找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYWB0124AB-BVXIT

型号:

CYWB0124AB-BVXIT

品牌:

CYPRESS[ CYPRESS ]

页数:

31 页

PDF大小:

616 K

CYWB0124AB  
CYWB0125AB  
West Bridge® Antioch™  
USB/Mass Storage Peripheral Controller  
West Bridge® Antioch™ USB/Mass Storage Peripheral Controller  
Features  
Applications  
SLIMarchitecture, enabling simultaneous and independent  
data paths between processor and USB, and between USB  
and mass storage  
Cellular phones  
Portable media players  
Personal digital assistants  
Digital cameras  
High speed USB at 480 Mbps  
USB-2.0 compliant  
Integrated USB 2.0 transceiver, smart serial interface engine  
16 programmable endpoints  
Portable video recorder  
Mass storage device support  
MMC/MMC+/SD/CE-ATA  
NAND flash: × 8 or × 16, SLC  
Full NAND management (ECC, wear leveling)  
Memory mapped interface to main processor  
DMA slave support  
Supports Microsoft® media transfer protocol (MTP) with  
optimized data throughput  
Ultra low power, 1.8 V core operation  
Low power modes  
Small footprint, 6 × 6 mm VFBGA, and less than 4 × 4 mm  
WLCSP  
Selectable clock input frequencies  
19.2 MHz, 24 MHz, 26 MHz, and 48 MHz  
Logic Block Diagram  
West Bridge Antioch  
Control  
Registers  
8051  
MCU  
P
U
SLIMTM  
Mass Storage Interface  
SD/MMC+/CE-ATA  
NAND  
S
Cypress Semiconductor Corporation  
Document Number: 001-07978 Rev. *O  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised December 1, 2017  
CYWB0124AB  
CYWB0125AB  
Contents  
Functional Overview ........................................................3  
SLIM™ Architecture ....................................................3  
Turbo-MTP Support .....................................................3  
8051 Microprocessor ...................................................3  
Configuration and Status Registers .............................3  
Processor Interface (P-port) ........................................3  
USB Interface (U-Port) ................................................3  
Mass Storage Support (S-Port) ...................................3  
Clocking .......................................................................4  
Power Domains ...........................................................5  
Power Modes ..............................................................5  
Antioch in WLCSP .......................................................6  
Absolute Maximum Ratings ..........................................12  
Operating Conditions .....................................................12  
DC Characteristics .........................................................12  
USB Transceiver .......................................................14  
Capacitance ....................................................................14  
AC Test Loads and Waveforms .....................................14  
AC Characteristics .........................................................15  
USB Transceiver .......................................................15  
P-Port Interface .........................................................15  
SD/MMC Parameters ................................................22  
Reset and Standby Timing Parameters ....................23  
Ordering Information ......................................................24  
Ordering Code Definitions .........................................24  
Package Diagrams ..........................................................25  
Acronyms ........................................................................27  
Document Conventions .................................................27  
Units of Measure .......................................................27  
Document History Page .................................................28  
Sales, Solutions, and Legal Information ......................31  
Worldwide Sales and Design Support .......................31  
Products ....................................................................31  
PSoC®Solutions .......................................................31  
Cypress Developer Community .................................31  
Technical Support .....................................................31  
Document Number: 001-07978 Rev. *O  
Page 2 of 31  
CYWB0124AB  
CYWB0125AB  
Processor Interface (P-port)  
Functional Overview  
Communication with the external processor is realized through a  
dedicated processor interface. This interface supports both  
synchronous and asynchronous SRAM mapped memory  
SLIMArchitecture  
The Simultaneous Link to Independent Multimedia (SLIM)  
architecture allows three different interfaces (the P-port, the  
S-port, and the U-port) to connect to one another independently.  
accesses.  
This  
ensures  
straightforward  
electrical  
communications with the processor that also has other devices  
connected on a shared memory bus. Asynchronous accesses  
reach a bandwidth of up to 66.7 MBps. Synchronous accesses  
are performed at 33 MHz across 16 bits for up to 66.7 MBps  
bandwidth.  
With this architecture, using Antioch™ to connect a device to a  
PC through an USB does not disturb the functions of the device.  
It still accesses mass storage at the same time the PC is  
synchronizing with the main processor.  
The memory address is decoded to access any of the multiple  
endpoint buffers inside Antioch. These endpoints serve as  
buffers for data between each pair of ports, for example, between  
the processor port and the USB port. The processor writes and  
reads into these buffers through the memory interface.  
The SLIM architecture enables new usage models, in which a  
PC accesses a mass storage device independent of the main  
processor, or enumerates access to both the mass storage and  
the main processor at the same time.  
In a handset, this typically enables the user to use the phone as  
a thumb drive or download media files to the phone while still  
having full functionality available on the phone. The same phone  
even functions as a modem to connect the PC to the web.  
Access to these buffers is controlled by using either a DMA  
protocol or an interrupt to the main processor. These two modes  
are configured by the external processor.  
As a DMA slave, Antioch generates a DMA request signal to  
signify to the main processor that it is ready to read from or write  
to a specific buffer. The external processor monitors this signal  
and polls Antioch for the specific buffers ready for read or write.  
It then performs the appropriate read or write operations on the  
buffer through the processor interface. This way, the external  
processor only deals with the buffers to access a multitude of  
storage devices connected to Antioch.  
Turbo-MTP Support  
Turbo-MTP is an implementation of Microsoft’s Media Transfer  
Protocol (MTP) enabled by West Bridge® Antioch™. In the  
current generation of MTP-enabled mobile phones, all protocol  
packets need to be handled by the main processor. West Bridge  
Turbo-MTP switches these packet types and sends only control  
packets to the processor, while data payloads are written directly  
to mass storage. This brings the high performance of West  
Bridge to MTP. For more information on Turbo-MTP, refer to the  
application note AN48864 “Performance Optimization by West  
Bridge Controllers with Turbo-MTP”.  
In the Interrupt mode, Antioch communicates important buffer  
status changes to the external processor using an interrupt  
signal. The external processor then polls Antioch for the specific  
buffers ready for read or write and performs the appropriate read  
or write operations through the processor interface.  
8051 Microprocessor  
USB Interface (U-Port)  
The 8051 microprocessor embedded in Antioch does basic  
transaction management for all the transactions between the  
P-port, the S-port, and the U-port. The 8051 does not reside in  
the data path; it manages the path. The data path is optimized  
for performance. The 8051 executes firmware that supports  
NAND, SD, and MMC devices at the S-port. For the NAND  
device, the 8051 firmware follows the Smart Media algorithm to  
support:  
In accordance with the USB 2.0 specification, Antioch operates  
in Full Speed USB mode in addition to High Speed USB mode.  
The USB interface consists of the USB transceiver. The USB  
interface accesses and also is accessed by both the P-port and  
the S-port.  
The Antioch USB interface supports programmable  
CONTROL/BULK/INTERRUPT/ISOCHRONOUS endpoints.  
Physical to Logical Management  
ECC Correction  
Mass Storage Support (S-Port)  
The S-port is configured in two different modes, either  
simultaneously supporting an SD/MMC+ port and a × 8 NAND  
port or supporting a unique × 16 NAND access port. The  
NANDCFG Ball is used to set the configuration of the S-port as  
either 16-bit NAND or 8-bit NAND and SD/MMC. The 16-bit  
interface is only used when there is no other mass storage  
device connected to the S-port. Note that in the WLCSP option,  
the S-port is not configurable; it only supports a single SD/MMC+  
port with no NAND port.  
Wear Leveling  
NAND Flash Bad Block Handling  
Configuration and Status Registers  
The West Bridge Antioch device includes Configuration and  
Status registers that are accessible as memory mapped registers  
through the processor interface. The Configuration registers  
allow the system to specify certain behavior from Antioch. For  
example, it masks certain Status registers from raising an  
interrupt. The Status registers convey the status of different  
parameters of Antioch, such as the addresses of buffers for read  
operations.  
Antioch also includes two chip enables, NAND_CE# and  
NAND_CE2#, that enable to access two different NANDs  
alternately.  
Document Number: 001-07978 Rev. *O  
Page 3 of 31  
CYWB0124AB  
CYWB0125AB  
NAND Port (S-Port)  
Clocking  
Antioch, as part of its mass storage management functions, fully  
manages a NAND device. The embedded 8051 manages the  
actual reading and writing of the NAND along with its required  
protocols. It performs standard NAND management functions  
such as ECC and wear leveling.  
Antioch allows either to connect a crystal between the XTALIN  
and XTALOUT balls or connect an external clock at the XTALIN  
ball. The power supply level at the crystal supply XVDDQ  
determines whether a crystal or a clock is provided. If XVDDQ is  
detected as 1.8 V, Antioch assumes that a clock input is  
provided. This clock input must be a 1.8 V square wave. To  
connect a crystal, XVDDQ must be 3.3 V. Note that the clock  
inputs at 3.3 V level are not supported.  
SLC NAND devices are supported on all devices in the Antioch  
family. The write performance for connecting to a single SLC  
NAND is up to 9 MBps, while read performance is up to 13 MBps.  
CYWB0124AB supports crystals only at 19.2, 24, and 26 MHz.  
At 48 MHz, only clock inputs are supported. Clock inputs are  
supported at all frequencies.  
SD/MMC/CE-ATA Port (S-Port)  
When Antioch is configured through NANDCFG to support  
MMC/SD/CE-ATA, this interface supports:  
Antioch has an on-chip oscillator circuit that uses an external  
19.2/24/26 MHz (±150 ppm) crystal with the following  
characteristics:  
The MultiMediaCard System Specification, MMCA Technical  
Committee, Version 4.1  
Parallel resonant  
SD Memory Card Specification - Part 1, Physical Layer  
Specification, SD Group, Version 1.10, October 15, 2004, and  
Version 2.0, November 9, 2005  
Fundamental mode  
1 mW drive level  
CE-ATA Digital Protocol, Rev 1.1, 28 September, 2005 and  
CE-ATA Host Design Guidance, Rev 1.0, 29 September, 2005  
12 pF (5% tolerance) load capacitors [1]  
West Bridge Antioch provides support for 1-bit and 4-bit SD  
cards: 1-bit, 4-bit, and 8-bit MMC, and MMC+. For the SD,  
MMC/MMC Plus card, this block supports one card for one  
physical bus interface.  
Figure 1. Capacitor  
24 MHz  
PLL  
C1  
C2  
12 pF  
Antioch supports SD commands including the multisector  
program command that is handled by the API.  
12 pF  
Compatibility with specific CE-ATA HDD is subject to  
confirmation with drive vendors.  
12 pF capacitor values assumes a trace capacitance  
of 3 pF per side on a four-layer FR4 PCA  
Table 1. External Clock Requirements  
Specification  
Parameter  
Description  
Input Phase Noise at 100 Hz Offset  
Unit  
Min  
Max  
PN_100Hz  
PN_1k  
–75  
–104  
–120  
–128  
–130  
70  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
Input Phase Noise at 1 kHz Offset  
Input Phase Noise at 10 kHz Offset  
Input Phase Noise at 100 kHz Offset  
Input Phase Noise at 1 MHz Offset  
Duty Cycle  
PN_10k  
PN_100k  
PN_1M  
30  
Maximum Frequency Deviation  
Overshoot  
150  
3
ppm  
%
Undershoot  
-3  
%
Note  
1. Specified as typical for 24 MHz frequency. Load capacitance varies with crystal vendor specifications and frequency used.  
Document Number: 001-07978 Rev. *O  
Page 4 of 31  
 
