SENSE(+) to  
VO(+) and SENSE(–) to VO(–) at the module.  
During a logic high, the maximum Von/off generated by  
the power module is 6 V. The maximum allowable leak-  
age current of the switch at Von/off = 6 V is 50 µA.  
The module has internal capacitance to reduce noise  
at the ON/OFF pin. Additional capacitance is not gen-  
erally needed and may degrade the start-up character-  
istics of the module.  
SENSE(+)  
SENSE(–)  
VI(+)  
VI(-)  
VO(+)  
VO(–)  
IO  
SUPPLY  
LOAD  
CAUTION: To avoid damaging the power module  
or external on/off circuit, the connec-  
tion between the VI(–) pin and the input  
source must be made before or simulta-  
neously to making a connection  
II  
CONTACT  
RESISTANCE  
CONTACT AND  
DISTRIBUTION LOSSES  
8-651(C).m  
Figure 24. Effective Circuit Configuration for  
between the ON/OFF pin and the input  
source (either directly or through the  
external on/off circuit.)  
Single-Module Remote-Sense Operation  
12  
Lineage Power  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26,2008  
The combination of the output voltage adjustment and  
sense range and the output voltage given in the Fea-  
ture Specifications table cannot exceed 110% of the  
nominal output voltage between the VO(+) and VO(–)  
terminals.  
Feature Descriptions (continued)  
Output Voltage Set-Point Adjustment  
(Trim)  
The JW030-Series Power Modules have a fixed cur-  
rent-limit set point. Therefore, as the output voltage is  
adjusted down, the available output power is reduced.  
In addition, the minimum output current is a function of  
the output voltage. As the output voltage is adjusted  
down, the minimum required output current can  
increase.  
Output voltage trim allows the user to increase or  
decrease the output voltage set point of a module. This  
is accomplished by connecting an external resistor  
between the TRIM pin and either the SENSE(+) or  
SENSE(–) pins. With an external resistor between the  
TRIM and SENSE(–) pins (Radj-down), the output voltage  
set point (VO, adj) decreases (see Figure 25). The fol-  
lowing equation determines the required external-resis-  
tor value to obtain an output voltage change of %ý.  
VI(+)  
VO(+)  
1 %ý  
-----------------  
Radj-down =  
10 kΩ  
%ý  
ON/OFF  
SENSE(+)  
For example, to lower the output voltage by 30%, the  
external resistor value must be:  
CASE  
VI(–)  
TRIM  
RLOAD  
Radj-down  
SENSE(–)  
1 0.3  
-----------------  
Radj-down =  
10 kΩ = 23.33 kΩ  
0.3  
VO(–)  
With an external resistor connected between the TRIM  
and SENSE(+) pins (Radj-up), the output voltage set  
point (VO, adj) increases (see Figure 26). The following  
equations determine the required external-resistor  
value to obtain an output voltage change of %ý.  
8-748(C)b  
Figure 25. Circuit Configuration to Decrease  
Output Voltage  
JW030A-M, B-M, C-M:  
1 + %Δ  
%ý  
VO, nom  
2.5  
⎞ ⎛  
⎠ ⎝  
------------------  
Radj-up = ----------------- 1  
10 kΩ  
VI(+)  
VO(+)  
ON/OFF  
SENSE(+)  
For example, to increase the output voltage of the  
JW030B-M by 5%, the external resistor value must be:  
Radj-up  
RLOAD  
CASE  
VI(–)  
TRIM  
1 + 0.05  
--------------------  
12.0  
2.5  
⎞ ⎛  
⎠ ⎝  
Radj-up = ----------- 1  
10 kΩ = 798 kΩ  
SENSE(–)  
0.05  
VO(–)  
JW030D-M, F-M, G-M:  
8-715(C)b  
1 + %Δ  
%Δ  
VO, nom  
1.235  
⎞ ⎛  
⎠ ⎝  
------------------  
Radj-up = ------------------- 1  
10 kΩ  
Figure 26. Circuit Configuration to Increase Output  
Voltage  
For example, to increase the output voltage of the  
JW030D-M by 5%, the external resistor must be:  
Output Overvoltage Protection  
1 + 0.05  
--------------------  
2
⎞ ⎛  
⎠ ⎝  
Radj-up = -------------- 1  
10 kΩ = 130 kΩ  
0.05  
1.235  
The output overvoltage clamp consists of control cir-  
cuitry, independent of the primary regulation loop, that  
monitors the voltage on the output terminals. The con-  
trol loop of the clamp has a higher voltage set point  
than the primary loop (see Feature Specifications  
table). This provides a redundant voltage-control that  
reduces the risk of output overvoltage.  
Lineage Power  
13  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Thermal Considerations  
The JW030-Series Power Modules are designed to operate in a variety of thermal environments. As with any elec-  
tronic component, sufficient cooling must be provided to help ensure reliable operation. Heat-dissipating compo-  
nents inside the module are thermally coupled to the case to enable heat removal by conduction, convection, and  
radiation to the surrounding environment.  
The thermal data presented is based on measurements taken in a wind tunnel. The test setup shown in Figure 27  
was used to collect data for Figure 34.  
The graphs in Figures 28 through 33 provide general guidelines for use. Actual performance can vary depending  
