找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

XTR105U

型号:

XTR105U

描述:

4-20mA电流变送器,传感器激励和线性[ 4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization ]

品牌:

BB[ BURR-BROWN CORPORATION ]

页数:

15 页

PDF大小:

267 K

®
XTR105  
XTR105  
XTR105  
www.burr-brown.com/databook/XTR105.html  
4-20mA CURRENT TRANSMITTER  
with Sensor Excitation and Linearization  
FEATURES  
APPLICATIONS  
LOW UNADJUSTED ERROR  
INDUSTRIAL PROCESS CONTROL  
TWO PRECISION CURRENT SOURCES  
800µA EACH  
FACTORY AUTOMATION  
SCADA REMOTE DATA ACQUISITION  
RTD OR BRIDGE EXCITATION  
LINEARIZATION  
REMOTE TEMPERATURE AND PRESSURE  
TRANSDUCERS  
TWO OR THREE-WIRE RTD OPERATION  
LOW OFFSET DRIFT: 0.4µV/°C  
LOW OUTPUT CURRENT NOISE: 30nAp-p  
HIGH PSR: 110dB min  
Pt100 NONLINEARITY CORRECTION  
USING XTR105  
5
4
HIGH CMR: 86dB min  
3
WIDE SUPPLY RANGE: 7.5V TO 36V  
14-PIN DIP AND SO-14 SOIC PACKAGES  
Uncorrected  
RTD Nonlinearity  
2
Corrected  
Nonlinearity  
1
0
DESCRIPTION  
The XTR105 is a monolithic 4-20mA, two-wire  
current transmitter with two precision current sources.  
It provides complete current excitation for Platinum  
RTD temperature sensors and bridges, instrumenta-  
tion amplifier, and current output circuitry on a single  
integrated circuit.  
–1  
–200°C  
+850°C  
Process Temperature (°C)  
I
R = 0.8mA  
Versatile linearization circuitry provides a 2nd-order  
correction to the RTD, typically achieving a 40:1  
improvement in linearity.  
IR = 0.8mA  
VLIN  
VREG  
7.5V to 36V  
VPS  
Instrumentation amplifier gain can be configured for a  
wide range of temperature or pressure measurements.  
Total unadjusted error of the complete current trans-  
mitter is low enough to permit use without adjustment  
in many applications. This includes zero output cur-  
rent drift, span drift and nonlinearity. The XTR105  
operates on loop power supply voltages down to 7.5V.  
+
4-20 mA  
VO  
RL  
XTR105  
RG  
RTD  
The XTR105 is available in 14-pin plastic DIP and  
SO-14 surface-mount packages and is specified for the  
–40°C to +85°C industrial temperature range.  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
• Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1997 Burr-Brown Corporation  
PDS-1362B  
Printed in U.S.A. February, 1997  
SPECIFICATIONS  
At TA = +25°C, V+ = 24V, and TIP29C external transistor, unless otherwise noted.  
XTR105P, U  
TYP  
XTR105PA, UA  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
OUTPUT  
Output Current Equation  
Output Current, Specified Range  
Over-Scale Limit  
IO = VIN • (40/RG) + 4mA, VIN in Volts, RG in Ω  
A
4
20  
30  
mA  
mA  
mA  
24  
1.8  
27  
Under-Scale Limit  
IREG = 0V  
2.2  
2.6  
ZERO OUTPUT(1)  
Initial Error  
vs Temperature  
vs Supply Voltage, V+  
vs Common-Mode Voltage  
vs VREG Output Current  
Noise: 0.1Hz to 10Hz  
VIN = 0V, RG = ∞  
4
±5  
±0.07  
0.04  
0.02  
0.3  
mA  
µA  
±25  
±0.5  
0.2  
±50  
±0.9  
µA/°C  
µA/V  
µA/V  
µA/mA  
µAp-p  
V+ = 7.5V to 36V  
VCM = 1.25V to 3.5V(2)  
0.03  
SPAN  
Span Equation (Transconductance)  
Initial Error(3)  
S = 40/RG  
±0.05  
±3  
A/V  
%
ppm/°C  
%
Full Scale (VIN) = 50mV  
Full Scale (VIN) = 50mV  
±0.2  
±25  
0.01  
±0.4  
vs Temperature(3)  
Nonlinearity: Ideal Input(4)  
0.003  
INPUT(5)  
Offset Voltage  
vs Temperature  
vs Supply Voltage, V+  
vs Common-Mode Voltage,  
RTI (CMRR)  
VCM = 2V  
±50  
±0.4  
±0.3  
±10  
±100  
±1.5  
±3  
±250  
±3  
µV  
µV/°C  
µV/V  
µV/V  
V+ = 7.5V to 36V  
VCM = 1.25V to 3.5V(2)  
±50  
±100  
Common-Mode Input Range(2)  
Input Bias Current  
vs Temperature  
Input Offset Current  
vs Temperature  
Impedance: Differential  
Common-Mode  
Noise: 0.1Hz to 10Hz  
1.25  
3.5  
25  
50  
V
nA  
5
20  
±0.2  
5
0.1 || 1  
5 || 10  
0.6  
pA/°C  
nA  
pA/°C  
G|| pF  
G|| pF  
µVp-p  
±3  
±10  
CURRENT SOURCES  
Current  
Accuracy  
vs Temperature  
vs Power Supply, V+  
Matching  
vs Temperature  
vs Power Supply, V+  
Compliance Voltage, Positive  
Negative(2)  
VO = 2V(6)  
800  
±0.05  
±15  
±10  
±0.02  
±3  
µA  
%
ppm/°C  
ppm/V  
%
ppm/°C  
ppm/V  
V
±0.2  
±35  
±25  
±0.1  
±15  
10  
±0.4  
±75  
±0.2  
±30  
V+ = 7.5V to 36V  
V+ = 7.5V to 36V  
1
(V+) –3 (V+) –2.5  
0