CYWB0124AB  
CYWB0125AB  
This on-chip PLL multiplies the 19.2/24/26/48 MHz frequency up  
to 480 MHz, as required by the transceiver/PHY. The internal  
counters divide it down for use as the 8051 clock. The 8051 clock  
frequency is 48 MHz. The XTALIN frequency is independent of  
the clock/data rate of the 8051 microprocessor or any of the  
device interfaces (including P-port and S-port). The internal PLL  
applies the proper clock multiply option depending on the input  
frequency.  
Noise guideline for all supplies except AVDDQ is a maximum of  
100 mV p-p. All I/O supplies of Antioch are ON when a system  
is active, even if Antioch is not used. The core VDD is also  
deactivated at any time to preserve power, provided that there is  
a minimum impedance of 1 kbetween the VDD Ball and ground.  
All I/Os tri-state when the core is disabled.  
Power Supply Sequence  
The power supplies are independently sequenced without  
damaging the part. All power supplies are up and stable before  
the device operates. If all supplies are not stable, the remaining  
domains are in low power (standby) mode.  
For applications that use an external clock source to drive  
XTALIN, the XTALOUT Ball is left floating. The external clock is  
a square wave that conforms to high and low voltage levels  
mentioned in Table 3 on page 12 and the rise and fall time  
specifications in Figure 5 on page 14. The external clock source  
also stops high or low and is not toggling to achieve the lowest  
possible current consumption. The requirements for an external  
clock source are shown in Capacitance on page 14.  
Flexible I/Os  
Each of Antioch’s ports operate between 1.8 V and 3.3 V with  
adjustable slew rate for each port and adjustable drive strength  
for each port for the I/Os. The slew rate and drive strength are  
controlled by registers.  
Power Domains  
Antioch has multiple power domains that serve different  
purposes within the chip.  
Power Modes  
In addition to the normal operating mode, Antioch contains  
several low power modes when normal operation is not required.  
*VDDQ. This refers to a group of five independent supply  
domains for the digital I/Os. The nominal voltage level on these  
supplies are 1.8 V, 2.5 V, or 3.3 V. Specifically, the four separate  
I/O power domains are:  
Normal Mode  
In this mode, Antioch is fully functional. This is the mode in which  
the data transfer functions described in this datasheet are  
performed.  
PVDDQ – P-port processor interface I/O  
SNVDDQ – S-port NAND interface I/O  
SSVDDQ – S-port SD interface I/O  
GVDDQ – Other miscellaneous I/O  
Suspend Mode  
This mode is entered internally by 8051 (external processor only  
initiates entry into this mode through Mailbox commands). This  
mode is exited by the D+ bus going low, GPIO[0] going to a  
predetermined state, or by asserting CE# LOW.  
UVDDQ. This is the 3.3 V nominal supply for the USB I/O and  
some analog circuits. It also supplies power to the USB  
transceiver.  
In Suspend mode of Antioch:  
The clocks are shut off.  
VDD33. This supply is required for the power sequence control  
circuits. For more information, see Table 2 on page 7.  
V
DD. This is the supply voltage for the logic core. The nominal  
All I/Os maintain their previous state.  
Core power supply are retained.  
supply voltage level is 1.8 V. This supplies the core logic circuits.  
The same supply is also used for AVDDQ.  
The states of the Configuration registers, endpoint buffers, and  
the program RAM are maintained. All transactions are  
completed before Antioch enters Suspend mode (state of  
outstanding transactions are not preserved).  
AVDDQ. This is the 1.8 V supply for PLL and USB serializer  
analog components. The same supply is also used for VDD  
.
Maximum permitted noise on AVDDQ is 20 mV p-p.  
XVDDQ. This is the clock I/O supply. 3.3 V for XTAL or 1.8 V for  
an external clock.  
The firmware resumes its operation from where it has  
suspended, because the program counter is not reset.  
Figure 2. Antioch Power Supply Domains  
The only inputs that are sensed are RESET#, GPIO[0], D+, and  
CE#. The last three are wakeup sources (each is individually  
enabled or disabled).  
VDD  
UVDDQ  
D+  
D-  
*VDDQ  
Hard reset is performed by asserting the RESET# input and  
Antioch performs initialization.  
I/O  
D-CORE  
USB-IO  
Document Number: 001-07978 Rev. *O  
Page 5 of 31  
CYWB0124AB  
CYWB0125AB  
Standby Mode  
requirement of a minimum impedance of 1 kbetween the VDD  
ball and ground remains unchanged.  
Standby mode is a low power state. This is the lowest power  
mode of Antioch while still maintaining external supply levels.  
This mode is entered through the deassertion of the WAKEUP  
input ball or through internal register settings. It is exited by  
asserting the WAKEUP Ball if the mode is entered by  
deasserting the WAKEUP Ball. Exiting Standby mode is also  
accomplished by asserting CE# LOW or processor writes to  
Internal registers.  
In the WLCSP option, AVDDQ is internally tied to XVDDQ. As a  
result, the clock input at XTALIN must be brought to a steady  
LOW level before entry into Core Power Down mode.  
Antioch in WLCSP  
Antioch is available in a Wafer Level Chip Scale Package  
(WLCSP) with 81 balls. The WLCSP differs from the VFBGA in  
the following ways:  
In this mode, the following characteristics apply:  
The XTALIN input only accepts clock inputs and no crystals.  
The XTALOUT ball and the XVDDQ power domain do not exist  
in this package. The XVDDQ power domain is internally  
combined with AVDDQ.  
All Configuration register settings and program RAM contents  
are preserved. However, data in the buffers or other parts of  
the data path, if any, is not guaranteed in values. Therefore,  
the external processor ensures that the required data is read  
before Antioch is moved into this Standby mode.  
The program counter is reset upon waking up from Standby  
mode.  
All outputs are tri-stated (except UVALID), and I/O is placed  
in input only configuration. Values of I/Os in Standby mode  
are listed in the Table 2 on page 7.  
Since AVDDQ and as a result, XVDDQ, are OFF in the Core  
Power Down mode, the clock input at XTALIN must be brought  
to a steady LOW level before entry into Core Power Down  
mode.  
NAND functionality is not available. SNVDDQ does not exist  
as a separate power domain. It is internally combined with  
SSVDDQ.  
Core power supply is retained.  
Hard reset is performed by asserting the RESET# input, and  
Antioch performs initialization.  
The P-port CLK ball and the P-port synchronous mode  
operation are not available. The P-port is operated only in  
asynchronous mode.  
PLL is disabled.  
Core Power Down Mode  
The core power supply VDD is powered down in this mode.  
AVDDQ is tied to the same supply as VDD and as a result, is also  
powered down. The endpoint buffers, configuration registers,  
and the program RAM do not maintain state. It is necessary to  
reload the firmware upon exiting from this mode. It is required  
that all VDDQ power supplies (except AVDDQ) are on and not  
powered down in this mode. VDD33 must remain ON and the  
GVDDQ is not a separate power domain in the WLCSP  
package. It is internally combined with PVDDQ.  
Availability of specific signals on the WLCSP option is detailed  
in Table 2 on page 7.  
Document Number: 001-07978 Rev. *O  
Page 6 of 31  
CYWB0124AB  
CYWB0125AB  
The Ball Assignment table for CYWB0124AB, CYWB0125AB follows.  
Table 2. Ball Assignment [2, 3, 4]  
Reset[5]  
VFBGA WLCSP  
Ball Name  
I/O  
I
Ball Description  
Clock for P-port  
Standby  
Power Domain  
J2  
G1  
H3  
H2  
H1  
J3  
N/A  
G8  
J6  
CLK  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
CE#  
I
Chip Select for P-port. Active LOW  
Bit 7 of Address Bus for P-port  
Bit 6 of Address Bus for P-port  
Bit 5 of Address Bus for P-port  
Bit 4 of Address Bus for P-port  
Bit 3 of Address Bus for P-port  
Bit 2 of Address Bus for P-port  
Bit 1 of Address Bus for P-port  
Bit 0 of Address Bus for P-port  
Bit 15 of Data Bus for P-port  
Bit 14 of Data Bus for P-port  
Bit 13 of Data Bus for P-port  
Bit 12 of Data Bus for P-port  
Bit 11 of Data Bus for P-port  
Bit 10 of Data Bus for P-port  
Bit 9 of Data Bus for P-port  
Bit 8 of Data Bus for P-port  
Bit 7 of Data Bus for P-port  
Bit 6 of Data Bus for P-port  
Bit 5 of Data Bus for P-port  
Bit 4 of Data Bus for P-port  
Bit 3 of Data Bus for P-port  
Bit 2 of Data Bus for P-port  
Bit 1 of Data Bus for P-port  
Bit 0 of Data Bus for P-port  
A[7]  
I
J7  
A[6]  
I
J8  
A[5]  
I
H6  
H7  
J9  
A[4]  
I
J1  
A[3]  
I
K3  
K2  
K1  
G2  
G3  
F1  
F2  
F3  
E1  
E2  
E3  
D1  
D2  
D3  
C1  
C2  
C3  
B1  
B2  
A1  
A[2]  
I
H8  
H9  
G9  
G7  
F8  
F9  
F7  
E9  
E8  
E7  
D9  
D8  
D7  
C9  
C8  
C7  
B9  
B8  
A9  
A[1]  
I
A[0]  
I
DQ[15]  
DQ[14]  
DQ[13]  
DQ[12]  
DQ[11]  
DQ[10]  
DQ[9]  
DQ[8]  
DQ[7]  
DQ[6]  
DQ[5]  
DQ[4]  
DQ[3]  
DQ[2]  
DQ[1]  
DQ[0]  
ADV#  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Z
PVDDQ  
VGND  
P Port  
Z
Z
Z
Z
Z
Address Valid for P-port. Valid during  
asynchronous mode. ADV# deassertion  
causes to latch the address.  
B3  
A2  
A3  
A4  
A8  
B7  
A7  
C6  
OE#  
I
Output Enable. Controls the data bus output  
drive. Ignored during write cycle. Active LOW.  
Z
Z
Z
Z
WE#  
INT#  
DRQ#  
I
Write Enable. Signals a read (HIGH) or write  
(LOW) access cycle.  
O
O
Interrupt Request. Assertion indicates that an  
interrupt event has occurred. Active LOW.  
DMA Request. Assertion indicates to  
Processor that it is ready to read or write one  
or more endpoints. It reflects register  
CY_AN_MEM_P0_DRQ EPnDRQ assertions.  
Active LOW or HIGH (programmable).  
B4  
C5  
DACK#  
I
DMA Acknowledgement. Assertion indicates  
DMA acknowledgement from processor. Is  
configured in ACK mode (asserted throughout  
DMA transfer) or EOB mode (pulsed at end of  
DMA transfer). Active LOW or HIGH  
(programmable).  
Notes  
2. Unused inputs: Must be connected to HIGH/V or LOW/GND (negligible difference in current drawn) logic level, through a single 10 K pull-up resistor. The only  
DD  
exceptions are WAKEUP, NANDCFG and CLK. WAKEUP is tied HIGH for normal operation and NANDCFG is tied LOW for unused NAND with SD or tied HIGH for  
16-bit NAND with no SD. CLK is tied LOW for asynchronous P-port operation.  
3. Unused I/Os: For lowest leakage, unused I/Os must be connected to a HIGH logic level. It is recommended that connection to the power supply is through a single  
10k ohm pull-up resistor for all unused I/Os.  
4. No Antioch balls have internal pull-up or pull-down resistors. Input/output balls may require external pull-up or pull-down resistors depending on the application. The  
pull-up resistors used to indicate speed capability on the USB are included in Antioch and need not be connected externally.  
5. The Reset column indicates the state of signals during reset (RESET# asserted). The Standby column indicates signal state during Standby (low power operating  
mode through WAKEUP deassertion) or core V deactivation.  
DD  
Document Number: 001-07978 Rev. *O  
Page 7 of 31  
 
