找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

IXF6401BEC7

型号:

IXF6401BEC7

品牌:

INTEL[ INTEL ]

页数:

48 页

PDF大小:

2202 K

IXF6401 Broadband Access Processor  
64 Bit, 66 MHz  
Datasheet  
Product Features  
I General Performance  
I Upper-Layer Assist  
Integrated Asynchronous Transfer Mode  
(ATM) Optical Carrier (OC)-12c  
Segmentation and Reassembly (SAR)  
Full-duplex, line-rate operation for even  
64-byte, small packets  
LEC ID, ELAN ID, LLC/SNAP,  
MPOA, and IP encapsulations  
LAN, MPOA, MPLS, and IP protocol  
assist  
Programmable header encapsulation or  
tagging  
64-bit architecture  
Hardware encapsulation and tagging  
Hardware packet formatting  
Full source code for device drivers  
Packet and VC tagging supported  
Concurrent cell-or-packet counter  
reporting per VC for ease in tracking  
statistics  
Nine transmit and receive report-ring  
size configurations  
Sixteen offset configurations per receive  
VC per packet and/or per buffer  
—0 to 255 bytes offset configurations per  
VC per packet in transmit direction on  
byte boundary  
I Buffer Management  
Full scatter/gather Direct Memory  
Access (DMA)  
Extensive transmit and receive buffering  
Two-dimensional link-list packet  
queuing  
64 K internal transmit packet descriptor  
and packet buffer pools; 36 K receive  
buffer pool  
I Traffic Shaping and Policing  
Multiple buffer sizes and buffer pools  
Up to 64 K VCs supported  
Two and four-bank, structured SDRAM  
supported  
Traffic-shaping resources for up to 4 K  
CBR rates and at least 64 K VBR rates  
Flow-through and pipelined SSRAM  
supported  
Granularity for rates down to 1 Kbps  
Time-wheel shaper for ABR/UBR, with  
guaranteed frame rate  
I Interfaces  
OC-12c or Quad OC-3c  
Glueless, 64-bit SSRAM and SDRAM  
I/F  
PCI 2.1 compliant, 33- or 66-MHz, 32-  
or 64-bit operation  
Dual Generic Cell Rate Algorithm  
(GCRA) policing per receive VC  
Weighted-fair queuing and dynamic-  
priority arbitration  
I Process Technology  
UTOPIA 1, 2, 3  
ATM or POS  
3.3 V ± 5% tolerant I/Os  
0.35 µm CMOS design  
352-pin EBGA package  
Power consumption 6 W @ 66 MHz  
Order Number: 273469-001  
April 2001  
I Features  
AAL Types 0, 1, 3/4, and 5 supported  
I Local Area Network Emulation (LANE)  
Hardware Assist  
LANE V1 and V2 packet-header  
generation  
LEC ID, ELAN ID, and/or LLC/SNAP  
encapsulation  
Separate LANE control buffer pool with  
4 K bitmap  
LANE flush protocol assist  
TM 4.0 compliant  
UBR, CBR, VBR, and ABR flow  
control supported  
64-byte, virtual-channel (VC)  
descriptors  
Scalable to OC-48  
ATM and Packet-over-SONET (POS)  
Programmable packet holding mode  
Wait for Flushreply message  
UTOPIA 1, 2, and 3 supported  
PCI 2.1 compliant  
The power of the IXF6401 Broadband Access Processor is its flexibility, scalability, and  
efficiency, and its integration of the different network traffic types. The processors architecture  
simplifies and speeds OEM development by providing industry-standard interfaces for a 64-bit,  
66-MHz PCI bus or 64-bit Synchronous Static Random Access Memory (SSRAM) /  
Synchronous Dynamic RAM (SDRAM) local-memory bus. Other standard interfaces include  
Universal Test and Operations Interface (UTOPIA) levels 1, 2, and 3; Asynchronous Transfer  
Mode (ATM); and Packet-over-SONET (Synchronous Optical Network) interfaces for direct  
coupling of a broad range of layer-1 physical interfaces.  
The IXF6401 processors 64-bit, 66-MHz local-memory bus acts in concert with the 64-bit, 66-  
MHz PCI bus to provide up to 8 Gbps of bus bandwidth. An onboard DMA enginecontrols  
access to and from the PCI and local-memory buses and can run in master or slave mode.  
The IXF6401 processor achieves its speed by using extensive, dedicated, and hardware-based  
state machines. OEMs can use APIs that run on top of the processors device driver to achieve  
value-added, differentiated services.  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice. The IXF6401 Broadband Access Processor may  
contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata  
are available on request.  
The IXF6401 Broadband Access Processor may contain design defects or errors known as errata which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel’s web site at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Other names and brands may be claimed as the property of others.  
Datasheet  
IXF6401 Broadband Access Processor  
Contents  
1.0  
Architectural Overview............................................................................ 7  
1.1  
1.2  
1.3  
1.4  
Hardware Packet Processing................................................................................8  
ATM Processing....................................................................................................8  
Traffic Shaping and Policing................................................................................10  
Basic Operation...................................................................................................10  
2.0  
3.0  
Pinout Information................................................................................. 13  
2.1  
2.2  
IXF6401 Broadband Access Processor Ball Pinout ............................................13  
Pin and Signal-Name Cross References.............................................................14  
Bus-Interface Information ..................................................................... 23  
3.1  
3.2  
PCI Interface .......................................................................................................23  
Local-Memory Interface.......................................................................................24  
3.2.1 General Features ...................................................................................24  
3.2.2 Arbitration...............................................................................................24  
3.2.3 Local Memory Configuration ..................................................................25  
3.2.3.1 SDRAM Configuration ...............................................................25  
3.2.3.2 SSRAM Configuration ...............................................................26  
UTOPIA Interface................................................................................................28  
3.3.1 UTOPIA I................................................................................................28  
3.3.2 UTOPIA II...............................................................................................29  
3.3.3 UTOPIA III..............................................................................................29  
3.3.4 UTOPIA Modes ......................................................................................30  
3.3.5 POS Mode..............................................................................................30  
3.3  
4.0  
Package Information.............................................................................. 31  
4.1  
4.2  
Mechanical Specifications...................................................................................31  
Thermal Specifications........................................................................................31  
4.2.1 Die Temperature ....................................................................................32  
4.2.2 Package Temperatures..........................................................................32  
4.2.3 Thermal Solutions ..................................................................................33  
4.2.3.1 System Requirements for Thermal Efficiency ...........................35  
4.2.3.2 Recommendations for Thermal Solutions .................................36  
4.2.4 Thermal-Solution Vendors......................................................................37  
Ordering Information ...........................................................................................38  
4.3  
5.0  
Electrical Specifications........................................................................ 39  
5.1  
5.2  
5.3  
5.4  
Absolute Maximum Ratings.................................................................................39  
Operating Conditions...........................................................................................39  
DC Specifications................................................................................................39  
Timing Specifications ..........................................................................................43  
5.4.1 Clock Timing...........................................................................................43  
5.4.2 Clock Specifications ...............................................................................43  
5.4.3 PCI Timing Parameters..........................................................................44  
5.4.4 UTOPIA Timing Parameters...................................................................46  
5.4.5 Local Memory Bus Timing......................................................................47  
Datasheet  
3
IXF6401 Broadband Access Processor  
Figures  
1
IXF6401 Broadband Access Processor in ATM/POS Application.........................7  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Architectural Block Diagram.................................................................................. 8  
ATM Functionality ................................................................................................. 9  
IXF6401 Broadband Access Processor Using an IXP1200 ................................11  
IXF6401 Processor Ball Configuration ................................................................13  
Local-Memory Arbitration Timing ........................................................................25  
352-Pin Ball Grid Array .......................................................................................31  
EBGA Heat Sink Volume Restrictions.................................................................34  
EBGA Extruded Heat Sink Measurements .........................................................35  
Recommended and Discouraged Via Connections (Top View) ..........................36  
Recommended Printed-Circuit-Board Stack Up (Cross-Sectional View) ............36  
IXF6401 Broadband Access Processor Markings...............................................38  
Tval (min) and Slew Rate....................................................................................42  
3.3 V Clock Waveform ........................................................................................43  
Output Timing Measurement Conditions.............................................................45  
Input Timing Measurement Conditions ...............................................................45  
Tval (max) Rising Edge.......................................................................................46  
Tval (max) Falling Edge ......................................................................................46  
Local Memory Bus Timing Specifications ...........................................................48  
Recommended Local Memory Clock Circuitry ....................................................48  
4
Datasheet  
IXF6401 Broadband Access Processor  
Tables  
1
1
2
3
4
5
6
7
Control Structure Memory Requirement..............................................................12  
PCI Bus Signals ..................................................................................................14  
Local Memory Bus Signals..................................................................................15  
UTOPIA/POS Bus Signals ..................................................................................15  
JTAG Signals ......................................................................................................16  
Miscellaneous Signals.........................................................................................16  
Signal Descriptions..............................................................................................17  
Supported Clock Speeds and Bus Widths ..........................................................23  
PCI Commands and Cycles ................................................................................23  
Sample SDRAM Configuration: Bank 0...............................................................25  
Sample SDRAM Configuration: Bank 1...............................................................26  
Sample SSRAM Configuration: Banks 0 and 1...................................................27  
Sample SSRAM Configuration: Banks 2 and 3...................................................27  
UTOPIA-I Bit Settings..........................................................................................29  
UTOPIA-II Bit Settings.........................................................................................29  
UTOPIA-III Bit Settings........................................................................................29  
UTOPIA Modes ...................................................................................................30  
Mechanical Dimensions ......................................................................................31  
EBGA Thermal Absolute Maximum Rating .........................................................32  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
T
T
as a Function of Ambient Temperature and Airflow: Without Heat Sink ....33  
as a Function of Ambient Temperature and Airflow: Using a Heat Sink ....33  
case  
case  
Thermal-Solution Vendor List..............................................................................37  
IXF6401 Broadband Access Processor Date and Part-Number Codes..............38  
Absolute Maximum Ratings.................................................................................39  
Operating Conditions...........................................................................................39  
DC Characteristics (Single-PHY,155 Mbps, 622 Mbps)......................................40  
DC Characteristics for (Multi-PHY, 622 Mbps)....................................................40  
DC Characteristics for UTOPIA Level 3 Baseline Text .......................................41  
DC Characteristics for PCI ..................................................................................41  
DC Characteristics for LM ...................................................................................42  
Power Dissipation Requirements for Thermal Design.........................................42  
33-MHz/66-MHz Timing Parameters...................................................................43  
33-MHz and 66-MHz Timing Parameters............................................................44  
Transmit Timing...................................................................................................46  
Receive Timing....................................................................................................47  
Local Memory Bus Timing Parameters ...............................................................47  
Datasheet  
5
IXF6401 Broadband Access Processor  
Revision History  
Date  
Revision  
Description  
4/9/01  
001  
This is the first publication of this document.  
6
Datasheet  
IXF6401 Broadband Access Processor  
1.0  
Architectural Overview  
The IXF6401 Broadband Access Processor provides a flexible and powerful solution for products  
designed for broadband Synchronous Optical Network (SONET) networks.  
Figure 1 shows how the IXF6401 processor could be incorporated into an Asynchronous Transfer  
Mode (ATM)/Packets over SONET (POS) solution. Figure 2 is a block diagram of the processors  
architecture.  
Figure 1. IXF6401 Broadband Access Processor in ATM/POS Application  
PCI Bus - 64-bits@66 MHz  
Single OC3c POS  
Quad OC3c ATM  
Single OC12C ATM/POS  
SSRAM  
SDRAM  
Intel®  
FRAMER  
IXF6012  
IXF6401  
UTOPIA 1,2,3/POS  
32-bits@50 MHz  
Local Memory Bus  
64-bits@66 MHz  
PHY  
(0.35µ, 3.3 V)  
A8709-01  
Datasheet  
7
IXF6401 Broadband Access Processor  
Figure 2. Architectural Block Diagram  
Reassembly  
or  
Rx-packet  
Enqueue  
Engine  
Rx-DMA  
CMD Queue  
Receive DMA  
Receive Report  
Generator  
Rx-UTOPIA  
ATM/POS  
Interface  
8,16 or 32 bit  
PCI  
Master  
64-bit  
Rx-FIFO1  
2 Kbyte  
Rx-DMA  
Data Queue  
66 MHz  
PCI  
Slave  
Tx  
Packet  
Link  
Pointer  
Manager  
Tx  
Time  
Wheel  
Tx  
Rx  
Buffer  
Pools  
Tx  
Traffic  
Shaper  
PCI 2 LM  
LM 2 PCI  
CPU DMA  
Packet  
Enqueue  
Engine  
Scheduler  
Manager  
LM  
Slave  
LM  
Master  
64-bit  
66 MHz  
SSRAM  
SDRAM  
Interface  
Segmentation  
or  
Tx-UTOPIA  
ATM/POS  
Interface  
8,16 or  
Tx-DMA  
CMD Queue  
Transmit DMA  
Transmit Report  
Generator  
Tx-  
CRC32  
Gen-  
Packet  
Dequeue  
Engine  
Tx-  
FIFO1  
1 Kbyte  
erator  
Tx-DMA  
32 bit  
Data Queue  
A8419-01  
1.1  
Hardware Packet Processing  
The IXF6401 processor performs all relevant layer-2 functions and provides extensive hardware  
assistance to your CPU, FPGA, or ASIC-based, higher-layer processing engine. ATM  
segmentation and reassembly (SAR), traffic-shaping, packet-tagging, encapsulation, buffer  
management, and data transfers between the PCI and local-memory bus via on-chip direct memory  
access (DMA) are handled by the IXF6401 processor. This frees your higher-layer engine to focus  
on application layers such as bridging, routing, encryption, network operating system,  
management, and security.  