–0.2  
150  
0.003  
V
MΩ  
µAp-p  
Output Impedance  
Noise: 0.1Hz to 10Hz  
(2)  
VREG  
5.1  
±0.02  
±0.2  
1
±1  
75  
V
V
Accuracy  
±0.1  
vs Temperature  
vs Supply Voltage, V+  
Output Current  
Output Impedance  
mV/°C  
mV/V  
mA  
LINEARIZATION  
RLIN (internal)  
Accuracy  
1
±0.2  
±25  
kΩ  
%
ppm/°C  
±0.5  
±100  
±1  
vs Temperature  
POWER SUPPLY  
Specified  
Voltage Range  
+24  
V
V
+7.5  
+36  
TEMPERATURE RANGE  
Specification, TMIN to TMAX  
Operating  
–40  
–55  
–55  
+85  
+125  
+125  
°C  
°C  
°C  
Storage  
Thermal Resistance, θJA  
14-Pin DIP  
SO-14 Surface-Mount  
80  
100  
°C/W  
°C/W  
Specification same as XTR105P, XTR105U.  
NOTES: (1) Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero. (2) Voltage measured with  
respect to IRET pin. (3) Does not include initial error or TCR of gain-setting resistor, RG. (4) Increasing the full-scale input range improves nonlinearity. (5) Does not  
include Zero Output initial error. (6) Current source output voltage with respect to IRET pin.  
®
2
PIN CONFIGURATION  
ABSOLUTE MAXIMUM RATINGS(1)  
Power Supply, V+ (referenced to IO pin) .......................................... 40V  
Input Voltage, VI+N, VIN (referenced to IO pin) ............................ 0V to V+  
Storage Temperature Range ........................................ –55°C to +125°C  
Lead Temperature (soldering, 10s) .............................................. +300°C  
Output Current Limit ............................................................... Continuous  
Junction Temperature ................................................................... +165°C  
Top View  
DIP and SOIC  
1
2
3
4
5
6
7
IR1  
VIN  
RG  
RG  
NC  
IRET  
IO  
14 IR2  
13 VI+N  
12 VLIN  
11 VREG  
10 V+  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
9
8
B (Base)  
E (Emitter)  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
NC = No Internal Connection.  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING TEMPERATURE  
PRODUCT  
PACKAGE  
NUMBER(1)  
RANGE  
XTR105PA  
XTR105P  
XTR105UA  
XTR105U  
14-Pin Plastic DIP  
14-Pin Plastic DIP  
SO-14 Surface Mount  
SO-14 Surface Mount  
010  
010  
235  
235  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
FUNCTIONAL BLOCK DIAGRAM  
VLIN  
IR1  
12  
1
IR2  
14  
VREG  
V+  
800µA  
800µA  
11  
10  
13  
VI+N  
5.1V  
4
B
9
RLIN  
1kΩ  
Q1  
100µA  
RG  
3
2
E
8
VIN  
I = 100µA +  
RG  
VIN  
975Ω  
25Ω  
7
40  
RG  
IO = 4mA + VIN  
(
)
6
IRET  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no  
responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice.  
No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product  
for use in life support devices and/or systems.  
®
XTR105  
3
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, V+ = 24V, unless otherwise noted.  
TRANSCONDUCTANCE vs FREQUENCY  
50  
STEP RESPONSE  
RG = 500Ω  
RG = 125Ω  
RG = 2kΩ  
40  
30  
20  
10  
0
20mA  
RG = 125Ω  
RG = 2kΩ  
4mA  
25µs/div  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
COMMON-MODE REJECTION vs FREQUENCY  
Full-Scale Input = 50mV  
POWER-SUPPLY REJECTION vs FREQUENCY  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
140  
120  
100  
80  
RG = 125Ω  
RG = 125Ω  
60  
RG = 2kΩ  
RG = 2kΩ  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
OVER-SCALE CURRENT vs TEMPERATURE  
With External Transistor  
UNDER-SCALE CURRENT vs TEMPERATURE  
29  
28  
27  
26  
25  
24  
23  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
V+ = 36V  
V+ = 7.5V  
V+ = 24V  
V+ = 7.5V to 36V  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
®
4
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, V+ = 24V, unless otherwise noted.  
INPUT VOLTAGE AND CURRENT  
NOISE DENSITY vs FREQUENCY  
ZERO OUTPUT AND REFERENCE  
CURRENT NOISE vs FREQUENCY  
10k  
1k  
10k  
1k  
10k  
1k  
Zero Output Current  
Current Noise  
100  
10  
100  
10  
100  
10  
Reference Current  
Voltage Noise  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
ZERO OUTPUT CURRENT ERROR  
vs TEMPERATURE  
INPUT BIAS AND OFFSET CURRENT  
vs TEMPERATURE  
4
25  
20  
15  
10  
5
2
0
–2  
+IB  
–4  
–6  
–8  
–IB  
–10  
–12  
IOS  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