 
 
CYWB0124AB  
CYWB0125AB  
Table 2. Ball Assignment [2, 3, 4] (continued)  
Reset[5]  
VFBGA WLCSP  
Ball Name  
I/O  
Ball Description  
Standby  
Power Domain  
SD and  
8-bit NAND  
Configuration Configuration  
16-bit NAND  
G9  
G10  
F9  
H2  
H1  
G3  
G2  
F2  
E3  
E2  
E1  
G1  
SD_D[7]  
SD_D[6]  
SD_D[5]  
SD_D[4]  
SD_D[3]  
SD_D[2]  
SD_D[1]  
SD_D[0]  
SD_CLK  
NAND_IO[15]  
NAND_IO[14]  
NAND_IO[13]  
NAND_IO[12]  
NAND_IO[11]  
NAND_IO[10]  
NAND_IO[9]  
NAND_IO[8]  
N/A  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Serve as SD_D[7] for SD port or NAND_IO[15] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Serve as SD_D[6] for SD port or NAND_IO[14] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
Serve as SD_D[5] for SD port or NAND_IO[13] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
F10  
E9  
Serve as SD_D[4] for SD port or NAND_IO[12] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
Serve as SD_D[3] for SD port or NAND_IO[11] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
E10  
D9  
Serve as SD_D[2] for SD port or NAND_IO[10] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
Z
SSVDDQ  
VGND  
Serve as SD_D[1] for SD port or NAND_IO[9] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
Z
D10  
F8  
Serve as SD_D[0] for SD port or NAND_IO[8] for  
NAND Upper I/O port depending on NANDCFG  
selection. NAND configuration is not available in  
WLCSP.  
Z
Z
S Port  
Clock output for the SD interface. Frequency is  
changed and clock is disabled through firmware  
control.  
G8  
H8  
H3  
G4  
SD_CMD  
SD_POW  
N/A  
N/A  
I/O  
O
SD Command/Response Ball.  
Z
Z
Z
Z
SD Power Control. This GPIO is used to control  
SD/MMC card power FET if present. HIGH indicates  
on, LOW indicates off.  
H10  
D1  
SD_WP  
N/A  
I
SD Write Protection Detection. Connected to GPIO for  
firmware detection. HIGH indicates that the device  
connected to the SD port has write protect enabled.  
Z
Z
K7  
K8  
J8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
NAND_IO[7] NAND_IO[7]  
NAND_IO[6] NAND_IO[6]  
NAND_IO[5] NAND_IO[5]  
NAND_IO[4] NAND_IO[4]  
NAND_IO[3] NAND_IO[3]  
NAND_IO[2] NAND_IO[2]  
NAND_IO[1] NAND_IO[1]  
NAND_IO[0] NAND_IO[0]  
NAND_CLE NAND_CLE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
NAND_IO[7] for NAND Upper I/O port  
NAND_IO[6] for NAND Upper I/O port  
NAND_IO[5] for NAND Upper I/O port  
NAND_IO[4] for NAND Upper I/O port  
NAND_IO[3] for NAND Upper I/O port  
NAND_IO[2] for NAND Upper I/O port  
NAND_IO[1] for NAND Upper I/O port  
NAND_IO[0] for NAND Upper I/O port  
K9  
J9  
H9  
K10  
J10  
K6  
[6]  
Z
Z
SNVDDQ  
VGND  
NAND Command Latch Enable  
[6]  
J6  
J5  
N/A  
N/A  
NAND_ALE NAND_ALE  
NAND_CE# NAND_CE#  
O
O
NAND Address Latch Enable  
Z
Z
Z
Z
[6]  
NAND Chip Enable. Active LOW.  
K4  
H6  
J7  
N/A  
N/A  
N/A  
NAND_RE# NAND_RE#  
NAND_WE# NAND_WE#  
NAND_WP# NAND_WP#  
O
O
O
NAND Read Enable. Active LOW.  
NAND Write Enable. Active LOW.  
Z
Z
Z
Z
Z
Z
[6]  
NAND Write Protect. Active LOW.  
J4  
N/A  
NAND_R/B# NAND_R/B#  
I
NAND Ready/Busy. NAND output is Open Drain.  
Active LOW.  
-
-
K5  
N/A  
NAND_CE2# NAND_CE2#  
O
NAND Chip Enable 2. Allows to access the second  
Z
Z
[6]  
NAND device. Active LOW.  
Note  
6. The NAND_CE#, NAND_CE2#,NAND_WP#, NAND_CLE, and NAND_ALE pins are used as General Purpose Outputs if NAND functionality is not used.  
Document Number: 001-07978 Rev. *O  
Page 8 of 31  
 
