找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

IXDI514SIAT/R

型号:

IXDI514SIAT/R

品牌:

IXYS[ IXYS CORPORATION ]

页数:

12 页

PDF大小:

382 K

Preliminary Technical Information  
IXDI514 / IXDN514  
14 Ampere Low-Side Ultrafast MOSFET Drivers  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtectedoverentireOperatingRange  
• High Peak Output Current: 14A Peak  
• Wide Operating Range: 4.5V to 30V  
-55°Cto+125°CExtendedOperating  
Temperature  
TheIXDI514andIXDN514arehighspeedhighcurrentgate  
drivers specifically designed to drive the largest IXYS  
MOSFETs & IGBTs to their minimum switching time and  
maximum parctical frequency limits. The IXDI514 and  
IXDN514 can source and sink 14 Amps of Peak Current  
while producing voltage rise and fall times of less than  
30ns. The inputs of the Drivers are compatible with TTL or  
CMOS and are virtually immune to latch up over the entire  
operatingrange! Patented*designinnovationseliminate  
crossconductionandcurrent"shoot-through". Improved  
speedanddrivecapabilitiesarefurtherenhancedbyvery  
quick & matched rise and fall times.  
• High Capacitive Load  
Drive Capability: 15nF in <30ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
TheIXDI514isconfiguredasaInvertingGateDriver,andthe  
IXDN514isconfiguredasaNon-InvertingGateDriver.  
• TwoDriversinSingleChip  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
TheIXDI514andIXDN514areeachavailableinthe8-PinP-  
DIP (PI) package, the 8-Pin SOIC (SIA) package, and the  
6-Lead DFN (D1) package, (which occupies less than 65%  
of the board area of the 8-Pin SOIC).  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
• PowerChargePumps  
*United States Patent 6,917,227  
Ordering Information  
Part Number  
Description  
Package  
Type  
Packing Style  
Pack Configuration  
Qty  
IXDI514PI  
IXDI514SIA  
14A Low Side Gate Driver I.C. 8-Pin PDIP  
14A Low Side Gate Driver I.C. 8-Pin SOIC  
Tube  
Tube  
50  
94  
Inverting  
IXDI514SIAT/R 14A Low Side Gate Driver I.C. 8-Pin SOIC  
13” Tape and Reel 2500  
IXDI514D1  
IXDI514D1T/R  
IXDN514PI  
14A Low Side Gate Driver I.C. 6-Lead DFN 2” x 2” Waffle Pack 56  
14A Low Side Gate Driver I.C. 6-Lead DFN 13” Tape and Reel 2500  
14A Low Side Gate Driver I.C. 8-Pin PDIP  
14A Low Side Gate Driver I.C. 8-Pin SOIC  
Tube  
Tube  
50  
94  
IXDN514SIA  
Non-Inverting  
IXDN514SIAT/R 14A Low Side Gate Driver I.C. 8-Pin SOIC  
13” Tape and Reel 2500  
IXDN514D1 14A Low Side Gate Driver I.C. 6-Lead DFN 2” x 2” Waffle Pack 56  
IXDN514D1T/R 14A Low Side Gate Driver I.C. 6-Lead DFN 13” Tape and Reel 2500  
NOTE: All parts are lead-free and RoHS Compliant  
DS99672(01/07)  
Copyright © 2006 IXYS CORPORATION All rights reserved  
First Release  
IXDI514 / IXDN514  
Figure 1 - IXDI514 Inverting 14A Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT  
GND  
IN  
GND  
Figure 2 - IXDN514 14A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
ANTI-CROSS  
OUT  
GND  
IN  
CONDUCTION  
CIRCUIT *  
*
N
GND  
* United States Patent 6,917,227  
2
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDI514 / IXDN514  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
AllOtherPins  
JunctionTemperature  
StorageTemperature  
LeadTemperature(10Sec)  
35 V  
Operating Supply Voltage  
OperatingTemperatureRange  
PackageThermalResistance*  
4.5V to 30V  
-55 °C to 125°C  
-0.3 V to VCC + 0.3V  
150 °C  
-65 °C to 150 °C  
300°C  
8-PinPDIP  
(PI)  
θ
(typ) 125°C/W  
8-PinSOIC  
6-LeadDFN  
6-LeadDFN  
6-LeadDFN  
(SIA)  
(D1)  
(D1)  
(D1)  
θJJ--AA(typ) 200°C/W  
θ
(typ) 125-200°C/W  
θJ-A(max) 1.5°C/W  
θJJ--CS(typ) 5.8°C/W  
Electrical Characteristics @ TA = 25 oC (3)  
Unless otherwise noted, 4.5V VCC 30V .  
All voltage measurements with respect to GND. IXD_514 configured as described in Test Conditions.  
(4)  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
2.5  
4.5V VCC 18V  
4.5V VCC 18V  
VIL  
1.0  
VCC + 0.3  
10  
V
VIN  
-5  
-10  
V
IIN  
0V VIN VCC  
µA  
V
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
0.025  
1000  
V
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
600  
600  
14  
mΩ  
ROL  
1000  
mΩ  
IPEAK  
IDC  
Peak output current  
A
A
Continuous output  
current  
Limited by package power  
dissipation  
4
tR  
Rise time  
CL=15nF Vcc=18V  
23  