ZERO OUTPUT DRIFT  
PRODUCTION DISTRIBUTION  
INPUT OFFSET VOLTAGE DRIFT  
PRODUCTION DISTRIBUTION  
40  
35  
30  
25  
20  
15  
10  
5
50  
Typical Production Distribution  
of Packaged Units.  
Typical Production Distribution  
of Packaged Units.  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.02%  
0.1%  
0
0
Input Offset Voltage Drift (µV/°C)  
Zero Output Drift (µA/°C)  
®
XTR105  
5
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, V+ = 24V, unless otherwise noted.  
CURRENT SOURCE DRIFT  
CURRENT SOURCE MATCHING  
PRODUCTION DISTRIBUTION  
DRIFT PRODUCTION DISTRIBUTION  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
Typical Production Distribution  
of Packaged Units.  
Typical Production Distribution  
of Packaged Units.  
IR1 AND IR2 Included.  
0.04%  
0.01%  
0.07% 0.02%  
0
Current Source Drift (ppm/°C)  
Current Source Matching Drift (ppm/°C)  
REFERENCE CURRENT ERROR  
vs TEMPERATURE  
V
REG OUTPUT VOLTAGE vs VREG OUTPUT CURRENT  
+0.05  
0
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5
125°C  
25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–55°C  
NOTE: Above 1mA,  
Zero Output Degrades  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–1  
0.5  
0
0.5  
1
1.5  
2
Temperature (°C)  
VREG Output Current (mA)  
®
6
The transfer function through the complete instrumentation  
amplifier and voltage-to-current converter is:  
APPLICATION INFORMATION  
Figure 1 shows the basic connection diagram for the XTR105.  
The loop power supply, VPS, provides power for all cir-  
cuitry. Output loop current is measured as a voltage across  
the series load resistor, RL.  
IO = 4mA + VIN • (40/RG)  
(VIN in volts, RG in ohms)  
where VIN is the differential input voltage. As evident from  
the transfer function, if no RG is used the gain is zero and the  
output is simply the XTR105’s zero current. The value of RG  
varies slightly for two-wire RTD and three-wire RTD con-  
nections with linearization. RG can be calculated from the  
equations given in Figure 1 (two-wire RTD connection) and  
Table I (three-wire RTD connection).  
Two matched 0.8mA current sources drive the RTD and  
zero-setting resistor, RZ. The instrumentation amplifier in-  
put of the XTR105 measures the voltage difference between  
the RTD and RZ. The value of RZ is chosen to be equal to  
the resistance of the RTD at the low-scale (minimum)  
measurement temperature. RZ can be adjusted to achieve  
4mA output at the minimum measurement temperature to  
correct for input offset voltage and reference current mis-  
match of the XTR105.  
The IRET pin is the return path for all current from the current  
sources and VREG. The IRET pin allows any current used in  
external circuitry to be sensed by the XTR105 and to be  
included in the output current without causing an error.  
R
CM provides an additional voltage drop to bias the inputs of  
the XTR105 within their common-mode input range. RCM  
should be bypassed with a 0.01µF capacitor to minimize  
common-mode noise. Resistor RG sets the gain of the instru-  
mentation amplifier according to the desired temperature  
range. RLIN1 provides second-order linearization correction  
to the RTD, typically achieving a 40:1 improvement in  
linearity. An additional resistor is required for three-wire  
RTD connections, see Figure 3.  
The VREG pin provides an on-chip voltage source of approxi-  
mately 5.1V and is suitable for powering external input  
circuitry (refer to Figure 6). It is a moderately accurate  
voltage reference—it is not the same reference used to set  
the 800µA current references. VREG is capable of sourcing  
approximately 1mA of current. Exceeding 1mA may affect  
the 4mA zero output.  
IR = 0.8mA  
IR = 0.8mA  
Possible choices for Q1 (see text).  
TYPE  
PACKAGE  
2N4922  
TIP29C  
TIP31C  
TO-225  
TO-220  
TO-220  
12  
1
IR1  
7.5V to 36V  
VLIN  
14  
13  
11  
VI+N  
IR2  
10  
V+  
VREG  
IO  
4
RG  
4-20 mA  
9
8
R(G2)  
B
E
0.01µF  
Q1  
XTR105  
VO  
+
3
2
RG  
VIN  
(3)  
RLIN1  
RL  
VPS  
IO  
7
IRET  
(1)  
6
40  
RG  
RTD  
RZ  
IO = 4mA + VIN • (  
)
NOTES: (1) RZ = RTD resistance at minimum measured temperature.  
2R1(R2 +RZ) – 4(R2RZ)  
RCM = 1kΩ  
(2)  