on the particular application environment. The maximum case temperature of 100 °C must not be exceeded.  
12.7 (0.50)  
WIND TUNNEL  
WALL  
MEASURE CASE  
TEMPERATURE (TC) AT  
CENTER OF UNIT  
AIR-  
FLOW  
CONNECTORS TO  
LOADS, POWER  
SUPPLIES, AND  
DATALOGGER,  
6.35 (0.25) TALL  
203.2  
(8.00)  
AIRFLOW  
76.2  
(3.00)  
101.6  
(4.00)  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
MEASURED  
BELOW THE  
MODULE  
203.2 (8.00)  
19.1 (0.75)  
8-1046(C)  
Note: Dimensions are in millimeters and (inches).  
Figure 27. Thermal Test Setup  
Basic Thermal Performance  
The JW030-Series Power Modules are constructed with a specially designed, heat spreading enclosure. As a  
result, full-load operation in natural convection at 50 °C can be achieved without the use of an external heat sink.  
Higher ambient temperatures can be sustained by increasing the airflow or by adding a heat sink. As stated, this  
data is based on a maximum case temperature of 100 °C and measured in the test configuration shown in  
Figure 27.  
14  
Lineage Power  
Data Sheet  
March 26, 2008  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Thermal Considerations (continued)  
8
7
Forced Convection Cooling  
6
VI = 36 V  
VI = 72 V  
To determine the necessary airflow, determine the  
power dissipated by the unit for the particular applica-  
tion. Figures 28 through 33 show typical power  
5
4
3
VI = 54 V  
dissipation for these power modules over a range of  
output currents. With the known power dissipation and  
a given local ambient temperature, the appropriate air-  
flow can be chosen from the derating curves in Figure  
34. For example, if the JW030A-M dissipates 6.2 W,  
2
1
0
–1  
the minimum airflow in a 80 °C environment is 1 ms  
0
1
2
3
4
5
6
(200 ft./min.).  
OUTPUT CURRENT, IO (A)  
8-1195(C)  
8
7
Figure 30. JW030F-M Power Dissipation vs. Output  
Current  
6
5
V
VI  
VI  
I
= 72 V  
= 54 V  
= 36 V  
4
3
2
1
0
9
VI = 72 V  
8
VI = 54 V  
VI = 36 V  
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
OUTPUT CURRENT, IO (A)  
8-1050(C)  
Figure 28. JW030D-M Power Dissipation vs. Output  
Current  
0
1
2
3
4
5
6
OUTPUT CURRENT, IO (A)  
8-1047(C)  
8
7
Figure 31. JW030A-M Power Dissipation vs. Output  
Current  
VI = 75 V  
VI = 48 V  
6
VI = 36V  
5
4
3
2
1
0
0.6  
1.6  
2.6  
3.6  
4.6  
5.6  
6.6  
O
OUTPUT CURRENT, I (A)  
8-2556(C)  
Figure 29. JW030G-M Power Dissipation vs. Output  
Current  
Lineage Power  
15  
JW030-Series Power Modules:  
Lineage Power36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Thermal Considerations (continued)  
Forced Convection Cooling (continued)  
9
8
7
6
5
4
3
2
1
0
8
VI = 72 V  
2.0 ms-1(400 ft./min.)  
1.0 ms-1(200 ft./min.)  
0.5 ms-1(100 ft./min.)  
NATURAL  
7
VI = 54 V  
VI = 36 V  
6
5
4
3
2
CONVECTION  
30  
40  
50  
60  
70  
80  
90  
100  
LOCAL AMBIENT TEMPERATURE, TA (˚C)  
1
0
8-1051(C)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Figure 34. Forced Convection Power Derating with  
No Heat Sink; Either Orientation  
OUTPUT CURRENT, IO (A)  
8-1048(C)  
Heat Sink Selection  
Figure 32. JW030B-M Power Dissipation vs. Output  
Current  
Several heat sinks are available for these modules.  
The case includes through-threaded mounting holes  
allowing attachment of heat sinks or cold plates from  
either side of the module. The mounting torque must  
not exceed 0.56 N-m (5 in./lb.).  
8
7
6
Figure 35 shows the case-to-ambient thermal resis-  
tance, θ (°C/W), for these modules. These curves can  
be used to predict which heat sink will be needed for a  
particular environment. For example, if the JW030A-M  
dissipates 7 W of heat in an 80 °C environment with an  
VI = 72 V  
VI = 54 V  
VI = 36 V  
5
4
3
2
–1  
airflow of 0.7 ms (130 ft./min.), the minimum heat  
sink required can be determined as follows:  
1
0
θ ≤ (TC, max TA) ⁄ PD  
where:  
0.0  
0.5  
1.0  
1.5  
2.0  
θ = module’s total thermal resistance  
TC,max = case temperature (See Figure 27.)  
TA = inlet ambient temperature  
(See Figure 27.)  
OUTPUT CURRENT, IO (A)  
8-1049(C)  
Figure 33. JW030C-M Power Dissipation vs. Output  
Current  
PD = power dissipation  
θ ð (100 – 80)/7  
θ ð 2.9 °C/W  
From Figure 35, the 1/2 in. high heat sink or greater is  
required.  
16  
Lineage Power  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26,2008  
Although the previous example uses 100 °C as the  
maximum case temperature, for extremely high reliabil-  
ity applications, one can use a lower temperature for  
TC, max.  
Thermal Considerations (continued)  
Heat Sink Selection (continued)  
It is important to point out that the thermal resistances  
shown in Figure 35 are for heat transfer from the sides  
and bottom of the module as well as the top side with  
the attached heat sink; therefore, the case-to-ambient  
thermal resistances shown will generally be lower than  