CYWB0124AB  
CYWB0125AB  
Table 2. Ball Assignment [2, 3, 4] (continued)  
Reset[5]  
VFBGA WLCSP  
Ball Name  
I/O  
Ball Description  
Standby  
Power Domain  
A5  
A6  
A7  
A4  
A5  
B4  
D+  
I/O/Z USB D+  
I/O/Z USB D–  
Z
Z
Z
UVDDQ  
UVSSQ  
D–  
Z
U-port  
UVALID  
O
External USB Switch Control. Reflects value of  
register CY_AN_MEM_PMU_UPDATE.UVALID.  
Low  
Low  
A8  
B8  
A2  
N/A  
C2  
XTALIN  
I
Input for either crystal or clock signal. XVDDQ is 3.3  
V for crystal input; XVDDQ is 1.8 V for clock input.  
Z
Z
XVDDQ  
VGND  
[7]  
O
I
Output to connect to feedback input of crystal. Is left  
floating when external clock at XTALIN.  
XTALOUT  
C10  
B10  
RESET#  
Reset. Asserted to place Antioch into reset mode and  
subsequent initialization. Active LOW.  
Z
N/A  
RESETOUT  
O
Reset Out. Deasserted LOW when RESET# is  
asserted LOW. Asserted HIGH after RESET# is  
deasserted and initialization is complete. Reflects  
value of RSTCMPT bit.  
Low  
Others  
C9  
D8  
D3  
D2  
GPIO[1]  
GPIO[0]  
I/O  
I/O  
General purpose input/output.  
Z
Z
Z
Z
General purpose input/output.GPIO[0] is used for SD  
Card Detect with firmware detection. LOW indicates  
card is inserted.  
[8]  
C7  
C5  
C1  
C3  
I
I
Wake Up Signal. 1 = normal operation, 0 = low power  
“sleep” mode. Is asserted for Antioch to initialize.  
WAKEUP  
XTALSLC[1]  
XTALSLC[0]  
NANDCFG  
Clock Select. For CYWB0124AB, XTALSLC[1:0] is  
decoded as: 00 = 19.2 MHz, 01 = 24 MHz, 10 = 48  
MHz, 11 = 26 MHz.  
GVDDQ  
VGND  
C4  
C6  
C4  
i
Clock Select. For CYWB0124AB, XTALSLC[1:0] is  
decoded as: 00 = 19.2 MHz, 01 = 24 MHz, 10 = 48  
MHz, 11 = 26 MHz.  
N/A  
I
S-port Configuration. ‘0’ selects 8-bit NAND and  
SD/MMC configuration. ‘1’ selects 16-bit NAND  
configuration.  
Config  
E8  
C8  
D7  
B1  
D4  
A1  
TEST[2]  
TEST[1]  
TEST[0]  
I
I
I
Test mode selection. Is tied to VGND for normal  
operation (CMOS level inputs).  
Test mode selection. Is tied to VGND for normal  
operation (CMOS level inputs).  
Test mode selection. Is tied to VGND for normal  
operation (CMOS level inputs).  
D4, H4  
H5  
E5, A6 PVDDQ  
Power Power for P-port I/O. 1.8 V, 2.5 V, or 3.3 V nominal.  
N/A  
SNVDDQ  
Power Power for NAND port I/O. 1.8 V, 2.5 V, or 3.3 V  
nominal.  
B5  
H7  
B5  
UVDDQ  
Power Power for USB I/O. 3.3 V nominal.  
F1, F3, SSVDDQ  
F4, G5,  
Power Power for SD port, is connected to SNVDDQ if using  
16-bit NAND. 1.8 V, 2.5 V, or 3.3 V nominal.  
H4, H5,  
J2, J3,  
J4, J5  
D6  
B9  
B7  
N/A  
B3  
GVDDQ  
AVDDQ  
XVDDQ  
Power Power for miscellaneous I/O. 1.8 V, 2.5 V, or 3.3 V  
nominal.  
Power Power for internal PLL and USB serializer. 1.8 V  
nominal.  
Power  
N/A  
Power Power for crystal or clock I/O. 1.8 V (clock) or 3.3 V  
(crystal) nominal.  
D5, G4,  
G5, G6,  
G7, F7  
D6, F6,  
G6, J1  
V
Power Power for core. 1.8 V nominal.  
DD  
[9]  
A10  
B6  
N/A  
A3  
Power Power sequence control supply. 3.3 V nominal.  
Power Ground for all USB.  
VDD33  
UVSSQ  
A9  
B2  
AVSSQ  
Power Ground for PLL.  
E4, E5,  
E6, E7,  
F4, F5,  
F6  
B6, D5, VGND  
E4, E6,  
F5  
Power Ground for core.  
Notes  
7. XTALOUT is driven HIGH during Standby mode. XTALOUT operates the same during RESET# assertion and Normal mode: fixed HIGH when XVDDQ is 1.8 V (ext  
clock) and actively toggles when XVDDQ is 3.3 V (crystal).  
8. When RESET# is asserted, the device enters reset state and WAKEUP is ignored.  
9. VDD33: In CYWB0124AB, the Ball is no-connect internally. It handles power sequence control in future West Bridge products. When migrating to Astoria, it is connected  
to the highest supply to the device. If USB is used, for example, then VDD33 is connected to nominal 3.3 V (because 3.3 V is required for USB). VDD33 is always  
supplied in Astoria.  
Document Number: 001-07978 Rev. *O  
Page 9 of 31  
 
 
 