The processor supports several encapsulation methods that accelerate packet processing at layers 2  
and 3 and can automate packet-header generation using the LEC ID, ELAN ID, MAC address, or  
any required bit field. The IXF6401 processor performs LLC/SNAP encapsulation and handles  
Multiprotocol Over ATM (MPOA), Local Area Network Emulation (LANE), Multiprotocol Label  
Switching (MPLS), and Internet Protocol (IP) protocols and any custom packet-tagging scheme.  
1.2  
ATM Processing  
In addition to the high-performance features for higher-layer processing, the IXF6401 processor  
still comprises a full suite of ATM processing functions.  
8
Datasheet  
IXF6401 Broadband Access Processor  
It supports ATM AAL 0, 1, 3/4, and 5 and can deliver true Unspecified Bit Rate (UBR), Constant  
Bit Rate (CBR), Variable Bit Rate (VBR), and Available Bit Rate (ABR) processing for up to 64 K  
virtual channels (VCs). The design features full, 64-byte VC descriptors and is multiport, SONET  
capable.  
Figure 3. ATM Functionality  
Applications  
ILMI  
Signaling  
MPOA  
LANE  
Hardware Assist  
Hardware State  
Not Supported  
RFC 1483  
RFC 1577  
AAL 0, 1, 3/4, 5  
ATM Layer  
Physical  
A8420-01  
In the ATM mode, the IXF6401 processor provides all of the necessary termination functions  
currently established by the ATM Forum and Internet Engineering Task Force (IETF):  
ATM Forum User-Network Interface (UNI) 3.1 ATM Adaptation Layer and ATM Layer  
Specifications  
ATM Forum Traffic Management Specifications, Rev. 4.0  
RFC 1483 (Multiprotocol Encapsulation over ATM Adaptation Layer 5 [AAL 5])  
RFC 1626 (Default IP MTU for Use over ATM AAL 5)  
RFC 1577 (Classical IP and ARP over ATM)  
ATM Forum LANE Specification, Version 1.0  
ATM Forum LANE Version 2.0 - LUNI Baseline Document, Draft 5, February 1997  
The IXF6401 processor maximizes both chip-level and system-level throughput. The IXF6401  
processor supports 128 VC descriptors in its on-chip cache to virtually eliminate latency for  
specific VCs (for example, nominated CBR VCs). Adding external, high-speed Synchronous Static  
Random Access Memory (SSRAM) to the engines local bus increases total capacity to 64 K VCs.  
The IXF6401 processor has a sophisticated buffer-management scheme. All buffer pointer  
structures (64 K for transmit and 36 K for receive) are internal to the engine, greatly reducing the  
number of read/write operations performed during lookup, segmentation, and reassembly. Multiple  
buffer sizes and non-contiguous cell-splitting are fully supported in the hardware.  
The IXF6401 processor can build a two-dimensional link list to link packets on a per-VC basis and  
buffers on a per-packet basis for transmit-packet queuing. This link list not only contains per-  
packet address and size, but also may contain per-packet encapsulation.  
Datasheet  
9
IXF6401 Broadband Access Processor  
1.3  
Traffic Shaping and Policing  
The IXF6401 processor provides granular and efficient traffic shaping, making it an ideal fit for  
Digital Subscriber Line Access Multiplexer (DSLAM), Voice-over-IP (VoIP), and class-of-service  
sensitive applications. It includes 16 on-chip traffic shapers for CBR/VBR, with a TM-4.0-  
compliant ABR scheduler with guaranteed MCR not Zerohardware support and onboard RM-  
cell processing.  
Within a shaped virtual path (VP), each VC can be independently shaped to rates as low as 1-Kbps  
increments, giving you extensive control over traffic on a per-VC basis. The IXF6401 processors  
dual, leaky-bucket, and virtual-scheduling algorithms can be implemented on a per-VC or per-VP  
basis.  
The processor has no embedded Reduced Instruction Set Computing (RISC) processor in the path  
of any per-cell or per-packet transaction that would slow device operation or system throughput.  
This massive hardware assist offloads the CPU, saving valuable cycles for other critical tasks such  
as bridging, routing, policy execution, encryption, and security.  
1.4  
Basic Operation  
The IXF6401 processor is simple to use. To send a packet to the SONET infrastructure, software  
issues a 16-byte Add-Packet command that includes tagging and offset options, packet length,  
other per-packet variables, and a VC descriptor number. The descriptor specifies the target cell  
header VPI/VCI and traffic-shaping parameters. This may be followed by a series of 8-byte Add-  
Buffer commands, telling the engine where the payload resides (in local SDRAM or across the PCI  
bus). This is done in case the packet uses multiple buffers.  
From this point, the IXF6401 processor takes control. The packet is linked per VC for CBR, VBR,  
and ABR connections or the packet is linked on the UBR chain. Once the packet is linked, it is  
transmitted at the specified rate, per VC descriptor, with the required encapsulation.  
The process of associating a packet with a VC descriptor is an application-level function. For  
example, if your application is routing, IP-route matches will direct packets destined to a remote  
subnet to a Virtual Path Identifier (VPI) / Virtual Channel Identifier (VCI) defined in a local or  
centralized table. In LAN emulation or bridging, a similar process occurs, based on the Media  
Access Control (MAC) / Local Exchange Carrier Identification (LEC ID) address.  
This association function is performed outside the IXF6401 processor, typically by a network  
processor, such as the IXP1200 processor, or a combination of standard CPUs, FPGAs, or ASICs,  
in either classic centralized or distributed architectures. Figure 4 shows how the IXF6401 processor  
would be used with the IXP1200 network processor.  
10  
Datasheet  
IXF6401 Broadband Access Processor  
Figure 4. IXF6401 Broadband Access Processor Using an IXP1200  
Optical  
Xcvr  
PHY  
GigE  
MAC  
SSRAM  
Flash  
Receive  
Buffer  
SSRAM  
SDRAM  
SSRAM  
Transmit  
Buffer  
Pool  
UTOPIA SONET  
Framer  
Receive  
Intel®  
Intel®  
IXF6401  
Processor  
Intel®  
IXF6012  
Processor  
PCI Bus  
IXP1200  
16  
P2IX  
Optical  
Xcvr  
Processor  
IX Bus  
Transmit  
0.35 micron  
3.3 V  
PCI Bus  
ATM/POS  
Intel  
PCI  
Bridge  
LM Bus  
64-Bit Optional  
66/100MHz  
21154  
SSRAM  
A8710-01  
The IXF6401 processor can perform any desired combination of operations on individual packets  
and reliably deliver wire-speed Optical Carrier (OC) 12c performance, even for 64-byte packets.  
Designs must issue the requisite Add-Packet commands, at whatever rates are required, to achieve  
target performance levels.  
Full support for newly developed ABR service category and multiprotocols, such as TCP/IP over  
ATM, also are supported. On-chip memory enables cached VC descriptors to be registered and  
allows extensive cell buffering, which further enhances performance for single-chip OC-12c rate  
operation.  
To handle changes to networking standards, the IXF6401 processor obtains configuration  
information from the PCI address space or from a tightly coupled, local network processor. With its  
extensive hardware assist, the IXF6401 processor is able to support multiprotocol data rates of 622  
Mbps, full-duplex. That is possible because the higher-layer processor is not in the critical path of  
any per-cell transaction.  
In PCI-host systems, the IXF6401 processor further increases overall end-system performance and  
manageability by off-loading, from the end-systems main processor, the ATM service-specific  
software functions, IP over ATM, and network statistical and management functions. This allows  
the load to be distributed to each local processor, which greatly reduces system-bus bandwidth.  
An intelligent DMA interface provides a high-speed transfer mechanism between the processors  
local memory and PCI address space. The architecture also provides SSRAM and SDRAM  
support. In very high-performance applications, part of the memory can be allocated to SSRAM.  
Up to 128 Mbytes of addressable memory can be used for packet buffering. The packet-buffer  
memory can be at the PCI bus or the local-memory bus.  
Datasheet  
11  
IXF6401 Broadband Access Processor  
:
Table 1. Control Structure Memory Requirement  
Max Size  
Total  
Byte Length Total Memory  
Description  
Where Kept†  
Each  
Required  
Rc VC descriptor memory for 8 K VC  
Tx VC descriptor memory for 8 K VC  
213  
213  
64  
64  
512 Kbytes  
512 Kbytes  
LM only  
LM only  
Maximum Tx packet buffer descriptor for  
64 K pointers  
216  
16  
1 Mbyte  
LM only  
Maximum Rc report ring for 16 K entry  
Maximum Tx report ring for 16 K entry  
Maximum OEM cell ring for 1 K entry  
Maximum RM cell ring for 1 K entry  
214  
214  
210  
210  
8
8
128 Kbytes  
128 Kbytes  
64 Kbytes  
64 Kbytes  
LM or PCI  
LM or PCI  
LM or PCI  
LM or PCI  
64  
64  
LM Local memory consists of either all SDRAM, all SSRAM, or the combination of those two.  