RG  
=
R2 – R1  
RLIN(R2 – R1)  
(3)  
0.01µF  
RLIN1 =  
2(2R1 – R2 – RZ)  
where R1 = RTD Resistance at (TMIN + TMAX)/2  
R
2 = RTD Resistance at TMAX  
RLIN = 1k(Internal)  
FIGURE 1. Basic Two-Wire RTD Temperature Measurement Circuit with Linearization.  
®
XTR105  
7
A negative input voltage, VIN, will cause the output current  
to be less than 4mA. Increasingly negative VIN will cause the  
output current to limit at approximately 2.2mA. Refer to the  
typical curve “Under-Scale Current vs Temperature.”  
LOOP POWER SUPPLY  
The voltage applied to the XTR105, V+, is measured with  
respect to the IO connection, pin 7. V+ can range from 7.5V  
to 36V. The loop supply voltage, VPS, will differ from the  
voltage applied to the XTR105 according to the voltage drop  
on the current sensing resistor, RL (plus any other voltage  
drop in the line).  
Increasingly positive input voltage (greater than the full-  
scale input) will produce increasing output current according  
to the transfer function, up to the output current limit of  
approximately 27mA. Refer to the typical curve “Over-  
Scale Current vs Temperature.”  
If a low loop supply voltage is used, RL (including the loop  
wiring resistance) must be made a relatively low value to  
assure that V+ remains 7.5V or greater for the maximum  
loop current of 20mA:  
EXTERNAL TRANSISTOR  
Transistor Q1 conducts the majority of the signal-dependent  
4-20mA loop current. Using an external transistor isolates  
the majority of the power dissipation from the precision  
input and reference circuitry of the XTR105, maintaining  
excellent accuracy.  
(V+) – 7.5V  
RL max =  
– RWIRING  
20mA  
It is recommended to design for V+ equal or greater than  
7.5V with loop currents up to 30mA to allow for out-of-  
range input conditions.  
Since the external transistor is inside a feedback loop its  
characteristics are not critical. Requirements are: VCEO  
=
45V min, β = 40 min and PD = 800mW. Power dissipation  
requirements may be lower if the loop power supply voltage  
is less than 36V. Some possible choices for Q1 are listed in  
Figure 1.  
The low operating voltage (7.5V) of the XTR105 allows  
operation directly from personal computer power supplies  
(12V ±5%). When used with the RCV420 Current Loop  
Receiver (Figure 7), load resistor voltage drop is limited to 3V.  
The XTR105 can be operated without this external transis-  
tor, however, accuracy will be somewhat degraded due to  
the internal power dissipation. Operation without Q1 is not  
recommended for extended temperature ranges. A resistor  
(R = 3.3k) connected between the IRET pin and the E  
(emitter) pin may be needed for operation below 0°C with-  
out Q1 to guarantee the full 20mA full-scale output, espe-  
cially with V+ near 7.5V.  
ADJUSTING INITIAL ERRORS  
Many applications require adjustment of initial errors. Input  
offset and reference current mismatch errors can be cor-  
rected by adjustment of the zero resistor, RZ. Adjusting the  
gain-setting resistor, RG, corrects any errors associated with  
gain.  
TWO-WIRE AND  
THREE-WIRE RTD CONNECTIONS  
In Figure 1, the RTD can be located remotely simply by  
extending the two connections to the RTD. With this remote  
two-wire connection to the RTD, line resistance will intro-  
duce error. This error can be partially corrected by adjusting  
10  
the values of RZ, RG, and RLIN1  
.
V+  
A better method for remotely located RTDs is the three-wire  
RTD connection shown in Figure 3. This circuit offers  
improved accuracy. RZ’s current is routed through a third  
wire to the RTD. Assuming line resistance is equal in RTD  
lines 1 and 2, this produces a small common-mode voltage  
8
E
XTR105  
0.01µF  
IO  
which is rejected by the XTR105. A second resistor, RLIN2  
is required for linearization.  
,
7
IRET  
6
Note that although the two-wire and three-wire RTD con-  
nection circuits are very similar, the gain-setting resistor,  
RG, has slightly different equations:  
For operation without external  
transistor, connect a 3.3kΩ  
resistor between pin 6 and  
pin 8. See text for discussion  
of performance.  
RQ = 3.3kΩ  
2R1(R2 + RZ ) – 4(R2RZ )  
Two-wire:  
RG =  
R2 – R1  