the resistance of the heat sink by itself. The data in Fig-  
ure 35 was taken with a thermally conductive dry pad  
between the case and the heat sink to minimize contact  
resistance (typically 0.1 °C/W to 0.3 °C/W).  
8
7
NO HEAT SINK  
1/4 in. HEAT SINK  
1/2 in. HEAT SINK  
1 in. HEAT SINK  
6
5
1 1/2 in. HEAT SINK  
4
3
2
For a more detailed explanation of thermal energy  
management for this series of power modules as well  
as more details on available heat sinks, please request  
the following technical note: Thermal Energy Manage-  
ment for JC- and JW-Series 30 Watt Board-Mounted  
Power Modules (TN97-016EPS).  
1
0
0
0.25 0.51 0.76 1.02 1.27 1.52 1.78 2.03  
(50) (100) (150) (200) (250) (300) (350) (400)  
AIR VELOCITY,ms -1(ft./min.)  
8-1052(C).a  
Layout Considerations  
Figure 35. Case-to-Ambient Thermal Resistance  
vs. Air Velocity Curves; Either  
Orientation  
Copper paths must not be routed beneath the power  
module standoffs.  
Lineage Power  
17  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Outline Diagram  
Dimensions are in millimeters and (inches).  
Tolerances: x.x ± 0.5 mm (0.02 in.), x.xx ± 0.25 mm (0.010 in.).  
Top View  
57.9 (2.28) MAX  
61.0  
(2.40)  
MAX  
Side View  
0.51 (0.020)  
12.7 (0.50)  
MAX  
1.02 (0.040) DIA  
SOLDER-PLATED  
,ALL PINS  
BRASS  
5.1 (0.20)  
MIN  
Bottom View  
7.1  
(0.28)  
MOUNTING INSERTS  
M3 x 0.5 THROUGH,  
4 PLACES  
STANDOFF,  
4 PLACES  
12.7 (0.50)  
5.1 (0.20)  
7.1 (0.28)  
5
4
3
10.16  
(0.400)  
10.16  
(0.400)  
17.78  
6
7
8
(0.700)  
25.40  
(1.000)  
50.8  
(2.00)  
25.40  
(1.000)  
35.56  
(1.400)  
35.56  
(1.400)  
2
1
9
48.26 (1.900)  
TERMINALS  
4.8  
(0.19)  
48.3 (1.90)  
MOUNTING HOLES  
8-716(C)  
18  
Lineage Power  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Recommended Hole Pattern  
Component-side footprint.  
Dimensions are in millimeters and (inches).  
4.8  
(0.19)  
48.3 (1.90)  
48.26 (1.900)  
TERMINALS  
1
2
9
35.56  
(1.400)  
35.56  
(1.400)  
8
7
6
25.40  
(1.000)  
50.8  
25.40  
(2.00)  
(1.000)  
17.78  
3
4
(0.700)  
10.16  
10.16  
(0.400)  
(0.400)  
5
5.1 (0.20)  
12.7 (0.50)  
M3 x 0.5 CLEARANCE HOLE,  
4 PLACES (OPTIONAL)  
MODULE OUTLINE  
8-716(C)  
Ordering Information  
Please contact your Lineage Power Account Manager or Field Application Engineer for pricing and availability.  
Table 4. Device Codes  
Input  
Voltage  
Output  
Voltage  
Output  
Power  
Remote On/  
Off Logic  
Device  
Code  
Comcode  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
2 V  
2.5 V  
3.3 V  
5 V  
13 W  
30 W  
21.5 W  
30 W  
30 W  
30 W  
13 W  
30 W  
21.5 W  
30 W  
30 W  
30 W  
Negative  
Negative  
Negative  
Negative  
Negative  
Negative  
Positive  
Positive  
Positive  
Positive  
Positive  
Positive  
JW030D1-M  
JW030G1-M  
JW030F1-M  
JW030A1-M  
JW030B1-M  
JW030C1-M  
JW030D-M  
JW030G-M  
JW030F-M  
JW030A-M  
JW030B-M  
JW030C-M  
107670259  
108448259  
107587859  
107587776  
107587818  
107587834  
107587842  
TBD  
12 V  
15 V  
2 V  
2.5 V  
3.3 V  
5 V  
107600546  
107584278  
107587800  
107587826  
12 V  
15 V  
Table 5. Device Options  
Option  
Device Code Suffix  
Short pins: 3.68 mm ± 0.25 mm  
6
(0.145 in. ± 0.010 in.)  
Short pins: 2.79 mm ± 0.25 mm  
(0.110 in. ± 0.010 in.)  
8
Lineage Power  
19  
JW030-Series Power Modules:  
36 Vdc to 75 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Ordering Information (continued)  
Table 6. Device Accessories  
Accessory  
Comcode  
1/4 in. transverse kit (heat sink, thermal pad, and screws)  
1/4 in. longitudinal kit (heat sink, thermal pad, and screws)  
1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 in. transverse kit (heat sink, thermal pad, and screws)  
1 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1 1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
407243989  
407243997  
407244706  
407244714  
407244722  
407244730  
407244748  
407244755  
Note: Dimensions are in millimeters and (inches).  
1/4 IN.  
1/2 IN.  
1/4 IN.  
1/2 IN.  
1 IN.  
1 IN.  
61  
(2.4)  
57.9  
(2.28)  
1 1/2 IN.  
1 1/2 IN.  
57.9 (2.28)  
61 (2.4)  
D000-c.cvs  
D000-d.cvs  
Figure 36. Longitudinal Heat Sink  
Figure 37. Transverse Heat Sink  
Asia-Pacific Headquarters  
Tel: +65 6 41 6 4283  
Europe, Middle-East and Afric a He adquarters  
Tel: +49 8 9 6089 286  
World W ide Headquarters  
Lineage Power Corporation  
30 00 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819  
India Headquarters  
Tel: +91 8 0 28411633  
(Outsid e U.S.A .: +1-97 2-2 84 -2626)  
www.line agepower.com  
e-m ail: techsupport1@linea gepower.com  
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or  
application. No rights under any patent accompany the sale of any such product(s) or information.  
© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.  
March 2008  
DS98-266EPS (Replaces DS98-265EPS)  
厂商 型号 描述 页数 下载