12  
Datasheet  
IXF6401 Broadband Access Processor  
2.0  
Pinout Information  
2.1  
IXF6401 Broadband Access Processor Ball Pinout  
Figure 5. IXF6401 Processor Ball Configuration  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA AB AC AD AE AF  
TXCLAV TXCLAV  
BTXDATA BTXDATA BTXDATA BTXDATA BRCDATA BRCDATA  
BRCDATA RCCLAV RCADDR  
[0] [2] [1]  
DIS_  
ALL#  
PCI_AD  
[27]  
PCI_AD  
[24]  
1
2
3
4
GND  
GND  
TXEN#  
RCCLK GND  
GND  
RCEN#  
TCK  
TDO  
GND  
VCC  
GND  
GND  
GND  
1
2
3
4
NC  
[3]  
[0]TPA  
[14]  
[10]  
[6]  
[3]  
[15]  
[12]  
BTXDATA BRCDATA BRCDATA BRCDATA BRCDATA BRCDATA RCCLAV RCADDR RCADDR  
PCI_AD  
[25]  
TXCLAV TXADDR BTXDATA BTXDATA BTXDATA BTXDATA  
[1]  
GND  
VCC  
GND  
GND  
TMS  
TDI  
TRST#  
GND  
VCC  
NC  
[1]  
[13]  
[9]  
[7]  
[4]  
[1]  
[3]  
[2]  
[0]  
[0]  
[15]  
[11]  
[7]  
[4]  
LM_IRL  
[0]  
TXCLAV TXADDR  
[2]  
BTXDATA BTXDATA BTXDATA BTXDATA BRCDATA BRCDATA BRCDATA BRCDATA BRCDATA RCSOC/ RCCLAV  
PCI_  
INT#  
PCI_  
RST#  
PCI_  
REQ#  
PCI_AD PCI_AD PCI_AD  
PCI_AD  
[23]  
VCC  
TXPRTY  
[1]  
[12]  
[8]  
[5]  
[2]  
[14]  
[10]  
[8]  
[5]  
[2]  
RSOP  
[0]/RPA  
[30]  
[28]  
[26]  
PCI_  
IDSEL#  
LM_SA  
[2]  
LM_IRL  
[1]  
TXADDR  
[2]  
BTXDATA BTXDATA  
BTXDATA BRCDATA  
[0] [11]  
BRCDATA BRCDATA  
RCCLAV  
[1]  
PCI_  
GNT#  
PCI_AD PCI_AD  
PCI_AD  
[22]  
TXSOC  
/TSOP  
PCI_CBE  
#[3]  
EXT_CLK VCC  
LM_  
VCC  
TXCLK  
VCC  
RCPRTY  
VCC PCI_CLK  
VCC  
[13]  
[9]  
[6]  
[3]  
[31]  
[29]  
LM_SA  
[3]  
PCI_AD PCI_AD  
[21] [20]  
PCI_AD PCI_AD  
[19]  
5
6
TEOP  
5
NC  
ROMCS#  
[18]  
PCI_  
LM_A  
[2]  
LM_SA  
[4]  
RMOD  
[1]  
LM_IRL  
[2]  
PCI_AD PCI_AD PCI_CBE  
FRAME#  
6
[17]  
[16]  
#[2]  
PCI_  
IRDY#  
PCI_  
TRDY#  
PCI_  
STOP#  
TMOD  
[1]  
LM_SA  
[6]  
RMOD  
[0]  
LM_SA  
[5]  
PCI_DEV  
SEL#  
7
7
PCI_  
PERR#  
PCI_  
SERR#  
PCI_  
PARITY  
LM_A  
[4]  
TMOD  
[0]  
LM_A  
[3]  
PCI_CBE  
#[1]  
8
8
REOP  
VCC  
PCI_AD PCI_AD PCI_AD  
[15] [14] [13]  
LM_A  
[7]  
LM_A  
[6]  
LM_A  
[5]  
9
9
VCC  
LM_A  
[10]  
LM_A  
[9]  
LM_A  
[8]  
PCI_AD PCI_AD  
[12] [11]  
PCI_AD PCI_AD  
[10] [9]  
10  
10  
LM_CS#  
PKT_  
BUSY  
CPUDMA LM_A  
LM_A  
[11]  
PCI_AD PCI_CBE PCI_AD PCI_AD  
[8] #[0] [7] [6]  
11  
12  
13  
11  
12  
13  
_BUSY  
[12]  
LM_A  
[16]  
LM_A  
[15]  
LM_A  
[14]  
LM_A  
[13]  
PCI_AD PCI_AD  
PCI_AD PCI_AD  
IXF6401  
EBGA352  
[5]  
[4]  
[3]  
[2]  
LM_A  
[17]  
PCI_AD PCI_AD  
[1] [0]  
GND  
GND  
LM_CLK  
RERR  
VCC  
GND  
VCC  
LM_A  
[19]  
LM_A  
[18]  
PCI_  
ACK64#  
PCI_REQ PCI_CBE  
14  
15  
16  
17  
18  
19  
20  
21  
GND  
14  
15  
16  
17  
18  
19  
20  
21  
64#  
#[7]  
LM_A  
[23]  
LM_A  
[22]  
LM_A  
[21]  
LM_A  
[20]  
PCI_CBE PCI_CBE PCI_CBE PCI_AD  
#[6] #[5] #[4] [63]  
Bottom View  
LM_A  
[25]  
LM_A  
[24]  
PCI_AD PCI_AD PCI_AD PCI_AD  
[62] [61] [60] [59]  
LM_RD# LM_WR#  
PCI_AD PCI_AD PCI_AD PCI_AD  
LM_D  
[1]  
LM_D  
[0]  
SSRAM LM_WE#  
CS#[0]  
[58]  
[57]  
[56]  
[55]  
[0]  
LM_D  
[4]  
LM_D  
[3]  
LM_D  
[2]  
PCI_AD PCI_AD PCI_AD  
[54] [53] [52]  
VCC  
VCC  
LM_WE#  
[1]  
LM_D  
[7]  
LM_D  
[6]  
LM_D  
[5]  
PCI_AD PCI_AD PCI_AD PCI_AD  
[51] [50] [49] [48]  
LM_D  
[10]  
LM_D  
[9]  
LM_D  
[8]  
SSRAM  
CS#[1]  
PCI_AD PCI_AD  
[47] [46]  
PCI_AD PCI_AD  
[45]  
[44]  
PCI_AD PCI_AD PCI_AD  
[43] [42] [41]  
LM_D  
[13]  
SSRAM  
CS#[2]  
LM_D  
[12]  
LM_D  
[11]  
NC  
LM_WE#  
[2]  
LM_D  
[15]  
LM_D  
[14]  
PCI_AD PCI_AD PCI_AD PCI_AD  
22  
23  
24  
22  
23  
24  
NC  
[40]  
[39]  
[38]  
[37]  
LM_  
VCC  
LM_D  
[57]  
LM_D  
[61]  
LM_  
BWAIT#  
PCI_AD PCI_AD  
LM_D  
[17]  
LM_D  
[16]  
LM_D  
[22]  
LM_WE  
#[3]  
LM_D  
[26]  
LM_D  
[30]  
LM_D  
[33]  
LM_D  
[37]  
LM_RAS  
#[1]  
LM_D  
[41]  
LM_D LM_CAS  
LM_D  
[50]  
RVAL  
VCC  
NC  
VCC  
VCC  
VCC  
NC  
RAS#[3]  
[36]  
[35]  
[46]  
#[2]  
LM_  
BACK#  
PCI_AD  
[34]  
LM_D  
[18]  
LM_D  
[23]  
LM_D  
[27]  
LM_D  
[31]  
LM_CAS  
#[0]  
LM_D  
[34]  
LM_D  
[38]  
LM_CAS  
#[1]  
LM_D  
[42]  
LM_D  
[44]  
LM_D  
[47]  
SDRAM  
CS#[2]  
LM_D  
[51]  
LM_D  
[54]  
LM_CAS  
#[3]  
LM_D  
[58]  
LM_D  
[62]  
VCC  
GND  
GND  
VCC  
GND  
B
VCC  
GND  
GND  
NC  
NC  
PCI_  
PARITY  
64  
SDRAM  
CS#[3]  
LM_D  
[59]  
LM_D  
[63]  
LM_  
BREQ#  
LM_D  
[20]  
SSRAM  
CS#[3]  
LM_D  
[28]  
LM_WE  
#[4]  
SDRAM  
CS#[0]  
LM_D  
[35]  
LM_D  
[39]  
SDRAM  
CS#[1]  
LM_D  
[43]  
LM_D  
[45]  
LM_WE  
#[6]  
LM_D  
[48]  
LM_D  
[52]  
LM_D  
[55]  
25  
26  
GND  
GND  
A
25  
26  
NC  
VCC  
GND  
GND  
GND  
OLM_  
CLK  
LM_D  
[19]  
LM_D  
[21]  
LM_D  
[24]  
LM_D  
[25]  
LM_D  
[29]  
LM_RAS  
#[0]  
LM_D  
[32]  
LM_D  
[36]  
LM_WE  
#[5]  
LM_D  
[40]  
LM_RAS  
#[2]  
LM_D  
[49]  
LM_D  
[53]  
LM_WE  
#[7]  
LM_D  
[56]  
LM_D  
[60]  
LM_  
BREL#  
PCI_AD PCI_AD  
[32] [33]  
GND  
GND  
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA AB AC AD AE AF  
Notes:  
VCC  
Clock Input Pin  
Ground Pin  
CLK  
NC  
Power Pin [+3V]  
GND  
No Connect  
A8275-01  
Datasheet  
13  
IXF6401 Broadband Access Processor  
2.2  
Pin and Signal-Name Cross References  
This section contains the tables listed below.  
Table 1, PCI Bus Signalson page 14 Alphabetical list of PCI bus signals, by signal name,  
that shows pin locations  
Table 2, Local Memory Bus Signalson page 15 Alphabetical list of local-memory bus  
signals, by signal name, that shows pin locations  
Table 3, UTOPIA/POS Bus Signalson page 15 Alphabetical list of UTOPIA/POS bus  
signals, by signal name, that shows pin locations  
Table 4, JTAG Signalson page 16 Alphabetical list of JTAG signals, by signal name, that  
shows pin locations  
Table 5, Miscellaneous Signalson page 16 List of general-use signals, pins used for  
power and ground, and pins reserved for ground or power, respectively, including their pin  
locations  
Table 6, Signal Descriptionson page 17 Alphabetical list of signal names that provides  
descriptions  
The pin locationsgiven in the following tables refer to the grid location of the pin, as shown in  
Figure 5, IXF6401 Processor Ball Configurationon page 13.  
Table 1. PCI Bus Signals (Sheet 1 of 2)  
Signal Name  
Pin Locations  
PCI_ACK64#  
PCI_AD[63:0]  
AC14  
AF15, AC16, AD16, AE16, AF16, AC17, AD17, AE17, AF17, AD18, AE18, AF18,  
AC19, AD19, AE19, AF19, AC20, AD20, AE20, AF20, AC21, AD21, AE21, AC22,  
AD22, AE22, AF22, AE23, AF23, AF24, AD26, AC26, AA4, AA3, AB4, AB3, AB1,  
AC3, AC2, AD1, AF3, AF4, AC5, AD5, AE5, AF5, AC6, AD6, AD9, AE9, AF9, AC10,  
AD10, AE10, AF10, AC11, AE11, AF11, AC12, AD12, AE12, AF12, AD13, AE13  
PCI_CBE#[7:0]  
PCI_CLK  
AE14, AC15, AD15, AE15, AD4, AE6, AF8, AD11  
W4  
PCI_DEVSEL#  
PCI_FRAME#  
PCI_GNT#  
AE7  
AF6  
Y4  
PCI_IDSEL#  
PCI_INT#  
AE4  
V3  
PCI_IRDY#  
PCI_PARITY  
PCI_PARITY64  
PCI_PERR#  
PCI_REQ#  
AC7  
AE8  
AC25  
AC8  
Y3  
PCI_REQ64#  
PCI_RST#  
AD14  
W3  
PCI_SERR#  
PCI_STOP#  
AD8  
AF7  
14  
Datasheet  
IXF6401 Broadband Access Processor  
Table 1. PCI Bus Signals (Sheet 2 of 2)  
Signal Name  
Pin Locations  
PCI_TRDY#  
AD7  
Table 2. Local Memory Bus Signals  
Signal Name  
Pin Locations  
C16, D16, A15, B15, C15, D15, B14, C14, B13, A12, B12, C12, D12, C11, D11, A10,  
B10, D10, A9, B9, C9, A8, C8, A6†  
LM_A[25:2]  
LM_D[63:0]  
AA25, AA24, AA23, Y26, Y25, Y24, Y23, W26, V25, V24, U26, U25, U24, U23, T26,  
T25, R24, R23, P25, P24, N25, N24, N23, M26, L25, L24, L23, K26, K25, K24, K23,  
J26, H24, H23, G26, G25, G24, G23, F26, E26, E24, E23, D26, D25, C26, A24, B23,  
C23, C22, D22, A21, C21, D21, A20, B20, C20, B19, C19, D19, A18, B18, C18, A17,  
B17  
LM_BACK#  
LM_BREL#  
LM_BREQ#  
LM_BWAIT#  
LM_CAS#[3:0]  
LM_CLK  
AB24  
AA26  
AB25  
AB23  
W24, T23, M24, J24  
C13  
LM_CS#  
C10  
LM_IRL[2:0]  
LM_RAS#[3:0]  
LM_RD#  
D6, B4, A3  
W23, R26, M23, H26  
A16  
LM_ROMCS#  
LM_SA[6:3]  
LM_SA[2]  
C5  
B7, D7, B6, A5  
A4††  
LM_WE#[7:0]  
LM_WR#  
V26, R25, L26, H25, F23, A22, A19, D17  
B16  
OLM_CLK  
AB26  
SDRAMCS#[3:0]  
SSRAMCS#[3:0]  
W25, T24, M25, J25  
F25, B21, D20, C17  
LM_A[2] (or Pin A6) is not used and must be pulled low.  
†† LM_SA[2] is not used. Keep this signal no connect.  
Table 3. UTOPIA/POS Bus Signals (Sheet 1 of 2)  
Signal Name  
Pin Locations  
RCDATA[15:0]  
TXDATA[15:0]  
RCADDR[2:0]  
RCCLAV [0]/RPA  
RCCLAV[3:1]  
K1, L3, L2, L1, M4, M3, M2, N3, N2, P4, P3, P2, R4, R3, R2, R1  
F2, F1, G4, G3, G2, G1, H4, H3, H2, H1, J3, J2, J1, K3, K2, L4  
U2, U1, V2  
U3  
T2, T1, U4  
Datasheet  
15  
IXF6401 Broadband Access Processor  
Table 3. UTOPIA/POS Bus Signals (Sheet 2 of 2)  
Signal Name  
Pin Locations  
RCCLK  
RCEN#  
M1  
V1  
RCPRTY  
RCSOC/RSOP  
REOP  
T4  
T3  
D8  
RERR  
D13  
RMOD[0]  
RMOD[1]  
RVAL  
C7  
C6  
A23  
TEOP  
D5  
TMOD[0]  
TMOD[1]  
TXADDR[2:0]  
TXCLAV[0]TPA  
TXCLAV[3:1]  
TXCLK  
B8  
A7  
E4, E3, E2  
D1  
C1, D3, D2  
K4  
E1  
F3  
F4  
TXEN#  
TXPRTY  
TXSOC/TSOP  
Table 4. JTAG Signals  
Signal Name  
Pin Locations  
TCK  
TDI  
Y1  
Y2  
TDO  
AA1  
W2  
AA2  
TMS  
TRST#  
Table 5. Miscellaneous Signals (Sheet 1 of 2)  
Signal Name  
Pin Locations  
General-Use Signals  
CPUDMA_BUSY  
DIS_ALL#  
B11  
W1  
C4  
EXT_CLK  
PKT_BUSY  
A11  
16  
Datasheet  
IXF6401 Broadband Access Processor  
Table 5. Miscellaneous Signals (Sheet 2 of 2)  
Signal Name  
Pin Locations  
Power Pins  
B2, B25, C3, C24, D4, D9, D14, D18, D23, J4, J23, N4, P23, V4, V23, AC4, AC9,  
AC13, AC18, AC23, AD3, AD24, AE2, AE25  
VCC  
Ground Pins  
A1, A2, A13, A14, A25, A26, B1, B3, B24, B26, C2, C25, N1, N26, P1, P26, AD2,  
AD25, AE1, AE3, AE24, AE26, AF1, AF2, AF13, AF14, AF25, AF26  
GND  
NC  
No-Connect Pins  
B5, B22, D24, E25, F24, AB2, AC1, AC24, AD23, AF21  
Table 6. Signal Descriptions (Sheet 1 of 6)  
Input (I)  
Signal Name  
Description  
Output (O)  
CPUDMA_BUSY  
DIS_ALL#  
O
I
DMA Queue Full.  