CYWB0124AB  
CYWB0125AB  
Figure 3. CYWB0124AB 100-ball VFBGA – Top View  
Top View  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
E
F
ADV#  
WE#  
INT#  
DRQ#  
D+  
D-  
UVALID  
XTALIN  
AVSSQ  
VDD33  
RESETOUT  
RESET#  
SD_D[0]  
SD_D[2]  
SD_D[4]  
SD_D[6]  
SD_WP  
A
B
C
D
E
F
DQ[1]  
DQ[4]  
DQ[7]  
DQ[10]  
DQ[13]  
CE#  
DQ[0]  
DQ[3]  
DQ[6]  
DQ[9]  
DQ[12]  
DQ[15]  
A[6]  
OE#  
DQ[2]  
DQ[5]  
DQ[8]  
DQ[11]  
DQ[14]  
A[7]  
DACK#  
UVDDQ  
UVSSQ  
NANDCFG  
GVDDQ  
VGND  
XVDDQ  
WAKEUP  
TEST[0]  
VGND  
XTALOUT  
TEST[1]  
GPIO[0]  
AVDDQ  
GPIO[1]  
XTALSLC[0] XTALSLC[1]  
PVDDQ  
VGND  
VGND  
VDD  
VDD  
VGND  
VGND  
VDD  
SD_D[1]  
SD_D[3]  
SD_D[5]  
SD_D[7]  
NAND_IO[2]  
TEST[2]  
SD_CLK  
SD_CMD  
SD_POW  
VGND  
VDD  
G
H
J
VDD  
VDD  
G
H
J
A[5]  
PVDDQ  
SNVDDQ  
NAND_WE#  
NAND_ALE  
SSVDDQ  
A[3]  
CLK  
A[4]  
NAND_R/B# NAND_CE#  
NAND_WP# NAND_IO[5] NAND_IO[3] NAND_IO[0]  
NAND_IO[7] NAND_IO[6] NAND_IO[4] NAND_IO[1]  
K
A[0]  
1
A[1]  
2
A[2]  
3
NAND_RE# NAND_CE2# NAND_CLE  
K
4
5
6
7
8
9
10  
POWER DOMAIN KEY  
UVDDQ  
GVDDQ  
SSVDDQ  
VGND  
PVDDQ  
SNVDDQ  
Document Number: 001-07978 Rev. *O  
Page 10 of 31  
CYWB0124AB  
CYWB0125AB  
Figure 4. CYWB0124AB 81-ball WLCSP – Top View  
2
3
4
5
6
7
8
9
1
TEST[0]  
XTALIN  
UVSSQ  
D+  
D-  
PVDDQ  
INT#  
OE#  
ADV#  
A
B
C
D
E
F
A
TEST[2]  
WAKEUP  
SD_WP  
SD_D[0]  
SSVDDQ  
SD_CLK  
SD_D[6]  
AVSSQ  
RESET#  
GPIO[0]  
SD_D[1]  
SD_D[3]  
SD_D[4]  
SD_D[7]  
AVDDQ  
UVALID  
UVDDQ  
DACK#  
VGND  
VGND  
DRQ#  
VDD  
WE#  
DQ[2]  
DQ[5]  
DQ[8]  
DQ[11]  
DQ[14]  
A[3]  
DQ[0]  
DQ[3]  
DQ[6]  
DQ[9]  
DQ[13]  
CE#  
DQ[1]  
B
XTALSLC[1] XTALSLC[0]  
DQ[4]  
C
GPIO[1]  
SD_D[2]  
SSVDDQ  
SD_D[5]  
SD_CMD  
TEST[1]  
VGND  
DQ[7]  
D
PVDDQ  
VGND  
VGND  
VDD  
DQ[10]  
E
SSVDDQ  
SD_POW  
SSVDDQ  
DQ[12]  
F
SSVDDQ  
SSVDDQ  
VDD  
DQ[15]  
G
H
J
G
A[4]  
A[1]  
A[0]  
H
VDD  
SSVDDQ  
SSVDDQ  
SSVDDQ  
SSVDDQ  
A[7]  
A[6]  
A[5]  
A[2]  
J
1
2
3
4
5
6
7
8
9
POWER DOMAIN KEY  
UVDDQ  
AVDDQ, VDD  
SSVDDQ  
VGND  
PVDDQ  
Document Number: 001-07978 Rev. *O  
Page 11 of 31  
CYWB0124AB  
CYWB0125AB  
Static discharge voltage (ESD)  
from JESD22-A114 .................................................> 2000 V  
Absolute Maximum Ratings  
Operating range specifies temperature and voltage boundary  
conditions for safe operation of the device. Operation outside  
these boundaries may affect the performance and life of the  
device. These user guidelines are not tested.  
Latch-up current ....................................................> 200 mA  
Maximum output short circuit current  
for all I/O configurations. (VOUT = 0 V)[10] .............. –100 mA  
Storage temperature ................................ –65 °C to +150 °C  
Operating Conditions  
Ambient temperature  
with power supplied (Industrial) ................. –40 °C to +85 °C  
TA (Ambient temperature under bias)  
Industrial .................................................... –40 °C to +85 °C  
Supply voltage to ground potential  
VDD, AVDDQ ................................................–0.5 V to +2.0 V  
VDD, AVDDQ supply voltage .............................1.7 V to 1.9 V  
UVDDQ supply voltage .....................................3.0 V to 3.6 V  
GVDDQ, PVDDQ, SSVDDQ, SNVDDQ,  
UVDDQ and VDD33 and XVDDQ ...............–0.5 V to +4.0 V  
PVDDQ, GVDDQ, SNVDDQ, SSVDDQ  
supply voltage ..................................................1.7 V to 3.6 V  
DC input voltage to any input ball ..................1.89 V to 3.6 V  
XVDDQ (Crystal I/O) supply voltage ...............3.0 V to 3.6 V  
XVDDQ (Ext. clock I/O) supply voltage ...........1.7 V to 1.9 V  
(Depends on I/O supply voltage. Inputs are not over voltage  
tolerant.)  
DC voltage applied to outputs  
in High Z State .................................. –0.5 V to VDDQ+0.5 V  
DC Characteristics  
Table 3. DC Specifications for All Voltage Supplies  
Parameter  
VDD  
Description  
Core voltage supply  
Analog voltage supply  
Crystal voltage supply  
Clock voltage supply  
Processor interface I/O  
Conditions  
Min  
1.7  
1.7  
3.0  
1.7  
1.7  
Typ  
1.8  
Max  
1.9  
1.9  
3.6  
1.9  
3.6  
Unit  
V
AVDDQ  
XVDDQ  
XVDDQ  
PVDDQ[11]  
GVDDQ[11]  
SNVDDQ[11]  
SSVDDQ[11, 12]  
UVDDQ[13]  
VDD33  
1.8  
V
3.3  
V
1.8  
V
1.8, 2.5, 3.3  
V
Miscellaneous I/O voltage supply  
S-port NAND I/O voltage supply  
S-port SD I/O voltage supply  
USB voltage supply  
1.7  
1.7  
1.8, 2.5, 3.3  
3.6  
3.6  
V
V
V
V
V
V
1.8, 2.5, 3.3  
1.7  
1.8, 2.5, 3.3  
3.6  
3.0  
3.3  
3.3  
3.6  
Power sequence control supply  
Input HIGH voltage 1  
3.0  
3.6  
[14]  
All ports except USB,  
2.0 V VCC 3.6 V  
0.625 × VCC  
VCC + 0.3  
VIH1  
[14]  
Input HIGH voltage 2  
All ports except USB,  
1.7 V VCC < 2.0 V  
VCC – 0.4  
VCC + 0.3  
VIH2  
VIL  
Input LOW voltage  
–0.3  
0.25 × VCC  
V
V
VOH  
VOL  
IIX  
Output HIGH voltage  
Output LOW voltage  
Input leakage current  
Output leakage current  
IOH(MAX) = –0.1 mA  
0.9 × VCC  
IOL(MIN) = 0.1 mA  
–1  
–1  
0.1 × VCC  
V
All I/O signals held at VDDQ  
All I/O signals held at VDDQ  
1
A  
A  
mA  
IOZ  
1
ICC Core  
Operating current of core voltage Outputs tri-stated  
supply (VDD) and analog voltage  
supply (AVDDQ)  
VFBGA  
WLCSP  
110  
115  
Notes  
10. Do not test more than one output at a time. Duration of the short circuit does not exceed 1 second. Tested initially, and after any redesign or process changes, may  
affect these parameters.  
11. Interfaces with a voltage range are adjustable with respect to the I/O voltage and thus support multiple I/O voltages.  
12. The SSVDDQ I/O voltage is dynamically changed (for example, from high range to low range) as long as the supply voltage undershoot does not surpass the lower  
minimum voltage limit. SSVDDQ levels for SD modes: 2.0 V–3.6 V, MMC modes: 1.7 V–3.6 V.  
13. When U-port is in a disabled state, UVDDQ goes down to 2.4 V, provided UVDDQ is still the highest supply voltage level.  
14. V = pertinent V  
value.  
CC  
DDQ  
Document Number: 001-07978 Rev. *O  
Page 12 of 31  
 
 
 
 
 
CYWB0124AB  
CYWB0125AB  
Table 3. DC Specifications for All Voltage Supplies (continued)  
Parameter  
Description  
Conditions  
XTALOUT floating  
Min  
Typ  
Max  
5
Unit  
ICC Crystal  
Operating current of crystal  
voltage supply (XVDDQ)[15]  
VFBGA  
WLCSP  
mA  
N/A  
25  
ICC USB  
ISB1  
Operating current of USB voltage Operating and terminated for high  
supply (UVDDQ)[15]  
speed mode  
mA  
250[17]  
Total standby current of Antioch 1. *VDDQ = 3.3 V Nominal  
when device is in suspend mode  
2500  
A  
(3.0–3.6 V)  
2. Outputs and Bidirs High or  
Floating[16]  
3. XTALOUT Floating  
4. D+ Floating (no current drawn  
through internal 1.5 kohm  
pull-up),  
D– Grounded, UVALID Driven  
LOW  
5. Device in Suspend Mode  
ISB2  
Total standby current of Antioch 1. *VDDQ = 3.3 V  
25 °C  
45  
A  
A  
when device is in standby mode  
Nominal (3.0–3.6 V)  
2. Outputs and Bidirs  
High or Floating[16]  
3. XTALOUT Floating  
4. D+ Floating, D–  
Grounded, UVALID  
Driven LOW  
85 °C  
290  
ISB3  
Total standby current of Antioch 1. Outputs and Bidirs  
25 °C  
85 °C  
25  
when device is in core power  
down mode  
High or Floating[16]  
2. XTALOUT Floating  
3. D+ Floating, D–  
Grounded, UVALID  
Driven LOW  
139  
4. Core Powered Down  
Notes  
15. Active Current Conditions:  
-UVDDQ: USB transmitting 50% of the time, receiving 50% of the time.  
-PVDDQ/SNVDDQ/SSVDDQ/GVDDQ: Active Current Depends on I/O activity, bus load, and supply level.  
-XVDDQ: Assume highest frequency clock (48 MHz) or crystal (26 MHz).  
16. The Outputs/Bidirs that are forced low in Standby mode increases I/O supply standby current beyond specified value.  
17. Isb1 typical value is not a maximum specification but a typical value. Isb1 maximum current value specified for 85 °C.  
Document Number: 001-07978 Rev. *O  
Page 13 of 31  
 
 
 