FIGURE 2. Operation Without External Transistor.  
2(R2 – RZ )(R1 – RZ )  
R2 – R1  
Three-wire:  
RG =  
where RZ = RTD resistance at TMIN  
R1 = RTD resistance at (TMIN + TMAX)/2  
R2 = RTD resistance at TMAX  
®
8
MEASUREMENT TEMPERATURE SPAN T (°C)  
300°C 400°C 500°C 600°C 700°C  
–200°C 18.7/86.6 18.7/169 18.7/255 18.7/340 18.7/422 18.7/511 18.7/590 18.7/66.5 18.7/750 18.7/845  
TMIN  
100°C  
200°C  
800°C  
900°C  
1000°C  
15000  
16500  
9760  
11500  
8060  
10000  
6650  
8870  
5620  
7870  
4750  
7150  
4020  
6420  
3480  
5900  
3090  
5360  
2740  
4990  
–100°C 60.4/80.6 60.4/162 60.4/243 60.4/324 60.4/402 60.4/487 60.4/562 60.4/649 60.4/732  
27400  
29400  
15400  
17800  
10500  
13000  
7870  
10200  
6040  
8660  
4990  
7500  
4220  
6490  
3570  
5900  
3090  
5360  
0°C  
100/78.7 100/158  
100/237  
10500  
13000  
100/316  
7680  
10000  
100/392  
6040  
8250  
100/475  
4870  
7150  
100/549  
4020  
6340  
100/634  
3480  
5620  
33200  
35700  
16200  
18700  
100°C  
200°C  
300°C  
400°C  
500°C  
600°C  
700°C  
800°C  
137/75  
31600  
34000  
137/150  
15400  
17800  
137/226  
10200  
12400  
137/301  
7500  
9760  
137/383  
5760  
8060  
137/453  
4750  
6810  
137/536  
3920  
6040  
RZ /RG  
RLIN1  
RLIN2  
174/73.2 174/147  
30900  
3320  
174/221  
9760  
12100  
174/294  
7150  
9310  
174/365  
5620  
7680  
174/442  
4530  
6490  
15000  
17400  
210/71.5 210/143  
30100  
32400  
210/215  
9530  
11500  
210/287  
6980  
8870  
210/357  
5360  
7320  
14700  
16500  
NOTE: The values listed in the table are 1% resistors (in ).  
Exact values may be calculated from the following equa-  
tions:  
249/68.1 249/137  
28700  
30900  
249/205  
9090  
11000  
249/274  
6650  
8450  
14000  
16200  
RZ = RTD resistance at minimum measured temperature.  
280/66.5 280/133  
28000  
30100  
280/200  
8870  
10500  
13700  
15400  
2(R2 – RZ )(R1 – RZ )  
RG  
=
(R2 – R1)  
316/64.9 313/130  
26700  
28700  
RLIN(R2 – R1)  
13000  
1470  
RLIN1  
=
2(2R1 – R2 – RZ )  
348/61.9  
26100  
27400  
(RLIN +RG)(R2 – R1)  
RLIN2  
=
2(2R1 – R2 – RZ )  
374/60.4  
24900  
26700  
where R1 = RTD resistance at (TMIN + TMAX)/2  
R2 = RTD resistance at TMAX  
RLIN = 1k(Internal)  
EXAMPLE:  
The measurement range is –100°C to +200°C for a 3-wire Pt100 RTD connection. Determine the values for RS, RG, RLIN1, and RLIN2. Look up the values  
from the chart or calculate the values according to the equations provided.  
METHOD 1: TABLE LOOK UP  
For TMIN = –100°C and T = –300°C, the 1% values are:  
RZ = 60.4Ω  
RG = 243Ω  
RLIN1 = 10.5kΩ  
RLIN2 = 13kΩ  
Calculation of Pt100 Resistance Values  
METHOD 2: CALCULATION  
(according to DIN IEC 751)  
Step 1: Determine RZ, R1, and R2.  
Equation (1) Temperature range from –200°C to 0°C:  
RZ is the RTD resistance at the minimum measured temperature,TMIN = –100°C.  
Using equation (1) at right gives RZ = 60.25(1% value is 60.4).  
R(T) = 100 [1 + 3.90802 • 10–3 • T – 0.5802 • 10–6  
T2 – 4.27350 • 10–12 (T – 100) T3]  
R2 is the RTD resistance at the maximum measured temperature, TMAX = 200°C.  
Using equation (2) at right gives R2 = 175.84.  
Equation (2) Temperature range from 0°C to +850°C:  
R1 is the RTD resistance at the midpoint measured temperature,  
TMID = (TMIN + TMAX)/2 = 50°C. R1 is NOT the average of RZ and R2.  
Using equation (2) at right gives R1 = 119.40.  
R(T) = 100 (1 + 3.90802 • 10–3 • T – 0.5802 • 10–6 • T2)  
where: R(T) is the resistance in at temperature T.  
T is the temperature in °C.  
Step 2: Calculate RG, RLIN1, and RLIN2 using equations above.  
NOTE: Most RTD manufacturers provide reference tables for  
resistance values at various temperatures.  
RG = 242.3(1% value is 243)  
RLIN1 = 10.413k(1% value is 10.5k)  
RLIN2 = 12.936k(1% value is 13k)  
TABLE I. RZ, RG, RLIN1, and RLIN2 Standard 1% Resistor Values for Three-Wire Pt100 RTD Connection with Linearization.  
LINEARIZATION  
RTD temperature sensors are inherently (but predictably)  
To maintain good accuracy, at least 1% (or better) resistors  
should be used for RG. Table I provides standard 1% RG  
nonlinear. With the addition of one or two external resistors,  
resistor values for a three-wire Pt100 RTD connection with  