Disable All. This signal disables all output and three-state signals. For normal operation, this  
signal should be high.  
EXT_CLK  
GND  
I
I
External Clock. This clock can be used as an external clock source for the traffic shaper.  
Ground.  
Local Bus Address. Using the 16-MByte Micron device as an example (MT48LC1M16A1),  
the SDRAM row address is selected by LM_A[13:3]. The SDRAM column address is  
represented by LM_A[10:3] because this device has 11 row addresses and eight column  
addresses. During SSRAM operation, a new address is presented on every clock, if  
SSRAMCS# is asserted. When the external master is performing a slave transaction, it must  
hold the address until LM_BWAIT# is deasserted.  
LM_A[25:3]  
LM_A[2]  
I/O  
I/O  
LM_A[2] (or Pin A6) is not used and must be pulled low.  
Local Bus Acknowledge. This is the grant signal to the IXF6401 processor bus request. It  
should remain asserted throughout the transaction. To optimize the performance of the chip,  
external logic can assert this signal all the time. If an external master is present, however,  
external logic needs to deassert this signal only when the external master requires the bus  
by asserting LM_BREL# and LM_BREQ# is deasserted by the IXF6401 processor. After  
LM_BACK# is deasserted, it must remain deasserted until the external master has  
completed the transaction.  
LM_BACK#  
LM_BREL#  
LM_BREQ#  
I
Local Bus Release. The external master asserts this signal to indicate that it intends to use  
the local bus. It deasserts this signal once it detects that LM_BREQ# is deasserted. To  
improve performance, the external master should not assert this signal until there is a  
transaction waiting to be performed.  
I
Local Bus Request. When asserted, this signal indicates that the IXF6401 processor wants  
to access the local bus. Once it is asserted, it remains asserted until the external master  
asserts LM_BREL#. If the IXF6401 processor is idle when LM_BREL# is asserted, the  
IXF6401 processor deasserts LM_BREQ# in the next clock cycle. If the IXF6401 processor  
is not idle when LM_BREL# is asserted, the processor deasserts LM_BREQ# two cycles  
after it finishes the current transaction. The IXF6401 processor deasserts this signal for only  
one cycle.  
O
Local Bus External Master Wait. During slave access, after the external master asserts  
LM_CS#, the IXF6401 processor asserts this signal when it is not ready for a data  
transaction. The IXF6401 processor removes LM_BWAIT# when it is ready for transaction.  
During slave read access, the data on the local bus is valid the cycle AFTER LM_BWAIT# is  
deasserted. The external master must hold the data until one cycle after this signal is  
deasserted, during a slave-write transaction.  
LM_BWAIT#  
O
Datasheet  
17  
IXF6401 Broadband Access Processor  
Table 6. Signal Descriptions (Sheet 2 of 6)  
Input (I)  
Signal Name  
Description  
Output (O)  
Local Bus SDRAM Column Address Strobe Command. When this signal and SDRAMCS#  
are both asserted while LM_RAS# is deasserted, the column address is selected. The  
signals remain asserted until the transaction has completed. These signals also are  
asserted for one cycle during either refresh or mode set. The signals should be connected  
directly to CAS# of a SDRAM. They are input and shaped during slave external master  
access of the local SDRAM.  
LM_CAS#[3:0]  
I/O  
Local Bus Clock. This is the master clock for the local memory bus and the IXF6401  
processor.  
LM_CLK  
LM_CS#  
I
I
Local Memory Chip Select. When asserted, the host processor wants to access the  
processors internal memory and registers.  
Local Bus Data. Output during master write or slave read. Input when master read or slave  
write. When writing to SSRAM or SDRAM, data is valid on every clock, provided any of the  
memory chip enables are asserted. During SSRAM read access, data is valid one cycle  
after SSRAMCS# is asserted. Therefore, the first cycle after SSRAMCS# is deasserted,  
data is still valid. When reading from SDRAM, depending on the CAS latency value, data  
could be valid three clock cycles after SDRAMCS# is asserted. As a result, data could still  
be valid for three cycles after SDRAMCS# has been removed. Data is invalid in all other  
cycles when the IXF6401 processor is in master mode. During slave write, the external  
device must put the valid data on the data bus in the same cycle that it asserts LM_CS#,  
and the value of the data must be held for one cycle after LM_BWAIT# is deasserted. During  
slave read, data is valid one cycle after LM_BWAIT# is deasserted, and it is held until  
LM_CS# is deasserted by the external device.  
LM_D[63:0]  
I/O  
Local Bus Interrupt. LM_IRL[0] is asserted when any bit in the Error Interrupt register is set.  
LM_IRL[1] is set when any bit in the Status Interrupt register is asserted. LM_IRL[2] is set  
when any bit in the Status[2:0] register is set.  
LM_IRL[2:0]  
O
Local Bus SDRAM Row Address Strobe Command. When this signal and SDRAMCS# are  
asserted, the row address is selected.  
LM_RAS#[3:0]  
I/O  
Local Bus Read. Asserted when the current transaction performed by the IXF6401  
processor is a read instruction to SSRAM. It has the same timing as SSRAMCS#. Please  
notice that this signal is not used when a master read from SDRAM is performed. This signal  
is asserted by the external master during a slave read transaction, and external logic should  
hold the signal until the IXF6401 processor deasserts lM_WAIT#.  
LM_RD#  
I/O  
O
Local Bus Expansion ROM Chip Select. If ROM is present, this signal will be asserted  
during the booting process. PCI Master Access Expansion ROM. Only 16-bit EEPROM is  
supported by the IXF6401 processor and it should be connected to LM_A[18:3] and  
LM_D[63:48].  
LM_ROMCS#  
Local Bus Spare Memory Address. When LM_A[6:3] is used for SDRAM. The LM_SA[6:3]  
should be used for SSRAM or vice-versa. This signal has the same timing as LM_A. Instead  
of becoming input during a slave access, however, these pins will be tristated.  
LM_SA[6:3]  
LM_SA[2]  
O
O
LM_SA[2] is not used. Keep this signal no connect.  
18  
Datasheet  
IXF6401 Broadband Access Processor  
Table 6. Signal Descriptions (Sheet 3 of 6)  
Input (I)  
Signal Name  
Description  
Output (O)  
Local Bus Write Enable. Output during master read/write and input during slave read/write.  
LM_WE#[7] controls LM_D[63:56].  
LM_WE#[6] controls LM_D[55:48].  
LM_WE#[5] controls LM_D[47:40].  
LM_WE#[4] controls LM_D[39:32].  
LM_WE#[3] controls LM_D[31:24].  
LM_WE#[7:0]  
I/O  
LM_WE#[2] controls LM_D[23:16].  
LM_WE#[1] controls LM_D[15:8].  
LM_WE#[0] controls LM_D[7:0].  
LM_WE#[2 i] and LM_WE#[2 i+1] should be connected to DQML and DQMU of the SDRAM,  
respectively, where i is 0 to 3. When connected to SSRAM, LM_WE#[i] should be connected  
to BWi#. LM_WE# has the same timing as local memory chip select when the IXF6401  
processor is performing a master write.  
Local Bus Write. Asserted when the IXF6401 processor accesses SDRAM. It has the same  
timing as SDRAMCS#. This signal is not asserted during a master write to SSRAM. During  
slave access, the external master asserts LM_WR# to indicate a write access. The external  
logic should hold the signal until the IXF6401 processor deasserts lM_WAIT#.  
LM_WR#  
I/O  
NC  
No connect.  
OLM_CLK  
O
Local Memory Clock Output.  
PCI Bus Acknowledge 64-bit. When asserted, this signal indicates the target is willing to  
transfer data using 64 bits.  
PCI_ACK64#  
PCI_AD[63:0]  
I/O  
I/O  
PCI Bus Multiplexed 64-bit Address/Data. During a data phase, the upper 32 bits are  
meaningful when both PCI_REQ64# and PCI_ACK# are asserted. During the address  
phase, only the lower 32 bits are used.  
PCI Bus Command and Byte Enable. During an address phase, PCI_CBE# represents a  
PCI-bus command. During a data phase, it represents a byte enable.  
PCI_CBE#[7:0]  
PCI_CLK  
I/O  
I
PCI Bus Clock. Up to 66 MHz.  
PCI Bus Device Select. When driven, this signal indicates that the driving device has  
decoded its address as the target of the current access.  
PCI_DEVSEL#  
I/O  
PCI Bus Cycle Frame. This signal is driven by the bus master to indicate the start and end of  
a transaction.  
PCI_FRAME#  
PCI_GNT#  
PCI_IDSEL#  
PCI_INT#  
I/O  
I
PCI Bus Grant for the IXF6401 processor.  
PCI Bus Initialization Device Select. This signal is used as a chip select during configuration  
read and write transactions.  
I
O
I/O  
PCI Bus Interrupt Signal. This signal should be connected to INTA# of the PCI connector.  
PCI Bus Initiator Ready. When asserted, the bus master is ready to complete the current  
data phase.  
PCI_IRDY#  
PCI_PARITY  
I/O  
I/O  
PCI Bus Parity Bit. Sets even parity across PCI_AD[31:0] and PCI_C/BE#[3:0].  
PCI_PARITY64  
PCI Bus Parity Double Word. Sets even parity across PCI_AD[63:32] and PCI_C/BE#[7:4].  
PCI Bus Parity Error. This bit is only used for reporting data parity errors during all PCI  
transactions, except for a Special Cycle.  
PCI_PERR#  
PCI_REQ#  
I/O  
O
PCI Bus Request. The IXF6401 processor asserts this signal when it is trying to access the  
PCI bus.  
PCI_REQ64#  
PCI_RST#  
I/O  
I
PCI Bus Request 64-bit Transfer. When asserted, this signal indicates a 64-bit transaction.  
PCI Bus Reset. This is the master reset signal for the IXF6401 processor.  
Datasheet  
19  
IXF6401 Broadband Access Processor  
Table 6. Signal Descriptions (Sheet 4 of 6)  
Input (I)  
Signal Name  
Description  
Output (O)  
PCI Bus System Error. This signal is used to report address parity errors, data parity on the  
Special Cycle command, or any other system error where the result will be catastrophic.  
PCI_SERR# is an open drain signal.  
PCI_SERR#  
O
PCI Bus Stop. The PCI target asserts this signal to request the bus master to stop the  
current transaction.  
PCI_STOP#  
PCI_TRDY#  
I/O  
I/O  
PCI Bus Target Ready. This signal is driven by the target to indicate its ability to complete  
current data phase.  
Packet Processor Busy. The purpose of this pin is to help external hardware to keep track of  
whether the IXF6401 processors four-entry Transmit_ADD_PKT_QUEUE and two-entry  
ADD_BUFFER_QUEUE are available to accept another command.  
PKT_BUSY  
O
O
UTOPIA Bus Receive MPHY Address. When address polling is enabled, these signals are  
the Receive MPHY address. When polling is disabled, these signals are used as  
RxEn#[3:1].  
RCADDR[2:0]  
ATM: RCCLAV-UTOPIA Bus Receive Cell Available. When asserted, MPHY is ready to  
transfer a complete cell.  
RCCLAV [0]/RPA  
I
POS: Receive Packet Available. When high, indicates the POS framer has at least one  
packet.  
UTOPIA Bus Receive Cell Available. When asserted, MPHY is ready to transfer a complete  
cell.  
RCCLAV[3:1]  
RCCLK  
I
I
UTOPIA Bus Receive Clock. This is the UTOPIA-bus receive clock.  