CYWB0124AB  
CYWB0125AB  
USB Transceiver  
USB 2.0 compliant in full speed and high speed modes.  
Capacitance  
Parameter  
CIN  
Description  
Conditions  
Typ  
Max  
Unit  
Input ball capacitance,  
Except D+/D–  
TA = 25 °C, f = 1 MHz, VCC = VCCIO  
9
pF  
Input ball capacitance, D+/D–  
Output ball capacitance  
15  
10  
COUT  
pF  
AC Test Loads and Waveforms  
Figure 5. AC Test Loads and Waveforms  
Document Number: 001-07978 Rev. *O  
Page 14 of 31  
CYWB0124AB  
CYWB0125AB  
AC Characteristics  
USB Transceiver  
USB 2.0 compliant in full speed and high speed modes.  
P-Port Interface  
Asynchronous Mode Timing Parameters  
Table 4. Asynchronous Mode Timing Parameters  
Parameter  
Description  
Min  
Max  
Unit  
Read Timing Parameters  
tAA  
Address to data valid  
3
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
tOH  
Data output hold from address change  
Chip enable to data valid  
tEA  
30  
30  
tAADV  
tAVS  
tAVH  
ADV# to data valid access time  
Address valid to ADV# HIGH  
ADV# HIGH to address hold  
2[18]  
5
tCVS  
tVPH  
CE# low setup time to ADV# HIGH  
ADV# HIGH time  
ns  
ns  
15[19]  
tVP  
ADV# pulse width LOW  
OE# LOW to data valid  
OE# LOW to Low Z  
OE# HIGH to High Z  
CE# LOW to Low Z  
CE# HIGH to High Z  
7.5  
22.5  
ns  
ns  
ns  
ns  
ns  
ns  
tOE  
tOLZ  
tOHZ  
tLZ  
3
0
22.5  
3
tHZ  
22.5  
Write Timing Parameters  
tCW  
CE# LOW to write end  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAW  
Address valid to write end  
Address setup to write start  
ADV# setup to write start  
WE# pulse width  
tAS  
tADVS  
tWP  
0
22  
10  
10  
5
tWPH  
tCPH  
tAVS  
tAVH  
WE# HIGH time  
CE# HIGH time  
Address valid to ADV# HIGH  
ADV# HIGH to address hold  
2[18]  
5
tCVS  
tVPH  
CE# LOW setup time to ADV# HIGH  
ADV# HIGH time  
ns  
ns  
15[19]  
7.5  
30  
18  
0
tVP  
ADV# pulse width LOW  
ns  
ns  
ns  
ns  
ns  
ns  
tVS  
ADV# LOW to end of write  
Data setup to write end  
tDW  
tDH  
Data hold from write end  
WE# low to DQ High Z output  
WE# high to DQ Low Z output  
tWHZ  
tWLZ  
22.5  
3
Notes  
18. In applications where back-to-back accesses are not performed on different endpoint addresses, the minimum t  
specification is relaxed to 0 ns.  
AVH  
19. In applications where access cycle time is at least 60 ns, t  
is relaxed to 12 ns.  
VPH  
Document Number: 001-07978 Rev. *O  
Page 15 of 31  
 
 
CYWB0124AB  
CYWB0125AB  
Figure 6. Asynchronous Single Read Timing  
Valid Address  
tAA  
A
tVPH  
tAVS  
tAVH  
ADV#  
CE#  
tHZ  
tVP  
tAADV  
tEA  
tOE  
OE#  
tOHZ  
WE#  
DQ  
tOLZ  
High-Z  
Valid Output  
tLZ  
Figure 7. Asynchronous Back-to-Back Read Timing  
Valid Address  
tAA  
Valid Address  
tOH  
A
tVPH  
tAVS  
tAVH  
ADV#  
CE#  
tHZ  
tVP  
tAADV  
tEA  
OE#  
tOHZ  
WE#  
DQ  
High-Z  
Valid Output  
Valid Output  
tLZ  
Document Number: 001-07978 Rev. *O  
Page 16 of 31  
CYWB0124AB  
CYWB0125AB  
Figure 8. Asynchronous Back-to-Back Write Timing  
Valid Address  
Valid Address  
A
tAVS  
tVP  
tAVH  
tVPH  
ADV#  
CE#  
tVS  
tCW  
OE#  
WE#  
tAW  
tWPH  
tWP  
tOW  
tAS  
tADVS  
tDH  
tDW  
High-Z  
Valid Input  
Valid Input  
DQ_IN  
tWHZ  
tLZ  
DQ_OUT  
Figure 9. Asynchronous Read to Write Timing  
A
Valid Address  
Valid Address  
Valid Address  
tAA  
tAVS  
tAVH  
ADV#  
tVPH  
tVPH  
tAVS  
tAVH  
tVP  
tVP  
tVS  
tAADV  
CE#  
tEA  
tOE  
OE#  
WE#  
tOHZ  
tAW  
tWP  
tOW  
tDH  
tDW  
tAS  
High-Z  
Valid Input  
Valid Input  
DQ_IN  
tOLZ  
tWHZ  
High-Z  
DQ_OUT  
Valid Output  
tLZ  
Document Number: 001-07978 Rev. *O  
Page 17 of 31  
CYWB0124AB  
CYWB0125AB  
Figure 10. Asynchronous Write to Read Timing  
Valid Address  
tAVS  
tVP  
Valid Address  
A
tAA  
tAVH  
tAVS  
tAVH  
ADV#  
CE#  
tVP  
tVS  
tAADV  
tOE  
OE#  
WE#  
tAW  
tWP  
tDH  
tDW  
tAS  
Valid Input  
DQ_IN  
tOLZ  
tWHZ  
DQ_OUT  
Valid Output  
Synchronous Mode Timing Parameters  
Table 5. Synchronous Mode Timing Parameters  
Parameter  
FREQ  
Description  
Interface Clock Frequency  
Clock Period  
Conditions  
Min  
Max  
33  
Unit  
MHz  
ns  
tCLK  
tCLKH  
tCLKL  
tS  
30  
12  
12  
7.5  
1.5  
Clock HIGH Time  
ns  
Clock LOW Time  
ns  
CE#/WE#/ADDR/DQ Setup Time  
CE#/WE#/ADDR/DQ Hold Time  
Clock to Valid Data  
ns  
tH  
ns  
tCO  
18  
ns  
tOH  
Clock to Data Hold Time  
OE# HIGH to Data High Z  
OE# LOW to Data Low Z  
OE# LOW to Data Valid  
WE# Low to DQ High Z Output  
WE# High to DQ Low Z Output  
2
ns  
tHZ  
22.5  
ns  
tLZ  
3
ns  
tOE  
22.5  
22.5  
ns  
tWHZ  
tWLZ  
tCKHZ  
ns  
3
ns  
Clock to Data High Z (Figure 14 on page 20) Measured from the rising edge of the  
18  
ns  
second clock after the deassertion of  
CE#islatchedbytherisingedgeofthe  
clock.  
tCKLZ  
Clock to Data Low Z (Figure 16 on page 21)  
3
ns  
Document Number: 001-07978 Rev. *O  
Page 18 of 31  
CYWB0124AB  
CYWB0125AB  
Figure 11. Synchronous Write Timing  
tCLKH  
tCLKL  
tCLK  
CLK  
CE#  
tH  
tS  
A[7:0]  
An+1  
An+2  
An  
An+3  
WE#  
OE#  
DQ[15:0]  
(input)  
Dn+1  
Dn+2  
Dn  
Dn+3  
DQ[15:0] High-Z  
(output)  
Note:  
- Assumes previous cycle had CE# deselected  
- OE# is don’t care during write operations  
Figure 12. Synchronous Read Timing  
tCLKH  
tCLKL  
tCLK  
CLK  
CE#  
tH  
tS  
A[7:0]  
An+1  
An+2  
An+4  
An  
An+3  
WE#  
OE#  
High-Z  
High-Z  
DQ[15:0]  
(input)  
tLZ  
tHZ  
tOH  
Dn  
tCO  
DQ[15:0]  
(output)  
Dn+1  
tOE  
Note:  
- Assumes previous cycle had CE# deselected  
Document Number: 001-07978 Rev. *O  
Page 19 of 31  
CYWB0124AB  
CYWB0125AB  
Figure 13. Synchronous Read (OE# Fixed LOW) Timing  
CLK  
CE#  
tH  
tS  
A[7:0]  
Ax+1  
Ax+2  
Ax  
WE#  
OE#  
tCKHZ  
Dx+1  
tOH  
Dx-1  
tCO  
DQ[15:0]  
(output)  
Dx-2  
Dx  
Dx  
Note:  
- Assumes previous several cycles were Read  
Figure 14. Synchronous Read to Write (OE# Controlled) Timing  
tCLKH  
tCLKL  
tCLK  
CLK  
CE#  
tH  
tS  
A[7:0]  
Ax+1  
An  
Ax  
An+1  
Dn+1  
An+2  
WE#  
OE#  
tH  
tS  
Dn  
High-Z  
DQ[15:0]  
(input)  
Dn+2  
tOH  
Dx-1  
tCO  
tHZ  
DQ[15:0]  
(output)  
Dx-2  
Dx  
Note:  
- Assumes previous several cycles were Read  
- (Ax) and (Ax+1) cycles are turnaround. (Ax+1) operation does not cross pipeline.  
Document Number: 001-07978 Rev. *O  
Page 20 of 31  
CYWB0124AB  
CYWB0125AB  
Figure 15. Synchronous Read to Write (OE# Fixed LOW) Timing  
tCLKH  
tCLKL  
tCLK  
CLK  
CE#  
tH  
tS  
A[7:0]  
Ax+1  
Ax+2  
Ax  
An  
An+1  
Dn+1  
WE#  
OE#  
tWHZ  
tH  
tS  
High-Z  
Dn  
DQ[15:0]  
(input)  
tCO  
tOH  
Dx-1  
DQ[15:0]  
(output)  
Dx  
Dx-2  
tCO  
Note:  
- Assumes previous several cycles were Read  
- In this scenario, OE# is held LOW  
- (Ax) and (Ax+1) cycles are turnaround. (Ax+1) operation does not cross pipeline.  
- No operation is performed during the Ax+2 cycle (true turnaround operation)  
Figure 16. Synchronous Write to Read Timing  
tCLKH  
tCLKL  
tCLK  
CLK  
tH  
tH  
tS  
CE#  
A[7:0]  
An+1  
Dn+1  
An+2  
An+4  
An  
Dn  
An+3  
WE#  
OE#  
tWLZ  
tS  
DQ[15:0]  
(input)  
tOH  
tCO  
High-Z  
DQ[15:0]  
(output)  
Dn+2  
tCKLZ  
Note:  
- Assumes previous cycle has CE# deselected  
- In this scenario, OE# is held LOW  
Document Number: 001-07978 Rev. *O  
Page 21 of 31  
CYWB0124AB  
CYWB0125AB  
SD/MMC Parameters  
Figure 17. SD/MMC Timing Waveform - All Modes  
tSDCLKH  
tSDCLK  
SD_CLK  
tSDCLKL  
tSDOS  
tSDOH  
tSDCKLZ  
tSDCKHZ  
SD_CMD/  
SD_D0-D3  
Output  
SD_CMD/  
SD_D0-D3  
Input  
tSDIH  
tSDIS  
Table 6. Common Timing Parameters for SD and MMC – During Identification Mode  
Parameter  
SDFREQ  
tSDCLK  
Description  
SD_CLK interface clock frequency  
Clock period  
Min  
Max  
400  
Unit  
kHz  
s  
2.5  
1.0  
1.0  
tSDCLKH  
tSDCLKL  
Clock high time  
s  
Clock low time  
s  
Table 7. Common Timing Parameters for SD and MMC – During Data Transfer Mode  
Parameter  
SDFREQ  
tSDCLK  
Description  
SD_CLK interface clock frequency  
Clock period  
Min  
5
Max  
48  
200  
60  
3
Unit  
MHz  
ns  
20.8  
40  
tSDCLKOD  
tSCLKR  
Clock duty cycle  
%
Clock rise time  
ns  
tSCLKF  
Clock fall time  
3
ns  
Table 8. Timing Parameters for SD – All Modes  
Parameter Description  
tSDIS Input setup time  
Min  
4
Max  
Unit  
ns  
tSDIH  
Input hold time  
2.5  
7
ns  
tSDOS  
Output setup time  
Output hold time  
Clock to data high Z  
Clock to data low Z  
ns  
tSDOH  
6
ns  
tSDCKHZ  
tSDCKLZ  
18  
ns  
3
ns  
Table 9. Timing Parameters for MMC – All Modes  
Parameter Description  
tSDIS Input setup time  
Min  
4
Max  
Unit  
ns  
tSDIH  
Input hold time  
4
ns  
tSDOS  
Output setup time  
Output hold time  
Clock to data High Z  
Clock to data Low Z  
6
ns  
tSDOH  
6
ns  
tSDCKHZ  
tSDCKLZ  
18  
ns  
3
ns  
Document Number: 001-07978 Rev. *O  
Page 22 of 31  
CYWB0124AB  
CYWB0125AB  
Reset and Standby Timing Parameters  
Figure 18. Reset and Standby Timing Diagram  
Core  
Power-Down  
VDD  
(core)  
VDDQ  
(I/O)  
XTALIN up & stable  
before WAKEUP  
asserted  
XTALIN  
tWPW  
tWU  
tWH  
Standby  
Mode  
tRR  
WAKEUP  
RESET#  
Mandatory  
Reset Pulse  
Mandatory  
Reset Pulse  
tRH  
Hard Reset  
Firmware Init  
Complete  
Firmware Init  
Complete  
Firmware Init  
Complete  
High-Z  
tRPW  
RESETOUT  
UVALID  
USB Switch  
Disabled  
USB Switch  
Enabled  
tSLP  
CY_AN_MEM_PMU_UPDATE.UVALID  
bit is set to ‘0’  
CY_AN_MEM_PMU_UPDATE.UVALID  
bit is set to ‘0’  
CY_AN_MEM_PMU_UPDATE.UVALID  
bit is set to ‘1’  
Table 10. Reset and Standby Timing Parameters  
Parameter Description  
tSLP  
Conditions  
Min  
Max  
1
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
Sleep time  
tWU  
WAKEUP time from standby mode  
Clock on XTALIN  
1
Crystal on XTALIN-XTALOUT  
5
tWH  
WAKEUP high time  
WAKEUP pulse width  
RESET# high time  
RESET# pulse width  
5
tWPW  
tRH  
5
5
tRPW  
Clock on XTALIN  
1
Crystal on XTALIN-XTALOUT  
5
tRR  
RESET# recovery time  
1
Document Number: 001-07978 Rev. *O  
Page 23 of 31  
CYWB0124AB  
CYWB0125AB  
Ordering Information  
Table 11 lists the key package features and ordering codes. The table contains only the parts that are currently available. If you do  
not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at  
www.cypress.com and refer to the product summary page at http://www.cypress.com/products.  
Table 11. Key Features and Ordering Information  
Ordering Code  
CYWB0124AB-BVXI  
CYWB0124ABX-FDXI  
CYWB0125ABX-FDXI  
Turbo-MTP Enabled  
Package Type  
Available Clock Input Frequencies (MHz)  
19.2, 24, 26, 48  
No  
No  
100-ball VFBGA – Pb-free  
81-ball WLCSP – Pb-free  
81-ball WLCSP – Pb-free  
19.2, 24, 26, 48  
Yes  
19.2, 24, 26, 48  
Ordering Code Definitions  
CY WB 012 4, 5 AB X BV, FD X  
I
Temperature: Industrial  
Pb-free  
BV = VFBGA, FD = WLCSP  
BGA, CSP  
A generation  
Turbo MTP is enabled  
4 = No, 5 = Yes  
Antioch Bridge  
Family: West Bridge  
Company ID: CY = Cypress  
Document Number: 001-07978 Rev. *O  
Page 24 of 31  
 