PULSE

JW0-0006 PULSEJACKTM RJ45 /双USB二合一[ PULSEJACKTM RJ45/Dual USB Combo ] 7 页

PULSE

JW0-0006NL RJ45 /双USB二合一[ RJ45/Dual USB Combo ] 7 页

PULSE

JW0-0009 PULSEJACKTM RJ45 /双USB二合一[ PULSEJACKTM RJ45/Dual USB Combo ] 7 页

PULSE

JW0-0009NL PULSEJACKTM RJ45 /双USB二合一[ PULSEJACKTM RJ45/Dual USB Combo ] 7 页

PULSE

JW0-0013 PULSEJACKTM RJ45 /双USB二合一[ PULSEJACKTM RJ45/Dual USB Combo ] 7 页

PULSE

JW0-0013NL RJ45 /双USB二合一[ RJ45/Dual USB Combo ] 7 页

ETC

JW030A 直流 - 直流电压转换器\n[ DC-to-DC Voltage Converter ] 16 页

VISHAY

JW030A-M JW030系列电源模块36 VDC至75 VDC输入30瓦[ JW030-Series Power Modules 36 Vdc to 75 Vdc Inputs 30 W ] 20 页

ETC

JW030A1 直流 - 直流电压转换器\n[ DC-to-DC Voltage Converter ] 16 页

ETC

JW030A1-M 直流 - 直流电压转换器\n[ DC-to-DC Voltage Converter ] 16 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.176942s