UTOPIA/POS Receive Data. This bus carries valid ATM cell or POS packet data, when  
RCEN# is asserted.  
RCDATA[15:0]  
I/O  
In 16-bit or 8-bit mode, RCDATA is input only for receive data.  
In 32-bit mode with receive only, RCDATA will represent receive data [15:0] and TXDATA  
will represent receive data [31:16].  
UTOPIA Bus Receive Enable. When asserted, indicates that the IXF6401 processor is  
ready to accept an ATM cell in the following cycles.  
RCEN#  
O
I
UTOPIA/POS Receive Data Parity. RCPRTY serves as the odd parity over RCDATA on  
8/16-bit mode or RCDATA and TXDATA on 32-bit mode.  
RCPRTY  
ATM: RCSOC-UTOPIA Bus Receive Start of Cell. This signal indicates the current data on  
RCDATA is the beginning of a new ATM cell.  
RCSOC/RSOP  
I
POS: RSOP-Receive Start Of Packet. When high, indicates the beginning of the packet with  
RCEN# asserted.  
Receive End Of Packet. REOP is valid only when RCEN# is asserted. In ATM mode, this pin  
must be pulled down.  
REOP  
RERR  
I
I
Receive Error. Indicates the packet is not valid due to error(s). In ATM mode, this pin must  
be pulled down.  
Receive module indicates the valid bytes.  
In the data bus when REOP is asserted.  
00 DATA [31:0] valid  
RMOD[1]  
RMOD[0]  
I
I
01 DATA [31:8] valid  
10 DATA [31:16] valid  
11 DATA [31:24] valid  
In ATM mode, these pins must be pulled low.  
Receive Data Valid. When high, all receive controls and data are valid. In ATM mode, this  
pin must be pulled up.  
RVAL  
I
20  
Datasheet  
IXF6401 Broadband Access Processor  
Table 6. Signal Descriptions (Sheet 5 of 6)  
Input (I)  
Signal Name  
Description  
Output (O)  
Local Bus SDRAM Chip Select. When asserted, the IXF6401 processor wants to access  
SDRAM. These signals are asserted two cycles after LM_BACK# is asserted, if there is a  
transaction pending. They remain asserted until the burst transaction has completed. When  
these signals are deasserted at the end of the read cycle, it does not mean the data is  
invalid from then on. These signals are for flow-through only. See LM_D[63:0]on page 15  
for more information.  
SDRAMCS#[3:0]  
SSRAMCS#[3:0]  
I/O  
I/O  
Local Bus SSRAM Chip Select. When asserted, the IXF6401 processor wants to access  
SSRAM. These signals should be connected to CS# of the SSRAMs. Since the processor  
generates its own burst addresses, ADSP# should be pulled up to high and ADSC# and  
ADV# should be pulled down to GND. These signals are asserted two cycles after  
LM_BACK is asserted if there is a transaction pending. They remain asserted until the burst  
transaction has completed. When these signals are deasserted at the end of the read cycle,  
it does not mean the data is invalid from then on. See LM_D[63:0]on page 15 for more  
information.  
TCK  
TDI  
I
I
JTAG Input Clock.  
JTAG Data Input.  
JTAG Data Output.  
TDO  
O
Transmit End Of Packet. TEOP is valid only when TXEN# is asserted. In ATM mode, this pin  
is no connect.  
TEOP  
O
Transmit Module. Indicates the valid bytes in the data bus when TEOP is asserted.  
00 DATA [31:0] valid  
TMOD[1]  
TMOD[0]  
O
O
01 DATA [31:8] valid  
10 DATA [31:16] valid  
11 DATA [31:24] valid  
In ATM mode, these pins are no connect.  
TMS  
I
I
JTAG Test Mode Select. Controls the state of the TAP controller in the device.  
JTAG Test Reset. This will reset the TAP controller.  
TRST#  
UTOPIA Bus Transmit MPHY Address. When address polling is enabled, these signals are  
the MPHY address. When address polling is disabled, these signals are used as  
TXEN#[3:1].  
TXADDR[2:0]  
O
ATM: UTOPIA Bus Transmit Cell Available. When asserted, this signal indicates that MPHY  
is ready to accept the transfer of a complete cell.  
TXCLAV[0]TPA  
I
POS: Transmit Packet Available (TPA). When high, indicates the POS framer is ready to  
take data. When low, indicates the POS framer transmit fifo is full or near full and the  
IXF6401 processor needs to stop transmitting data.  
UTOPIA Bus Transmit Cell Available. When asserted, this signal indicates that MPHY is  
ready to accept the transfer of a complete cell.  
TXCLAV[3:1]  
TXCLK  
I
I
UTOPIA Bus Transmit Clock. This signal is the UTOPIA bus transmit clock.  
UTOPIA/POS transmit data. This bus carries valid ATM cell or POS packet data when  
TXEN# is asserted.  
TXDATA[15:0]  
I/O  
In 16-bit or 8-bit mode, TXDATA is output only for transmit data.  
In 32-bit mode with transmit only, TXDATA will represent transmit data [15:0] and RCDATA  
will represent transmit data [31:16].  
Datasheet  
21  
IXF6401 Broadband Access Processor  
Table 6. Signal Descriptions (Sheet 6 of 6)  
Input (I)  
Signal Name  
Description  
Output (O)  
Transmit Enable.  
ATM- When asserted, this signal indicates that the current cycle contains a valid packet  
data.  
TXEN#  
O
O
UTOPIA Bus Transmit Enable. When asserted, this signal indicates that the current cycle  
contains a valid ATM cell.  
UTOPIA/POS Transmit Data Parity. TXPRTY serves as the odd parity bit over TXDATA, on  
8/16-bit mode, or RCDATA and TXDATA, on 32-bit mode. When FPE (Force Parity Error) is  
set in the UTOPIA Control register, the IXF6401 processor asserts even parity on this pin.  
TXPRTY  
ATM: TXSOC- UTOPIA Bus Transmit Start of Cell. When asserted, this signal indicates that  
the current data on TXDATA is the beginning of a new ATM cell.  
TXSOC/TSOP  
VCC  
O
I
POS: TSOP-Transmit start of packet. When high, indicates the beginning of the packet  
when TXEN# is asserted.  
Power, 3.3 V.  
22  
Datasheet  
IXF6401 Broadband Access Processor  
3.0  
Bus-Interface Information  
This section provides overview information about the IXF6401 Broadband Access Processors  
following bus interfaces:  
PCI Interface See page 23.  
Local-Memory Interface See page 24.  
UTOPIA Interface See page 28.  
3.1  
PCI Interface  
The IXF6401 processors default clock speed and bus width are 66 MHz and 64-bit. The  
processors addressing is always 32-bit. Table 7 lists the other supported clock speeds and bus  
widths.  
Table 7. Supported Clock Speeds and Bus Widths  
Clock Speed  
Bus Width  
33 MHz  
33 MHz  
66 MHz  
66 MHz  
32-bit†  
64-bit  
32-bit†  
64-bit  
To use the 32-bit mode, set System Control  
Register bit (W_B[25]) to 1.  
The configuration cycle/mechanism supported by the processor is: Configuration Mechanism #1,  
Type 0.  
PCI command and cycles to which the processor responds are shown in Table 8.  
Table 8. PCI Commands and Cycles  
PCI_CBE# [3:0] Bits  
Command  
PCI Specification  
0110  
0111  
1010  
1011  
Memory Read  
Memory Write  
PCI 2.1, page 36  
PCI 2.1, page 37  
Configuration Read  
Configuration Write  
PCI 2.1, pages 84 - 86  
PCI 2.1, pages 84 - 86  
Datasheet  
23  
IXF6401 Broadband Access Processor  
The PCI interface has the following special features:  
Burst length and order In Master mode, 64 bytes at a time.  
Retry, Disconnect, and Target-Abort All are supported. (See the PCI 2.1 specification,  
pages 43 - 47.)  
Note: Combining, merging, and collapsing are not supported.  
Slave and Master operation are supported by the IXF6401 processor. For master operation:  
You need to include an arbitration protocol that uses PCI_CLK, PCI_REQ#, PCI_GNT#,  
PCI_FRAME#, and PCI_AD[63:0]. (See the PCI 2.1 specification, page 57.)  
Fast back-to-back transaction The just-cited signals are used in conjunction with  
PCI_IRDY# and PCI_TRDY#. (For a timing diagram, see the PCI 2.1 specification, page 61.)  
3.2  
Local-Memory Interface  
3.2.1  
General Features  
The local-memory interface for the processor always operates in the 64-bit mode at 66 MHz. There  
is no parity check.  
The processor can address up to 256 MBytes of memory space split between SSRAM (128  
Mbytes) and SDRAM (128 Mbytes). Flow through and pipelined SSRAM can be used. The  
IXF6401 processor always will perform as SDRAM auto-refresh.  
Memory access transaction used:  
Size Bursts can be one-byte, two-byte, four-byte, eight-byte, and linear eight-byte bursts up  
to 64 bytes per access.  
SDRAM refresh The IXF6401 processor always provides the address, but it does not have  
an internal counter to auto-increment the address.  
For detailed SSRAM and SDRAM timing information, see the manufacturers specifications.  
3.2.2  
Arbitration  
The IXF6401 processor does not have a local-memory-bus, on-chip arbiter or a PCI-bus arbiter.  
The local-memory-bus arbitration is shown in Figure 6.  
The PCI arbitration is performed according to PCI specifications.  
24  
Datasheet  
IXF6401 Broadband Access Processor  
Figure 6. Local-Memory Arbitration Timing  
LM_CLK  
IXF6401 drives  
LM_BREQ#  
Arbiter drives  
LM_BACK#  
Arbiter drives  
LM_BREL#  
IXF6401 owns the LM bus  
LM bus ownership turn around cycle  
Other device owns the LM bus  
A8730-01  
NOTES:  
1. For the processor or host to gain the local bus, the device first must assert either LM_BREQ# or LM_BREL#.  
2. The device must wait for LM_BACK# to be asserted and then can start bus operations.  
3. The bus request must remain active for the duration of the operation.  
4. The bus request should return to inactive at the end of the operation. If the devices grant is removed, it must  
remain inactive for at least two clock cycles.  
5. After detecting the desertion of the bus request of a current bus owner, the external arbitrator will rearbitrate  
the bus.  
6. The bus is granted to the next candidate on a first-come, first-served, round-robin basis.  
7. To share the bus bandwidth, limit bursts to less than 64 bytes per transaction.  
8. To access the IXF6401 processors internal registers and on-chip RAM/CAM from the local memory bus, the  
local-memory-bus CPU asserts the LM_CS# pin after it gains ownership of the bus.  
9. For more details on bus timing, see Local Memory Bus Timingon page 47.  
10.For an illustration of the recommended local-memory clock circuitry, see Table 35 on page 47.  
3.2.3  
Local Memory Configuration  
For information on configuring the local memory, refer to documentation on BIU Master Control  
Register 1, in the IXF6401 Broadband Access Processor Developers Manual (273453).  
3.2.3.1  
SDRAM Configuration  
For READ and WRITE SDRAM timing, refer to the memory manufacturers specification(s). The  
following tables show the configuration settings for the Micron MT48LC8M16A2 SDRAM  
module.  
Table 9. Sample SDRAM Configuration: Bank 0 (Sheet 1 of 2)  
IXF6401 Broadband Access Processor Pins  
8 Mbits x 16 x 4 Chips  
SDRAM Pins  
CLK  
CKE  
CS#  
LM_CLK†  
VCC  
LM_CLK†  
LM_CLK†  
VCC  
LM_CLK†  
VCC  
VCC  
SDRAMCS0#  
SDRAMCS0#  
SDRAMCS0#  
SDRAMCS0#  
LM_CLK refers to the delayedLM_CLK signal. See Figure 20 on page 48.  
Datasheet  
25  
IXF6401 Broadband Access Processor  
Table 9. Sample SDRAM Configuration: Bank 0 (Sheet 2 of 2)  
IXF6401 Broadband Access Processor Pins  
8 Mbits x 16 x 4 Chips  
SDRAM Pins  
RAS#  
CAS#  
WE#  
LM_RAS0#  
LM_CAS0#  
LM_WR#  
LM_RAS0#  
LM_RAS0#  
LM_CAS0#  
LM_WR#  
LM_RAS0#  
LM_CAS0#  
LM_WR#  
LM_CAS0#  
LM_WR#  
DQML  
DQMH  
BA0  
LM_WE0#  
LM_WE1#  
LM_A15  
LM_WE2#  
LM_WE3#  
LM_A15  
LM_WE4#  
LM_WE5#  
LM_A15  
LM_WE6#  
LM_WE7#  
LM_A15  
BA1  
LM_A16  
LM_A16  
LM_A16  
LM_A16  
A[0:11]  
DQ[0:15]  
LM_A[3:14]  
LM_D[0:15]  
LM_A[3:14]  
LM_D[16:31]  
LM_A[3:14]  
LM_D[32:47]  
LM_A[3:14]  
LM_D[48:63]  
LM_CLK refers to the delayedLM_CLK signal. See Figure 20 on page 48.  