R
LIN1 and RLIN2, it is possible to compensate for most of this  
linearization.  
nonlinearity resulting in 40:1 improvement in linearity over  
the uncompensated output.  
®
XTR105  
9
A typical two-wire RTD application with linearization is  
shown in Figure 1. Resistor RLIN1 provides positive feed-  
back and controls linearity correction. RLIN1 is chosen ac-  
cording to the desired temperature range. An equation is  
given in Figure 1.  
RCM can be adjusted to provide an additional voltage drop to  
bias the inputs of the XTR105 within their common-mode  
input range.  
ERROR ANALYSIS  
In three-wire RTD connections, an additional resistor, RLIN2  
,
Table II shows how to calculate the effect various error sources  
have on circuit accuracy. A sample error calculation for a  
typical RTD measurement circuit (Pt100 RTD, 200°C mea-  
surement span) is provided. The results reveal the XTR105’s  
excellent accuracy, in this case 1.1% unadjusted. Adjusting  
resistors RG and RZ for gain and offset errors improves circuit  
accuracy to 0.32%. Note that these are worst case errors;  
guaranteed maximum values were used in the calculations and  
all errors were assumed to be positive (additive). The XTR105  
achieves performance which is difficult to obtain with discrete  
circuitry and requires less space.  
is required. As with the two-wire RTD application, RLIN1  
provides positive feedback for linearization. RLIN2 provides  
an offset canceling current to compensate for wiring resis-  
tance encountered in remotely located RTDs. RLIN1 and RLIN2  
are chosen such that their currents are equal. This makes the  
voltage drop in the wiring resistance to the RTD a common-  
mode signal which is rejected by the XTR105. The nearest  
standard 1% resistor values for RLIN1 and RLIN2 should be  
adequate for most applications. Table I provides the 1%  
resistor values for a three-wire Pt100 RTD connection.  
If no linearity correction is desired, the VLIN pin should be  
left open. With no linearization, RG = 2500 • VFS, where  
VFS = full-scale input range.  
OPEN-CIRCUIT PROTECTION  
The optional transistor Q2 in Figure 3 provides predictable  
behavior with open-circuit RTD connections. It assures that  
if any one of the three RTD connections is broken, the  
XTR105’s output current will go to either its high current  
limit (27mA) or low current limit (2.2mA). This is easily  
detected as an out-of-range condition.  
RTDs  
The text and figures thus far have assumed a Pt100 RTD.  
With higher resistance RTDs, the temperature range and  
input voltage variation should be evaluated to ensure proper  
common-mode biasing of the inputs. As mentioned earlier,  
12  
IO  
1
IR1  
VLIN  
14  
11  
IR2  
13  
VI+N  
(1)  
(1)  
10  
V+  
RLIN1  
RLIN2  
VREG  
4
RG  
R(G1)  
9
8
B
E
Q1  
0.01µF  
XTR105  
3
2
RG  
VIN  
IO  
7
IRET  
(1)  
EQUAL line resistances here  
creates a small common-mode  
voltage which is rejected by  
XTR105.  
RZ  
IO  
6
2
1
RCM = 1000Ω  
0.01µF  
(RLINE2  
)
(RLINE1)  
NOTES: (1) See Table I for resistor equations and  
1% values. (2) Q2 optional. Provides predictable  
output current if any one RTD connection is  
broken:  
(2)  
Q2  
2N2222  
RTD  
OPEN RTD  
IO  
TERMINAL  
(RLINE3  
)
1
2
3
2.2mA  
27mA  
2.2mA  
3
Resistance in this line causes  
a small common-mode voltage  
which is rejected by XTR105 .  
FIGURE 3. Three-Wire Connection for Remotely Located RTDs.  
®
10  
SAMPLE ERROR CALCULATION  
RTD value at 4mA Output (RRTD  
RTD Measurement Range  
Ambient Temperature Range (TA  
Supply Voltage Change (V+)  
)
100Ω  
200°C  
20°C  
5V  
MIN  
)
Common-Mode Voltage Change (CM)  
0.1V  
ERROR  
(ppmofFullScale)  
SAMPLE  
ERROR CALCULATION(1)  
ERROR SOURCE  
ERROR EQUATION  
UNADJ.  
ADJUST.  
INPUT  
Input Offset Voltage  
vs Common-Mode  
Input Bias Current  
Input Offset Current  
V
OS/(VIN MAX) • 106  
100µV/(800µA • 0.38/°C • 200°C) • 106  
50µV/V • 0.1V/(800µA • 0.38/°C • 200°C) • 106  
0.025µA/800µA • 106  
1645  
82  
31  
0
82  
0
CMRR • CM/(VIN MAX) • 106  
IB/IREF • 106  
IOS • RRTD MIN/(VIN MAX) • 106  
3nA • 100/(800µA • 0.38/°C • 200°C) • 106  
5
0
Total Input Error:  
1763  
82  
EXCITATION  