CYWB0124AB  
CYWB0125AB  
Package Diagrams  
Figure 19. 100-ball VFBGA (6 × 6 × 1.0 mm) Package Outline, 51-85209  
E1  
2X  
0.10 C  
(datum B)  
A1 CORNER  
E
B
A
D
10  
9
8
7 6 5 4 3 2 1  
7
A
A1 CORNER  
6
B
C
D
E
F
G
H
SD  
D1  
(datum A)  
J
K
eD  
6
2X  
0.10 C  
eE  
SE  
TOP VIEW  
BOTTOM VIEW  
DETAIL A  
0.10 C  
A
A1  
0.08 C  
C
100XØb  
5
SIDE VIEW  
Ø0.15 M C A B  
Ø0.05 M C  
DETAIL A  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
DIMENSIONS  
NOM.  
SYMBOL  
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.  
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.  
MIN.  
MAX.  
1.00  
-
A
A1  
D
-
-
-
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.  
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX  
SIZE MD X ME.  
0.16  
6.00 BSC  
6.00 BSC  
4.50 BSC  
4.50 BSC  
10  
E
D1  
E1  
MD  
ME  
N
5.  
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE  
PARALLEL TO DATUM C.  
6.  
"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND  
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.  
10  
100  
0.30  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW  
"SD" OR "SE" = 0.  
b
0.25  
0.35  
eD  
eE  
SD  
SE  
0.50 BSC  
0.50 BSC  
0.25 BSC  
0.25 BSC  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,  
"SD" = eD/2 AND "SE" = eE/2.  
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK  
METALIZED MARK, INDENTATION OR OTHER MEANS.  
7.  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER  
BALLS.  
9. JEDEC SPECIFICATION NO. REF. : MO-195C.  
51-85209 *F  
Document Number: 001-07978 Rev. *O  
Page 25 of 31  
 