Table 10. Sample SDRAM Configuration: Bank 1  
IXF6401 Broadband Access Processor Pins  
8 Mbits x 16 x 4 Chips  
SDRAM Pins  
CLK  
CKE  
LM_CLK†  
VCC  
LM_CLK†  
LM_CLK†  
VCC  
LM_CLK†  
VCC  
VCC  
CS#  
SDRAMCS1#  
LM_RAS1#  
LM_CAS1#  
LM_WR#  
SDRAMCS1#  
LM_RAS1#  
LM_CAS1#  
LM_WR#  
SDRAMCS1#  
LM_RAS1#  
LM_CAS1#  
LM_WR#  
SDRAMCS1#  
LM_RAS1#  
LM_CAS1#  
LM_WR#  
RAS#  
CAS#  
WE#  
DQML  
DQMH  
BA0  
LM_WE0#  
LM_WE1#  
LM_A15  
LM_WE2#  
LM_WE3#  
LM_A15  
LM_WE4#  
LM_WE5#  
LM_A15  
LM_WE6#  
LM_WE7#  
LM_A15  
BA1  
LM_A16  
LM_A16  
LM_A16  
LM_A16  
A[0:11]  
DQ[0:15]  
LM_A[3:14]  
LM_D[0:15]  
LM_A[3:14]  
LM_D[16:31]  
LM_A[3:14]  
LM_D[32:47]  
LM_A[3:14]  
LM_D[48:63]  
LM_CLK refers to the delayedLM_CLK signal. See Figure 20 on page 48.  
3.2.3.2  
SSRAM Configuration  
For READ and WRITE SSRAM timing, refer to the memory manufacturers specification(s). The  
following tables show the configuration settings for the Micron SSRAM MT58L128L32F and  
Flow-through Syncburst SRAM.  
Note: Buffering may be required due to SSRAM load. Refer to the manufacturers load specification.  
26  
Datasheet  
IXF6401 Broadband Access Processor  
Table 11. Sample SSRAM Configuration: Banks 0 and 1  
IXF6401 Broadband Access Processor Pins  
SSRAM Pins  
Bank 0 (128 Kbits x 32 x 2 Chips)  
Bank 1 (128 Kbits x 32 x 2 Chips)  
SA0  
SA1  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
SA[3:2]  
SA[16:4]  
Mode  
CLK  
LM_CLK†  
LM_CLK†  
LM_CLK†  
LM_CLK†  
ADV#  
ADSC#  
ADSP#  
BWd#  
BWc#  
BWb#  
BWa#  
BWE#  
GW#  
GND  
GND  
GND  
GND  
Pull-down  
Pull-Up  
Pull-down  
Pull-Up  
Pull-down  
Pull-Up  
Pull-down  
Pull-Up  
LM_WE3#  
LM_WE2#  
LM_WE1#  
LM_WE0#  
GND  
LM_WE7#  
LM_WE6#  
LM_WE5#  
LM_WE4#  
GND  
LM_WE3#  
LM_WE2#  
LM_WE1#  
LM_WE0#  
GND  
LM_WE7#  
LM_WE6#  
LM_WE5#  
LM_WE4#  
GND  
Pull-Up  
Pull-Up  
Pull-Up  
Pull-Up  
CE#  
SSRAMCS0#  
GND  
SSRAMCS0#  
GND  
SSRAMCS1#  
GND  
SSRAMCS1#  
GND  
CE2#  
CE2  
Pull-Up  
Pull-Up  
Pull-Up  
Pull-Up  
OE#  
LM_RD#  
LM_D[0:31]  
LM_RD#  
LM_D[32:63]  
LM_RD#  
LM_D[0:31]  
LM_RD#  
LM_D[32:63]  
DQa, b, c , d  
LM_CLK refers to the delayedLM_CLK signal. See Figure 20 on page 48.  
Table 12. Sample SSRAM Configuration: Banks 2 and 3 (Sheet 1 of 2)  
IXF6401 Broadband Access Processor Pins  
SSRAM Pins  
Bank 2 (128 Kbits x 32 x 2 Chips)  
Bank 3 (128 Kbits x 32 x 2 Chips)  
SA0  
SA1  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
LM_SA3  
LM_SA4  
LM_SA[6:5]  
LM_A[19:7]  
GND  
SA[3:2]  
SA[16:4]  
Mode  
CLK  
LM_CLK†  
LM_CLK†  
LM_CLK†  
LM_CLK†  
ADV#  
ADSC#  
GND  
GND  
GND  
GND  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
LM_CLK refers to the delayedLM_CLK signal. See Figure 20 on page 48.  
Datasheet  
27  
IXF6401 Broadband Access Processor  
Table 12. Sample SSRAM Configuration: Banks 2 and 3 (Sheet 2 of 2)  
IXF6401 Broadband Access Processor Pins  
SSRAM Pins  
Bank 2 (128 Kbits x 32 x 2 Chips)  
Bank 3 (128 Kbits x 32 x 2 Chips)  
ADSP#  
BWd#  
BWc#  
BWb#  
BWa#  
BWE#  
GW#  
Pull-Up  
LM_WE3#  
LM_WE2#  
LM_WE1#  
LM_WE0#  
GND  
Pull-Up  
LM_WE7#  
LM_WE6#  
LM_WE5#  
LM_WE4#  
GND  
Pull-Up  
LM_WE3#  
LM_WE2#  
LM_WE1#  
LM_WE0#  
GND  
Pull-Up  
LM_WE7#  
LM_WE6#  
LM_WE5#  
LM_WE4#  
GND  
Pull-Up  
Pull-Up  
Pull-Up  
Pull-Up  
CE#  
SSRAMCS2#  
GND  
SSRAMCS2#  
GND  
SSRAMCS3#  
GND  
SSRAMCS3#  
GND  
CE2#  
CE2  
Pull-Up  
Pull-Up  
Pull-Up  
Pull-Up  
OE#  
LM_RD#  
LM_D[0:31]  
LM_RD#  
LM_D[32:63]  
LM_RD#  
LM_D[0:31]  
LM_RD#  
LM_D[32:63]  
DQa, b, c , d  
LM_CLK refers to the delayedLM_CLK signal. See Figure 20 on page 48.  
3.3  
UTOPIA Interface  
For the Universal Test and Operations Interface for ATM (UTOPIA) interface, the supported clock  
rate is 37.5 to 50 MHz, to meet the OC-12 (4 x OC-3) line rate.  
UTOPIA levels support:  
Level 1 (8-bit)  
Level 2 (16-bit)  
Level 3 (32-bit)  
Full duplex requires two IXF6401 processors.  
If the IXF6401 processor is programmed for UTOPIA III receive-mode only, the  
TXDATA signal will carry the upper word [31:16] of the receive data.  
If the IXF6401 processor is programmed for UTOPIA III transmit-mode only,  
RCDATA[15:0] is the upper 16 bits of the transmit data.  
For information on configuring the local memory, refer to documentation on UTOPIA Control  
Register 1, in the IXF6401 Broadband Access Processor Developers Manual (273453).  
3.3.1  
UTOPIA I  
In UTOPIA I (8-bit), 53 octet cells are transferred.  
28  
Datasheet  
IXF6401 Broadband Access Processor  
Table 13. UTOPIA-I Bit Settings  
Transmit / Receive Time  
Bit 7 .. Bit 0  
Header 1  
Header 2  
Header 3  
Header 4  
UDF / HEC  
Payload 1  
...  
Payload 48  
3.3.2  
UTOPIA II  
In UTOPIA II (16-bit), 54 octet cells are transferred.  
Table 14. UTOPIA-II Bit Settings  
Transmit / Receive Time  
Bit 15  
Bit 0  
Header 1  
Header 3  
UDF1-HEC  
Payload 1  
...  
Header 2  
Header 4  
UDF2-HEC  
Payload 2  
...  
Payload 47  
Payload 48  
3.3.3  
UTOPIA III  
In UTOPIA III (32-bit), 52 octet cells are transferred. There is no HEC support.  
Table 15. UTOPIA-III Bit Settings  
Transmit / Receive  
Time  
Bit 31 ...  
... Bit 16  
Bit 15 ...  
... Bit 0  
Header 1  
Payload 1  
Payload 5  
...  
Header 2  
Payload 2  
Payload 6  
...  
Header 3  
Payload 3  
Payload 7  
...  
Header 4  
Payload 4  
Payload 8  
...  
...  
...  
...  
...  
Payload 45  
Payload 46  
Payload 47  
Payload 48  
Datasheet  
29  
IXF6401 Broadband Access Processor  
3.3.4  
UTOPIA Modes  
Table 16. UTOPIA Modes  
UTOPIA Mode  
IXF6401  
IXF6402  
Direct Status  
Direct Mode  
Support Rev B  
Not supported  
Not supported  
Supported  
Supported  
Address Polling  
Not Supported  
3.3.5  
POS Mode  
IXF6401 processor can support either one OC-3 port or one OC-12 port in the POS mode.  
30  
Datasheet  
IXF6401 Broadband Access Processor  
4.0  
Package Information  
4.1  
Mechanical Specifications  
Figure 7. 352-Pin Ball Grid Array  
C
D
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AAABACADAEAF  
AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A  
1
2
1
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
C
D
e
Bottom View  
Top View  
A
Side View  
Table 17. Mechanical Dimensions  
Description  
Parameter  
Value  
Units  
Maximum Mounted Package Height  
Ball Footprint  
A
C
D
e
1.4  
31.75  
35 x 35  
1.27  
26 x 26  
4
mm  
mm  
mm  
mm  
Body Size  
Ball Pitch  
Ball Matrix  
Number of Rows  
Number of Columns  
4
4.2  
Thermal Specifications  
The IXF6401 Broadband Access Processor consumes 6 W of power when operating at 66 MHz.  
The processors thermal design power (TDP) level is given in Table 30, Power Dissipation  
Requirements for Thermal Designon page 42.  
Datasheet  
31  
IXF6401 Broadband Access Processor  
The processors Enhanced Ball Grid Array (EBGA) package dissipates the majority of its heat into  
the environment via the metal cap that is attached to the die.  
To ensure proper operation and reliability of the IXF6401 processor, the thermal solution must  
maintain the case temperature at or below the values specified in Table 18. Considering the power  
dissipation levels and typical system ambient environment of 0° C to 70° C, system or component-  
level thermal enhancements will be required if the case temperature exceeds the referenced tables  
maximum temperatures.  
Table 18. EBGA Thermal Absolute Maximum Rating  
Parameter  
Maximum  
Tcase  
85° C  
Note: A heat sink is strongly recommended when the processor is operating at 66 MHz.  
To dissipate the highest possible thermal power, good system airflow is critical. Airflow is  
determined by the size and number of fans, vents and/or ducts along with the placement of these  
elements, in relation to the components and the airflow channels within the system. Noise  
constraints may limit the size and/or types of fans, vents and/or ducts that can be used in a  
particular design.  
To develop a reliable, cost-effective thermal solution, all of the above variables must be  
considered. Thermal characterization and simulation should be carried out at the entire system  
level, accounting for the thermal requirements of each component.  
4.2.1  
4.2.2  
Die Temperature  
Case temperature is a function of the local ambient temperature and the internal temperature of the  
component under evaluation. Since a local ambient temperature is not directly specified for the  
IXF6401 processor, the only restriction is that the maximum case temperature (T ) is not  
case  
exceeded.  
Package Temperatures  
As an aid in determining the optimum airflow and heat sink combination for IXF6401 processor,  
Table 19 and Table 20 are provided below. The tables show T  
ambient temperature, at the Thermal Design Power level.  
as a function of airflow and  
case  
These tables may be used to evaluate prospective thermal solutions.  
32  
Datasheet  
IXF6401 Broadband Access Processor  
Table 19. T  
as a Function of Ambient Temperature and Airflow: Without Heat Sink  
case  
Ambient  
Temperature (° C)  
Tcase Temperature at Thermal Design Power Level (° C)  
70  
55  
35  
0
130  
115  
95  
116  
101  
81  
109  
94  
106  
91  
103  
88  
74  
71  
68  
60  
46  
39  
36  
33  
Airflow Linear  
Feet per Minute  
0
100  
200  
300  
400  
Note: Table 19 uses the same notes as Table 20.  