Current Reference Accuracy  
vs Supply  
IREF Accuracy (%)/100% • 106  
(IREF vs V+) • V+  
0.2%/100% • 106  
25ppm/V • 5V  
2000  
125  
1316  
0
125  
0
Current Reference Matching  
IREF Matching (%)/100% • 800µA •  
RRTD MIN/(VIN MAX) • 106  
0.1%/100% • 800µA • 100/(800µA • 0.38/°C • 200°C) • 106  
vs Supply  
(IREF matching vs V+) • V+ •  
10ppm/V • 5V • 800µA • 100/(800µA • 0.38/°C • 200°C)  
66  
66  
RRTD MIN/(VIN  
)
MAX  
Total Excitation Error:  
3507  
191  
GAIN  
Span  
Nonlinearity  
Span Error (%)/100% • 106  
Nonlinearity (%)/100% • 106  
0.2%/100% • 106  
0.01%/100% • 106  
Total Gain Error:  
2000  
100  
2100  
0
100  
100  
OUTPUT  
Zero Output  
vs Supply  
(IZERO - 4mA)/16000µA • 106  
(IZERO vs V+) • V+/16000µA • 106  
25µA/16000µA • 106  
0.2µA/V • 5V/16000µA • 106  
Total Output Error:  
1563  
63  
1626  
0
63  
63  
DRIFT (TA = 20°C)  
Input Offset Voltage  
Input Bias Current (typical)  
Input Offset Current (typical)  
Current Reference Accuracy  
Current Reference Matching  
Span  
Drift • TA/(VIN MAX) • 106  
Drift • TA/800µA • 106  
Drift • TA • RRTD MIN/(VIN MAX) • 106  
Drift • TA  
1.5µV/°C • 20°C/(800µA • 0.38/°C • 200°C) • 106  
20pA/°C • 20°C/800µA • 106  
5pA/°C • 20°C • 100W/(800µA • 0.38/°C • 200°C) • 106  
35ppm/°C • 20°C  
493  
0.5  
493  
0.5  
0.2  
0.2  
700  
395  
500  
626  
2715  
700  
395  
500  
626  
2715  
Drift • TA • 800µA • RRTD MIN/(VIN  
)
15ppm/°C • 20°C • 800µA • 100/(800µA • 0.38/°C • 200°C)  
25ppm/°C • 20°C  
MAX  
Drift • TA  
Drift • TA/16000µA • 106  
Zero Output  
0.5µA/°C • 20°C/16000µA • 106  
Total Drift Error:  
NOISE (0.1 to 10Hz, typ)  
Input Offset Voltage  
Current Reference  
Zero Output  
vn/(VIN MAX) • 106  
IREF Noise • RRTD MIN/(VIN MAX) • 106  
IZERO Noise/16000µA • 106  
0.6µV/(800µA • 0.38/°C • 200°C) • 106  
3nA • 100/(800µA • 0.38/°C • 200°C) • 106  
0.03µA/16000µA • 106  
10  
5
2
10  
5
2
Total Noise Error:  
17  
17  
TOTAL ERROR:  
11728  
3168  
(1.17%)  
(0.32%)  
NOTE (1): All errors are min/max and referred to input unless otherwise stated.  
TABLE II. Error Calculation.  
®
XTR105  
11  
REVERSE-VOLTAGE PROTECTION  
Most surge protection zener diodes have a diode character-  
istic in the forward direction that will conduct excessive  
current, possibly damaging receiving-side circuitry if the  
loop connections are reversed. If a surge protection diode is  
used, a series diode or diode bridge should be used for  
protection against reversed connections.  
The XTR105’s low compliance rating (7.5V) permits the  
use of various voltage protection methods without compro-  
mising operating range. Figure 4 shows a diode bridge  
circuit which allows normal operation even when the volt-  
age connection lines are reversed. The bridge causes a two  
diode drop (approximately 1.4V) loss in loop supply volt-  
age. This results in a compliance voltage of approximately  
9V—satisfactory for most applications. If 1.4V drop in loop  
supply is too much, a diode can be inserted in series with the  
loop supply voltage and the V+ pin. This protects against  
reverse output connection lines with only a 0.7V loss in loop  
supply voltage.  
RADIO FREQUENCY INTERFERENCE  
The long wire lengths of current loops invite radio frequency  
interference. RF can be rectified by the sensitive input  
circuitry of the XTR105 causing errors. This generally  
appears as an unstable output current that varies with the  
position of loop supply or input wiring.  
If the RTD sensor is remotely located, the interference may  
enter at the input terminals. For integrated transmitter as-  
semblies with short connection to the sensor, the interfer-  
ence more likely comes from the current loop connections.  
SURGE PROTECTION  
Remote connections to current transmitters can sometimes be  
subjected to voltage surges. It is prudent to limit the maximum  
surge voltage applied to the XTR105 to as low as practical.  
Various zener diode and surge clamping diodes are specially  
designed for this purpose. Select a clamp diode with as low a  
voltage rating as possible for best protection. For example, a  
36V protection diode will assure proper transmitter operation  
at normal loop voltages, yet will provide an appropriate level  