 
CYWB0124AB  
CYWB0125AB  
Figure 20. 81-ball WLCSP (3.8 × 3.8 × 0.55 mm) Package Outline, 001-13820  
001-13820 *G  
Document Number: 001-07978 Rev. *O  
Page 26 of 31  
CYWB0124AB  
CYWB0125AB  
Acronyms  
Document Conventions  
Table 12. Acronyms Used in this Document  
Units of Measure  
Acronym  
DC  
Description  
Table 13. Units of Measure  
Direct Current  
Symbol  
Unit of Measure  
DMA  
ESD  
Direct Memory Access  
Electrostatic Discharge  
Error Correction Codes  
Hard Disk Drive  
A
ampere  
dBc  
kHz  
MBPs  
MHz  
µA  
decibels relative to the carrier  
kilohertz  
ECC  
megabyte per second  
megahertz  
HDD  
MTP  
Media Transfer Protocol  
Multimedia Card  
microampere  
microsecond  
millisecond  
MMC  
PLL  
µs  
Phase-Locked Loop  
ms  
SLIM  
SLC  
Simultaneous Link to Independent Media  
Single Level Cell  
ns  
nanosecond  
parts per million  
picofarad  
ppm  
pF  
USB  
Universal Serial Bus  
WLCSP  
CE-ATA  
Wafer Level Chip Scale Package  
V
volt  
Consumer Electronics - Advanced Technology  
Attachment  
mA  
milliampere  
Document Number: 001-07978 Rev. *O  
Page 27 of 31  
CYWB0124AB  
CYWB0125AB  
Document History Page  
Document Title: CYWB0124AB/CYWB0125AB, West Bridge® Antioch™ USB/Mass Storage Peripheral Controller  
Document Number: 001-07978  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
460480  
539922  
ODC  
VSO  
See ECN New release.  
*A  
See ECN Removed all CYWB0224AB (this is Astoria P/N)  
Removed CYWB0224AB Additional Features  
Removed MLC NAND support wordings  
Removed CE-ATA specification  
Added 26 MHz for the clock support  
Removed the paragraph of CYWB0224AB  
Removed Note 1  
Corrected Note 7 is the same as PDD  
Added Astoria as a future product in Note 9  
Added reference figures in tCKHZ and tCKLZ  
Added condition description to tCKHZ  
Added figure 11  
Updated figure 14  
Removed CYWB0224AB-BVXI, removed the columns of CE-ATA and MLC  
NAND Support  
*B  
*C  
567593  
841760  
VSO  
RUY  
See ECN Minor Change: Post part CYWB0124AB on external website under NDA.  
See ECN Page-1, Changes to the Mass Storage Support with addition of CE-ATA  
Updated the Revision numbers of SD Card Specifications  
Added CE-ATA Specifications  
Clarified footnote 5 that unused inputs are tied through 10k pull up resistors  
and that CLK is LOW in asynchronous P-port operation  
Footnote 6, 100k resistor is changed to 10k  
Footnote 7, a sentence on resistors for speed capability on USB is added  
SDIO is changed to SD in Pin Assignment Table  
In Clocking, changed crystal requirement from 50 to 100 ppm.  
Clarified Core Power Down mode that AVDDQ is also powered down.  
Split tAS into tAS and tADVS and tWPH into tWPH and tCPH in Table 5  
Updated Figure 5 to depict tOH  
Updated Figure 6 to depict tADVS and corrected tCW  
Updated Figure 1 to remove “Access Control”  
Added external clock requirements and Table 1  
Added section on Flexible I/Os  
Specified values in Absolute Maximum Ratings (changed from TBS)  
In Table 3, updated VIH value for supplies other than UVDDQ, and added  
pertinent notes 15 and 16. Appended to note 12 that maximum current values  
are measured at 85°C. Added maximum current values for ISB1, SB2 and ISB3  
I
In Table 5, the following changes are made: tOH, tOLZ, tLZ, and tOW changed  
from 5 to 3 ns; tVP changed from 5 to 7.5 ns; tOE, tOHZ, tHZ, and tWHZ  
changed from 20 to 22.5 ns. Added notes [17] and [18]  
In Table 6, tHZ and tOE changed form 18 to 22.5 ns.  
Document Number: 001-07978 Rev. *O  
Page 28 of 31  
CYWB0124AB  
CYWB0125AB  
Document History Page (continued)  
Document Title: CYWB0124AB/CYWB0125AB, West Bridge® Antioch™ USB/Mass Storage Peripheral Controller  
Document Number: 001-07978  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*D  
1067820  
RUY  
See ECN Added Table 10  
Added “SSVDDQ levels for SD modes: 2.0V - 3.6V, MMC modes:1.7V - 3.6V.”  
to note 11 in Table 5  
Added notation of tSDCKHZ and tSDCKLZ to Figure 15  
Added undershoot and overshoot parameters and removed the Supply Voltage  
Noise requirement in Table 1 External Clock Requirements  
Added representation of tWHZ to Figure 13 and tWLZ to Figure 14  
Added tWHZ and tWLZ to Table 5  
Changed name of parameter tOW to tWLZ in Table 6  
Added “and less than 4x4 mm WLCSP” to Features  
Added Figure 19  
Added WLCSP ordering information  
Added functionality of Antioch in WLCSP  
Added Figure 3  
Added two columns to Table 1 showing the Balls are available in the WLCSP  
and VFBGA packages  
Added “Note that in the WLCSP option, the S-port is not configurable; it only  
supports a single SD/MMC+ port with no NAND port.” to Mass Storage Support  
section  
Added “Availability of specific signals on the WLCSP option is detailed in Pin  
Assignments.” to Antioch in WLCSP.  
Added “Maximum permitted noise on AVDDQ is 20 mV p-p.” and “Noise  
guideline for all supplies except AVDDQ is maximum 100 mV p-p.” to Antioch  
Power Domains section  
Changed maximum value of Isb3 in Table 3 from 170 uA to 139 uA. Changed  
“Typical” values for Isb2 and Isb3 to correct definition of “Maximum” value at  
25°C. Isb1 has typical value at 25°C. Removed “These values are based upon  
simulation and are subject to change pending closure of full device character-  
ization.” from note 10  
Added figure 16 and Table 11  
Changed reference from “pin” to “Ball” in Table 2 and throughout the data sheet.  
Corrected the ball description of SD_WP in Table 2 to say that SD_WP being  
HIGH, not LOW indicates that the card is write protected  
Added the requirement that XTALIN is LOW before entry into Core Power  
Down mode in Core Power Down mode and Antioch in WLCSP sections  
Re-ordered paragraphs in Clocking section  
Added “The external clock is a square wave that conforms to high and low  
voltage levels mentioned in Table 3 and the rise and fall time specifications” in  
Figure 17  
Clarified Standby mode section to reflect that WAKEUP assertion releases  
Antioch from standby mode only when the mode is entered by de-asserting  
WAKEUP  
*E  
*F  
1116363  
1408263  
RUY  
See ECN Changed part number for the WLCSP part from CYWB0124AB-FDXI to  
CYWB0124ABX-FDXI in Ordering Information table  
Updated the information from *B version of specification 001-13820 in the  
package diagram of WLCSP  
Removed mention of erroneous change in Isb1 parameter in *D version from  
Document History Table  
AESA  
See ECN Changed the DC Characteristics to differentiate between Icc Crystal for Antioch  
VFBGA and WLCSP  
Added a footnote to NAND_CE#, NAND_CE2#, NAND_WP#, NAND_CLE,  
and NAND_ALE pins in the pin assignment table.  
Document Number: 001-07978 Rev. *O  
Page 29 of 31  
CYWB0124AB  
CYWB0125AB  
Document History Page (continued)  
Document Title: CYWB0124AB/CYWB0125AB, West Bridge® Antioch™ USB/Mass Storage Peripheral Controller  
Document Number: 001-07978  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*G  
1489983 OSG / AESA See ECN In DC Characteristics Table, changed Icc Crystal and Icc Core to differentiate  
between values for VFBGA and WLCSP  
In DC Characteristics Table, clarified the ISB1 measurement conditions.  
*H  
2572476 OSG / AESA 09/25/2008 Updated Phase Noise specifications for input clock - Table 1  
Updated ppm specification to 150 ppm for input clock and crystal - Table 1  
Added Turbo-MTP Support introduction to Functional Overview  
Added Turbo-MTP part numbers to Ordering Information  
Added part number CYWB0125AB  
Changed data sheet title to “CYWB0124AB/CYWB0125AB West Bridge®  
Antioch™ USB/Mass Storage Peripheral Controller”  
Updated to new template.  
*I  
2949425  
ODC  
10/22/10  
Included table of contents.  
Added ordering code definitions.  
Added Acronym table and units of measure.  
Updated package diagrams.  
Updated to new template.  
*J  
3201726  
AESA  
03/21/11  
Removed Pruned part CYWB0125AB-BVXI from ordering information.  
Updated Figure 19 on page 25  
*K  
*L  
3553527  
3847849  
AASI  
HBM  
03/16/2012 Post to external web.  
12/20/2012 Updated Package Diagrams:  
spec 001-13820 – Changed revision from *E to *F.  
*M  
*N  
4197479  
5566511  
HBM  
HBM  
11/20/2013 Updated to new template.  
Completing Sunset Review.  
12/26/2016 Updated Package Diagrams:  
spec 51-85209 – Changed revision from *D to *F.  
spec 001-13820 – Changed revision from *F to *G.  
Updated to new template.  
Completing Sunset Review.  
*O  
5981602 AESATMP9 12/01/2017 Updated logo and copyright.  
Document Number: 001-07978 Rev. *O  
Page 30 of 31  
CYWB0124AB  
CYWB0125AB  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2005-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-07978 Rev. *O  
Revised December 1, 2017  
Page 31 of 31  
厂商 型号 描述 页数 下载

CYPRESS

CYW134MOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134MOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

SPECTRALINEAR

CYW137OXC FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SPECTRALINEAR

CYW137OXCT FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SILICON

CYW150 [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXC [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXCT [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

CYPRESS

CYW15G0101DXB 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.249254s