Table 20. T  
as a Function of Ambient Temperature and Airflow: Using a Heat Sink  
case  
Ambient  
Temperature (° C)  
Tcase Temperature at Thermal Design Power Level (° C)  
70  
55  
35  
0
119  
104  
84  
103  
88  
95  
80  
60  
25  
91  
76  
56  
21  
89  
74  
54  
19  
68  
49  
33  
Airflow Linear  
Feet per Minute  
0
100  
200  
300  
400  
NOTES:  
1. The shaded table cells indicate airflow and ambient conditions that will exceed the allowable case  
temperature.  
2. The heat sink case in Table 20 assumes the default thermal solution (see Thermal Solutionson page 33).  
3. The board used for this evaluation was a four-layer, standard JESEC printed circuit board.  
4. The Tcase maximum temperature, with no heat sink is 122° C. The PSI-JT changes dramatically for a  
package with a heat sink. The Tcase maximum temperature, with a heat sink, is 121° C.  
5. All data is simulated and is not validated against physical examples.  
6. An Airflow Linear Feet per Minute value of zero is defined as a natural-convection environment.  
4.2.3  
Thermal Solutions  
If sufficient airflow cannot be supplied to the component and motherboard, one method frequently  
used to improve thermal performance is to increase the surface area of the component by attaching  
a metallic heat sink to the components heat spreader, connected to the top of the case. To  
maximize the heat transfer, maximizing the surface area of the heat sink can reduce the thermal  
resistance from the heat sink to the air.  
Though each design may have unique mechanical volume and height restrictions or  
implementation requirements, the height, width, and depth constraints typically placed on the  
IXF6401 processor are shown in Figure 8.  
Datasheet  
33  
IXF6401 Broadband Access Processor  
Figure 8. EBGA Heat Sink Volume Restrictions  
17 mm  
Keep-out Zone  
Above Board  
37 mm Square  
Keep-out Zone  
A8674-01  
For those who have no control over their end users thermal environment or for those who wish to  
bypass the thermal modeling and evaluation process, a default thermal solution has been developed  
for the IXF6401 processor. That thermal solution will replicate the performance, defined in Table  
19 and Table 20, with the processor operating at the thermal design power level.  
If implementing the default thermal solution does not bring the case temperature within the values  
listed in Table 18, additional cooling will be needed. This is achieved by improving airflow to the  
component and applying thermal enhancements.  
If airflow improvements are not implemented or successful, the default thermal solution for the  
IXF6401 processor is the use of an extruded heat sink. Figure 9 on page 35 is a drawing of the heat  
sink. Possible sources for extruded heat sinks are listed in Thermal-Solution Vendorson page 37.  
34  
Datasheet  
IXF6401 Broadband Access Processor  
Figure 9. EBGA Extruded Heat Sink Measurements  
15.0 mm  
34.5 mm  
A8675-01  
4.2.3.1  
System Requirements for Thermal Efficiency  
General printed-circuit-board design guidelines are listed below as recommendations for  
maximizing the thermal performance of the EBGA package.  
When connecting ground (thermal) vias to the ground plane(s), do not use thermal-relief  
patterns. Thermal-relief patterns are designed to limit heat transfer between the vias and the  
copper planes and constrict the heat flow path from the component to the ground planes in the  
printed circuit board.  
When the package is in a still-air environment and without a heat sink, the primary heat path  
for conducting heat out of the PBGA package is through the vias directly under the die,  
internal planes, and the ground planes of the printed circuit board. Increasing the number of  
ground planes in the printed circuit board, and increasing the thickness of those copper planes,  
increases heat conduction and lowers the packages temperature. Since the primary path of  
heat dissipation for the IXF6401 processor EBGA package is through the top metallic heat  
spreader, printed circuit boards using 1.0-ounce copper thickness are acceptable.  
Since the board temperature also has an effect on the thermal performance of the package,  
avoid placing the IXF6401 processor adjacent to high-power dissipation devices.  
For maximum thermal performance, locate the components in the main stream of the airflow  
path, if airflow exists. Avoid placing the components downstream, behind larger devices or  
devices with heat sinks that obstruct the airflow or supply excessively heated air.  
The preceding guidelines are not all-inclusive and are listed to give the designer known good-  
design practices to maximize the thermal performance of the components.  
The top view of the recommended printed-circuit-board layout, for the 35-mm, 352-ball EBGA is  
shown in Figure 7 on page 31.  
Datasheet  
35  
IXF6401 Broadband Access Processor  
Figure 10. Recommended and Discouraged Via Connections (Top View)  
Recommended:  
Solid Connection  
Not Recommended:  
Thermal Relief  
A8676-01  
Figure 11. Recommended Printed-Circuit-Board Stack Up (Cross-Sectional View)  
Thermal Solder Balls  
Thermal Vias  
2.0 oz Cu gnd plane  
A8677-01  
4.2.3.2  
Recommendations for Thermal Solutions  
When the clock for the IXF6401 processor is running at 66 MHz or higher, a passive heat sink is  
strongly recommended. See Thermal-Solution Vendorson page 37 for a list of possible vendors.  
36  
Datasheet  
IXF6401 Broadband Access Processor  
4.2.4  
Thermal-Solution Vendors  
Table 21 provides a vendor list as a reference to our customers. This list should not be considered  
recommendations or product endorsements by Intel®.  
Table 21. Thermal-Solution Vendor List  
Heat Sink  
ChipCoolers*, Inc. Heatsinks  
Aavid Thermalloy  
Corporate headquarters:  
80 Commercial St.  
333 Strawberry Field Road  
Warwick, RI 02886  
Concord, NH 03301  
Telephone: (603) 224-9988  
Telephone: (401) 739-7600 or (800) 227-0254  
Web site: http://www.chipcoolers.com  
E-mail: sales@chipcoolers.com  
Other worldwide offices. Visit their Web site for  
contact information: http://www.aavid.com  
Sumitomo Corporation  
International, group headquarters:  
Osaka:  
5-33, Kitahama 4-chome,  
Chuo-ku, Osaka 540-8666  
2-2, Hitotsubashi 1-chome,  
Chiyoda-ku, Tokyo 100-8601  
Tokyo:  
Sumitomo Corporation of America  
Americas headquarters:  
600 Third Ave.  
New York, NY 10016-2001  
Telephone: (212) 207-0700  
Other worldwide offices. Visit their Web site for contact information: http://www.sumitomocorp.com  
Clips  
Chip Coolers* Inc.  
(See listing under Heat Sink)  
Adhesives  
Loctite Corporation  
Parker Hannifin Corp.  
Chomerics Division  
World headquarters:  
77 Dragon Court  
Woburn, MA 01888-4014  
Telephone: (781) 935-4850  
Americas headquarters:  
1001 Trout Brook Crossing  
Rocky Hill, CT 06067-3910  
Telephone: (860) 571-5100  
Other worldwide offices. Visit their Web site for  
contact information: http://www.loctite.com  
Other worldwide offices. Visit their Web site for  
contact information: http://www.chomerics.com  
E-mail address: mailbox@chomerics.com  
Datasheet  
37  
IXF6401 Broadband Access Processor  
4.3  
Ordering Information  
Figure 12 shows the markings on the IXF6401 Broadband Access Processor. Table 22 shows gives  
the details for the figures codes.  
Figure 12. IXF6401 Broadband Access Processor Markings  
Intel Logo  
with trademark  
Date Code  
YYWW XXXX  
IXF6401BEC-S  
Part Number  
XXXXXXX  
Country  
Country of Origin  
Pin #1  
Indicator  
A8721-01  
Table 22. IXF6401 Broadband Access Processor Date and Part-Number Codes  
Code  
Description(s)  
Date Codes  
YY  
Two-digit designation for year  
WW  
Two-digit designation for work week  
Part-Number Codes  
IXF6401  
B
Designates the IXF6401 Broadband Access Processor  
The die revision and stepping  
Indicates the Enhanced Ball Grid Array Package (352  
balls)  
E
C
Operating temperature range  
C = 0 to 70° C  
Speed grade  
7 = 66.6 MHz  
S
Country  
Country of manufacture  
38  
Datasheet  
IXF6401 Broadband Access Processor  
5.0  
5.1  
Electrical Specifications  
Absolute Maximum Ratings  
Warning: Stressing the device beyond the Absolute Maximum Ratingsmay cause permanent damage.  
These are stress ratings only.  
Table 23. Absolute Maximum Ratings  
Parameter  
Maximum Rating  
Case temperature under bias  
Storage temperature  
0° C to 85° C  
65° C to 150° C  
Ambient temperature (Power ON)  
Junction temperature  
0° C to 70° C  
125° C  
Voltage on any pin  
0.3 V to Vcc+0.3 V (with respect to GND)  
0.5 V to 7.0 V  
DC input Voltage  
5.2  
Operating Conditions  
Warning: Operation beyond the Operating Conditionsis not recommended and extended exposure beyond  
the Operating Conditionsmay affect device reliability.  
Table 24. Operating Conditions  
Parameter  
Minimum  
Maximum  
Supply voltage, I/O Vcc  
Ambient temperature  
3.3 V 5%  
0° C  
3.3 V + 5%  
70° C  
5.3  
DC Specifications  
This section contains the tables listed below.  
Table 25, DC Characteristics (Single-PHY,155 Mbps, 622 Mbps)on page 40 The DC  
characteristics for UTOPIA Level 2 Version 1.0  
Table 26, DC Characteristics for (Multi-PHY, 622 Mbps)on page 40  
Table 27, DC Characteristics for UTOPIA Level 3 Baseline Texton page 41  
Table 28, DC Characteristics for PCIon page 41  
Table 29, DC Characteristics for LMon page 42  
Table 30, Power Dissipation Requirements for Thermal Designon page 42  
Datasheet  
39  
IXF6401 Broadband Access Processor  
Table 25. DC Characteristics (Single-PHY,155 Mbps, 622 Mbps)  
Symbol  
Parameters  
Input LOW Voltage  
Test Conditions  
Min  
Max  
Units  
Notes  
VIL  
VIH  
VOH  
VOL  
IOH  
IOL  
IIH  
-0.3 V  
+2.0 V  
+2.4 V  
+0.8 V  
V
V
1
2
3
4
5
6
7
7
Input HIGH Voltage  
V
cc + 0.3 V  
Output or bidirectional HIGH Voltage  
Output or bidirectional LOW Voltage  
Output current at HIGH Voltage  
Output current at HIGH Voltage  
Input current at HIGH Voltage  
Input current at LOW Voltage  
IOH > -4 mA  
IOL > +4 mA  
VOH > +2.4 V  
VOL < +0.5 V  
V
+0.5 V  
V
-4 mA  
+4 mA  
mA  
mA  
IIL  
Note: Table 25 uses the same notes as Table 26.  
Table 26. DC Characteristics for (Multi-PHY, 622 Mbps)  
Symbol  
Parameters  
Test Conditions  
Min  
Max  
Units  
Notes  
VIL  
VIH  
VOH  
VOL  
IOH  
IOL  
IIH  
Input LOW Voltage  
Input HIGH Voltage  
-0.3 V  
+2.0 V  
+2.4 V  
+0.8 V  
V
V
1
2
3
4
5
6
7
7
V
cc + 0.3 V  
Output or bidirectional HIGH Voltage  
Output or bidirectional LOW Voltage  
Output current at HIGH Voltage  
Output current at HIGH Voltage  
Input current at HIGH Voltage  
Input current at LOW Voltage  
IOH > 8 mA  
IOL > +8 mA  
VOH > +2.4 V  
VOL < +0.5 V  
V
+0.5 V  
V
-4 mA  
mA  
mA  
+4 mA  
IIL  
NOTES:  
1. A device with VIL, min. < 0.3 V is compliant to this specification.  
2. A device with VIH, max. > VDD + 0.3 V is compliant with this specification.  
3. Negative current flows out of the considered node (out of the PHY/ATM layer device pin). A device with VOH,  
min. > +2.4 V (and IOH > 4 mA ) is compliant with this specification.  
4. Positive current flows into the considered node (into PHY/ATM layer device pin). A device with VOL, max. <  
+0.5 V (and IOL > +4 mA) is compliant with this specification.  
5. Negative current flows out of the considered node (out of the PHY/ATM layer device pin). IOH, min. defines  
the minimal required IOH value for the driver.  
A device with IOH, min. > 4 mA (and VOH > +2.4 V) is compliant to this specification.  
6. Positive current flows into the considered node (into the PHY/ATM layer device pin). IOL, min. defines the  
minimal required IOL value for the driver.  