of protection against voltage surges. Characterization tests on  
three production lots showed no damage to the XTR105  
within loop supply voltages up to 65V.  
Bypass capacitors on the input reduce or eliminate this input  
interference. Connect these bypass capacitors to the IRET  
terminal as shown in Figure 5. Although the dc voltage at the  
IRET terminal is not equal to 0V (at the loop supply, VPS) this  
circuit point can be considered the transmitter’s “ground.”  
The 0.01µF capacitor connected between V+ and IO may  
help minimize output interference.  
NOTE: (1) Zener Diode 36V: 1N4753A or General  
Semiconductor TransorbTM 1N6286A. Use lower  
voltage zener diodes with loop power supply  
voltages less than 30V for increased protection.  
See “Over-Voltage Surge Protection.”  
10  
V+  
0.01µF  
1N4148  
(1)  
B
E
D1  
XTR105  
Diodes  
9
8
Maximum VPS must be  
less than minimum  
voltage rating of zener  
RL  
VPS  
diode.  
IO  
The diode bridge causes  
a 1.4V loss in loop supply  
voltage.  
7
IRET  
6
FIGURE 4. Reverse Voltage Operation and Over-Voltage Surge Protection.  
®
12  
12  
1
VLIN  
1kΩ  
14  
IR2  
13  
IR1  
11  
VREG  
VI+N  
10  
V+  
4
RG  
RLIN1  
RLIN2  
9
8
RG  
B
E
0.01µF  
XTR105  
3
2
RG  
VIN  
IO  
1kΩ  
7
IRET  
RZ  
6
0.01µF  
0.01µF  
RTD  
(1)  
RCM  
NOTE: (1) Bypass capacitors can be connected  
to either the IRET pin or the IO pin.  
0.01µF  
FIGURE 5. Input Bypassing Technique with Linearization.  
IREG < 1mA  
5V  
14  
12  
1
V+  
VLIN  
IR1  
1/2  
13  
4
11  
VREG  
VI+N  
IR2  
10  
V+  
LTC1047  
Type J  
RF  
10kΩ  
RG  
RG  
1250Ω  
9
8
B
E
R
412Ω  
XTR105  
RF  
10kΩ  
3
RG  
VIN  
IO  
1/2  
LTC1047  
2
7
1kΩ  
25Ω  
IRET  
IO = 4mA + (VI+N –VIN  
)
40  
RG  
V–  
6
50Ω  
RCM = 1250Ω  
2RF  
R
(G = 1 +  
= 50)  
FIGURE 6. Thermocouple Low Offset, Low Drift Loop Measurement with Diode Cold Junction Compensation.  
®
XTR105  
13  
12  
1
1N4148  
VLIN  
14  
13  
IR1  
+12V  
11  
VI+N  
IR2  
10  
V+  
VREG  
1µF  
4
RG  
B
E
9
8
RLIN1  
5760Ω  
RG  
402Ω  
Q1  
0.01µF  
16  
10  
XTR105  
11  
3
2
12  
3
RG  
VIN  
VO = 0 to 5V  
15  
14  
IO  
RCV420  
2
7
13  
IRET  
5
4
Pt100  
100°C to  
600°C  
IO = 4mA – 20mA  
RZ  
137Ω  
6
RTD  
1µF  
–12V  
RCM = 1kΩ  
NOTE: A two-wire RTD connection is shown. For remotely  
located RTDs, a three-wire RTD conection is recommended.  
RG becomes 383, RLIN2 is 8060. See Figure 3 and  
Table I.  
0.01µF  
FIGURE 7. ±12V Powered Transmitter/Receiver Loop.  
12  
RLIN1  
RLIN2  
1
1N4148  
VLIN  
14  
13  
IR1  
11  
VI+N  
IR2  
+15V  
10  
V+  
VREG  
1µF  
1µF  
Isolated Power  
from PWS740  
0
4
RG  
–15V  
9
8
B
E
Q1  
0.01µF  
16  
RG  
XTR105  
10  
11  
3
2
12  
3
2
RG  
VIN  
V+  
1
15  
14  
RCV420  
IO  
9
15  
7
8
13  
7
RZ  
ISO122  
VO  
IRET  
5
4
0 – 5V  
10  
IO = 4mA – 20mA  
6
2
16  
RTD  
V–  
NOTE: A three-wire RTD connection is shown.  
For a two-wire RTD connection eliminate RLIN2  
.
RCM = 1kΩ  
0.01µF  
FIGURE 8. Isolated Transmitter/Receiver Loop.  
®
14  
1.6mA  
12  
1
VLIN  
14  
IR2  
IR1  
11  
VI+N  
13  
4
10  
VREG  
V+  
RG  
9
8
B
E
RG  
XTR105  
3
2
RG  
VIN  
7
IRET  
6
RCM = 1k(1)  
NOTE: (1) Use RCM to adjust the  
common-mode voltage to within  
1.25V to 3.5V.  
FIGURE 9. Bridge Input, Current Excitation.  
®
XTR105  
15  
厂商 型号 描述 页数 下载

ETC

XTR100 [ ] 12 页

BB

XTR100AM [ Instrumentation Amplifier, 1 Func, 50uV Offset-Max, MDIP14, ] 12 页

BB

XTR100AP [ Instrumentation Amplifier, 1 Func, 50uV Offset-Max, PDIP14, ] 12 页

BB

XTR100BM [ Instrumentation Amplifier, 1 Func, 25uV Offset-Max, MDIP14, ] 12 页

BB

XTR100BP [ Instrumentation Amplifier, 1 Func, 25uV Offset-Max, PDIP14, ] 12 页

BB

XTR101 高精度,低漂移的4-20mA两线制变送器[ Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER ] 15 页

TI

XTR101 高精度,低漂移的4-20mA两线制变送器[ Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER ] 25 页

BB

XTR101AG 高精度,低漂移的4-20mA两线制变送器[ Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER ] 15 页

TI

XTR101AG 高精度,低漂移的4-20mA两线制变送器[ Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER ] 25 页

BB

XTR101AG-BI [ Instrumentation Amplifier, 1 Func, 60uV Offset-Max, CDIP14, ] 13 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.239193s