7. To allow several technologies, no values for IIH and IIL are specified. An input can sink and source.  
40  
Datasheet  
IXF6401 Broadband Access Processor  
Table 27. DC Characteristics for UTOPIA Level 3 Baseline Text  
Symbol  
Parameters  
Test Conditions  
Min  
Max  
Units  
Notes  
VOH  
VOH  
High-Level Output Voltage  
High-Level Output Voltage  
Normal Switching Point  
Low-Level Input Voltage  
Low-Level Input Voltage  
Input Current-Input Only  
Input Current-I/O Terminals  
Test Condition  
2.4 V  
2.0 V  
V
V
IOH = 8 mA  
VIL  
0.8  
0.4  
+5  
V
V
VOL  
Vin = 0 or  
Vin = Vdd  
IIN  
µA  
+15  
Table 28. DC Characteristics for PCI  
Symbol  
Parameters  
Test Conditions  
Min  
Max  
Units  
Notes  
VCC  
VIH  
Supply Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input LOW Voltage  
Input Leakage Current  
Output HIGH Voltage  
Output LOW Voltage  
Input Pin Capacitance  
CLK Pin Capacitance  
IDSEL Pin Capacitance  
Pin Inductance  
3.0 V  
0.5 Vcc  
0.5 V  
0.7 Vcc  
3.6 V  
Vcc +0.5  
0.3 Vcc  
V
V
VIL  
V
VIPU  
IIL  
V
1
2
0 < Vin < Vcc  
Iout = 500 µA  
Iout = 1,500 µA  
+10  
µA  
V
VOH  
VOL  
CIN  
0.9 Vcc  
0.1 Vcc  
10  
V
pF  
pF  
pF  
nH  
3
CCLK  
CIDSEL  
LPIN  
5
12  
8
4
5
20  
NOTES:  
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are  
calculated to pull a floated network. Applications sensitive to static power utilization should assure that the  
input buffer is conducting minimum at this input voltage.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with three-state outputs.  
3. Absolute maximum pin capacitance for the PCI input is 10 pF (except for CLK) with an exception granted to  
motherboard-only devices, which could be up to 16 pF, in order to accommodate PGA packaging. This would  
mean in general that components for expansion boards would need to use alternatives to ceramic PGA  
packaging, i.e., SGA.  
4. Lower capacitance in this input-only pin allows for non-resistive coupling.  
5. This is a recommendation, not an absolute requirement.  
Datasheet  
41  
IXF6401 Broadband Access Processor  
Table 29. DC Characteristics for LM  
Symbol  
Parameters  
Test Conditions  
Min  
Max  
Units  
Notes  
VCC  
VIH  
VIL  
Supply Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output HIGH Voltage  
Output LOW Voltage  
0.3 V  
0.5 Vcc  
0.5 V  
3.6 V  
Vcc+ 0.5  
0.3 Vcc  
+10  
V
V
V
IlL  
0 < Vin < Vcc  
Iout = 500 µA  
µA  
V
VOH  
VOL  
0.9 Vcc  
Iout = 1,500 µA  
0.1 Vcc  
V
Figure 13. Tval (min) and Slew Rate  
Pin  
0.5 inch maximum  
V
CC  
1 K  
1 KΩ  
10 pF  
Output Buffer  
A8422-01  
Table 30. Power Dissipation Requirements for Thermal Design  
Parameter  
Typical†  
Maximum††  
Unit  
Frequency  
Thermal design power  
Active power†††  
TBD  
4.5  
6
Watts  
Watts  
66.6 MHz  
66.6 MHz  
TBD  
NOTES:  
This value is an estimate of the typical power dissipation in a system. The value is expected to be the  
average value that will be measured in a system, using a typical device at the specified voltage and running  
typical applications. This value is dependent upon the specific system configuration. Typical power  
specifications are not tested.  
†† Systems must be designed to thermally dissipate the maximum thermal design power (TDP) unless the  
system uses thermal feedback to limit the processors maximum power. The maximum thermal design power  
is determined using a worst-case instruction mix and takes into account the thermal time constant of the  
package. The given value is an estimate.  
††† Active power is the average power measured in a system, using a typical device that is running typical  
applications under normal operating conditions at nominal Vcc and room temperature.  
42  
Datasheet  
IXF6401 Broadband Access Processor  
5.4  
Timing Specifications  
5.4.1  
Clock Timing  
The clock waveform must be delivered to each 66-Mhz PCI component in the system. In the case  
of add-in boards, compliance with clock specification is measured at the add-in board component,  
not at the connector slot.  
Figure 14 shows the clock waveform and required measurement points for 3.3-V signaling  
environments.  
Figure 14. 3.3 V Clock Waveform  
3.3 V Clock  
T
cyc  
T
high  
0.6 V  
CC  
0.5 V  
0.4 V  
cc  
cc  
0.3 V  
cc  
0.2 V  
T
CC  
0.4 V , peak-to-peak  
cc  
(minimum)  
low  
A8423-01  
5.4.2  
Clock Specifications  
Table 31. 33-MHz/66-MHz Timing Parameters  
66 MHz  
33 MHz  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Min  
Max  
Tcyc  
Thigh  
Tlow  
Clock cycle time  
Clock high time  
Clock low time  
Clock slew rate  
15  
6
30  
30  
11  
11  
1
ns  
ns  
1, 3  
6
ns  
1.5  
4
4
V/ns  
2
NOTES:  
1. In general, all 66.6-MHz PC components must work with a clock frequency of up to 66.6 MHz. Device  
operational parameters at frequencies under 33 MHz must conform to the specifications in Chapter 4 of the  
PCI specification, rev 2.1.  
2. The clock frequency may be changed at any time during the operation of the system as long as the clock  
edges remain clean(monotonic) and the minimum cycle and high and low times are not violated. The clock  
maybe stopped only in a low state. A variance on this specification is allowed for components designed for  
use on the system planar only. For clock frequency between 33 MHz and 66.6 MHz, the clock frequency may  
not change except in conjunction with a PCI reset.  
3. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met  
across the minimum peak-to-peak portion of the clock waveform as shown in Figure 31. Clock slew rate is  
measured by the slew rate circuit shown in Figure 13, Tval (min) and Slew Rateon page 42. The minimum  
clock rate must not be violated for any single clock cycle, i.e., accounting for all system jitter.  
Datasheet  
43  
IXF6401 Broadband Access Processor  
5.4.3  
PCI Timing Parameters  
Table 32. 33-MHz and 66-MHz Timing Parameters  
66 MHz  
33 MHz  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Min  
Max  
PCI_CLK to signal valid delay –  
bused signals  
Tval  
2
6
2
11  
ns  
ns  
1, 2, 3  
1, 2, 3  
PCI_CLK to signal valid delay –  
point-to-point signals  
Tval(ptp)  
2
2
6
2
2
12  
28  
Ton  
Toff  
Float to active delay  
Active to Float delay  
ns  
ns  
1, 5  
1, 5  
14  
Input setup time to PCI_CLK –  
bused signals  
Tsu  
3
5
ns  
ns  
3, 4  
10  
12  
Input setup time to PCI_CLK –  
point-to-point signals  
Tsu(ptp)  
3, 4  
4
Th  
Input Hold time from PCI_CLK  
0
1
0
1
ns  
RESET active time after Power  
stable  
Trst  
ms  
RESET active time after  
PCI_CLK stable  
Trst-clk  
Trst-off  
Trrsu  
100  
100  
µs  
ns  
ns  
ns  
RESET active to output float  
delay  
40  
50  
40  
50  
PCI_REQ64# to PCI_RST#  
setup time  
10 Tcyc  
0
10 Tcyc  
0
PCI_RST# to PCI_REQ64#  
HOLD time  
Trrh  
NOTES:  
1. See the timing measurement conditions in Figure 15 and Figure 16. It is important that all driven signal  
transitions drive to their Voh or Vol level within one Tcyc.  
2. Minimum times are measured at the package pin with the load circuit shown in Figure 17 on page 46 and  
Figure 18 on page 46. Maximum times are measured with the load circuit shown in Figure 17 on page 46 and  
Figure 18 on page 46.  
3. PCI_REQ64# and PCI_GNT# are point-to-point signals and have different input setup times than do bused  
signals. The PCI_REQ64# and PCI_GNT# signals have a setup time of 5 ns at 66.6 Mhz. All other signals  
are bused. See the timing measurement conditions in chapter four of the PCI specification.  
4. PCI_RST# is asserted and deasserted asynchronously with respect to PCI_CLK. All output drivers must be  
floated when PCI_RST# is active.  
5. For the purposes of active/float timing measurements, the HI-Z or offstate is defined as when the total  
current delivered through the component pin is less than or equal to the current leakage specification.  
44  
Datasheet  
IXF6401 Broadband Access Processor  
Figure 15. Output Timing Measurement Conditions  
V
V
TH  
TL  
CLK  
T
Output Delay  
tval  
V
= 0.3 V  
tfall  
CC  
V
= 0.5 V  
CC  
trise  
Three-state Output  
T
on  
T
off  
A8424-01  
Figure 16. Input Timing Measurement Conditions  
V
V
th  
V
CLK  
test  
tl  
T
h
T
su  
V
th  
Valid  
V
Input  
max  
V
tl  
V
test  
A8425-01  
Datasheet  
45  
IXF6401 Broadband Access Processor  
Figure 17. Tval (max) Rising Edge  
Pin  
0.5 inch maximum  
25  
10 pF  
Output Buffer  
A8426-01  
Figure 18. Tval (max) Falling Edge  
Pin  
0.5 inch maximum  
V
CC  
25 Ω  
Output Buffer  
10 pF  
A8427-01  
5.4.4  
UTOPIA Timing Parameters  
The IXF6401 processors UTOPIA interface is fully compliant with the ATM Forum  
specifications. The following timing description is an extract from the ATM Form UTOPIA Level  
2 Specification, Version 1.0 of June 1995 (af-phy-0039.0000).  
Table 33. Transmit Timing  
16-bit Data Bus, UTOPIA-II 50-MHz at Cell Interface, Single/Multi-PHY  
Input (I)  
Output (O)  
Signal Name  
Item  
Description  
Min  
Max  
f1  
TXCLK frequency (nominal)  
TXCLK duty cycle  
TXCLK peak-to-peak jitter  
0
40%  
50 MHz  
60%  
5%  
tT2  
tT3  
tT4  
TXCLK  
I
TXCLK rise/fall time  
2 ns  
TXDATA[15:0],  
tT5  
tT6  
O
I
Output delayed  
4 ns  
13 ns  
TXPRTY, TXSOC,  
TXEN#  
TXFULL#/  
TXCLAV  
tT7  
tT8  
Input setup to TXCLK  
Input hold from TXCLK  
4 ns  
1 ns  
46  
Datasheet  
IXF6401 Broadband Access Processor  
Table 34. Receive Timing  
16-bit Data Bus, UTOPIA-II 50-MHz at Cell Interface, Single/Multi-PHY  
Input (I)  
Output (O)  
Signal Name  
Item  
Description  
Min  
Max  
f1  
RCCLK frequency (nominal)  
RCCLK duty cycle  
RCCLK peak-to-peak jitter  
TXCLK rise/fall time  
0
40%  
50 MHz  
60%  
5%  
tT2  
tT3  
tT4  
RCCLK  
I
O
I
2 ns  
tT5  
tT6  
RXEN#  
Output delayed  
4 ns  
13 ns  
RCDATA[15:0],  
RCPRTY, RCSOC,  
RCEMPTY#/  
RCCLAV  
tT7  
tT8  
Input setup to RCCLK  
Input hold from RCCLK  
4 ns  
1 ns  
5.4.5  
Local Memory Bus Timing  
Table 35. Local Memory Bus Timing Parameters  
66 MHz  
33 MHz  
Min Max  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Tcyc  
Thigh  
Tlow  
Clock cycle time  
Clock high time  
Clock low time  
Input setup  
15  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
9
9
6
Tsetup  
Thold  
Tdly  
1
Input hold  
4
Output delay  
4
13  
14  
Thigh-z  
High impedance delay  
5
NOTES:  
1. See the timing measurement conditions in Figure 14. It is important that all driven signal transitions drive to  
their Voh or Vol level within one Tcyc.  
2. Minimum times are measured at the package pin with the load circuit shown in Figure 17 on page 46 and  
Figure 18 on page 46. Maximum times are measured with the load circuit shown in Figure 17 on page 46 and  
Figure 18 on page 46.  
Datasheet  
47  
IXF6401 Broadband Access Processor  
Figure 19. Local Memory Bus Timing Specifications  
T
high  
T
low  
CLK  
T
cyc  
T
T
hold  
setup  
Inputs  
Inputs  
T
dly  
Valid  
Outputs  
T
hi-Z  
A8428-01  
Figure 20. Recommended Local Memory Clock Circuitry  
LM_D  
LM_A  
IXF6401  
SSRAM / SDRAM  
LM_CLK  
2.5 ~ 3 ns  
Programmable Delay  
Note:  
The value is 2.5 ns for 8 pF of loading on local-memory bus. The value is 3.5 ns for 30-pF loading.  
A8429-01  
48  
Datasheet  
厂商 型号 描述 页数 下载

ILSI

IXF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15AF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15AT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15BF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15BT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15CF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15CT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15DF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15DT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A20AF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.230865s