21  
29  
25  
22  
30  
40  
50  
30  
ns  
ns  
ns  
tF  
Fall time  
CL=15nF Vcc=18V  
CL=15nF Vcc=18V  
tONDLY  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
CL=15nF Vcc=18V  
29  
31  
50  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
18  
30  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDI514 / IXDN514  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 30V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ(4)  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
2.7  
4.5V VCC 18V  
4.5V VCC 18V  
VIL  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
-10  
V
IIN  
0V VIN VCC  
µA  
V
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
0.025  
1.25  
V
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
Continuous output  
current  
VCC = 18V  
VCC = 18V  
ROL  
IDC  
1.25  
1
A
tR  
Rise time  
CL=10,000pF Vcc=18V  
CL=10,000pF Vcc=18V  
CL=10,000pF Vcc=18V  
23  
30  
20  
100  
100  
60  
ns  
ns  
ns  
tF  
Fall time  
tONDLY  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
CL=10,000pF Vcc=18V  
40  
60  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
18  
30  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily  
to highlight any specific performance limits within which the device is guaranteed to function.  
4
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDI514 / IXDN514  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) TheθJ-A (typ)isdefinedasjunctiontoambient. TheθJ-A ofthestandardsingledie8-LeadPDIPand8-LeadSOICaredominatedbythe  
resistanceofthepackage,andtheIXD_5XXaretypical. Thevaluesforthesepackagesarenaturalconvectionvalueswithverticalboards  
andthevalueswouldbelowerwithnaturalconvection. Forthe6-LeadDFNpackage,theθJ-A valuesupposestheDFNpackageissoldered  
onaPCB. TheθJ-A (typ)is200°C/W with no special provisions on the PCB, but because the center pad provides a low thermal resistance  
to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB. These can reduce the θJ-A (typ) to 125 °C/W  
easily, andpotentiallyevenlower. TheθJ-AforDFNonPCBwithoutheatsinkorthermalmanagementwillvarysignificantlywithsize,  
construction, layout, materials, etc. Thistypicalrangetellstheuserwhatheislikelytogetifhedoesnothermalmanagement.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally not  
publishedforthePDIPandSOICpackages. TheθJ-CfortheDFNpackagesareimportanttoshowthelowthermalresistancefromjunctionto  
thedieattachpadonthebackoftheDFN, --andaguardbandhasbeenaddedtobesafe.  
3) TheθJ-S (typ)isdefinedasjunctiontoheatsink,wheretheDFNpackageissolderedtoathermalsubstratethatismountedonaheatsink.  
Thevaluemustbetypicalbecausethereareavarietyofthermalsubstrates. ThisvaluewascalculatedbasedoneasilyavailableIMSinthe  
U.S.orEurope,andnotapremiumJapaneseIMS. A4mildialectricwithathermalconductivityof2.2W/mCwasassumed. Theresultwas  
given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential low thermal resistance for the  
DFNpackage.  
Pin Description  
SYMBOL  
VCC  
FUNCTION  
Supply Voltage  
Input  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 30V.  
Input signal-TTL or CMOS compatible.  
IN  
Driver Output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
OUT  
Output  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
GND  
Ground  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
Figure 3 - Characteristics Test Diagram  
5.0V  
Vcc  
10uF  
25V  
0V  
IXDI414  
0V  
IXDI514  
Vcc  
0V  
I
IXDN514  
2500pf  
Agilent 1147A  
Current Probe  
5
IXDI514 / IXDN514  
Figure 4 - Timing Diagrams  
Inverting (IXDI514) Timing Diagram  
5V  
90%  
2.5V  
INPUT  
10%  
0V  
PWMIN  
tONDLY  
tOFFDLY  
tF  
tR  
VCC  
90%  
OUTPUT  
10%  
0V  
Non-Inverting (IXDN514) Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
tOFFDLY  
tONDLY  
tR  
t
F
Vcc  
90%  
OUTPUT  
10%  
0V  
IXYS reserves the right to change limits, test conditions, and dimensions.  
6
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDI514 / IXDN514  
Typical Performance Characteristics  
Fig. 6  
40  
Fig. 5  
40  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
30  
20  
10  
0
30  
20  
10  
CL=15,000 pF  
CL=15,000 pF  
7,500 pF  
3,600 pF  
7,500 pF  
3,600 pF  
0
8
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Rise And Fall Times vs. Case Temperature  
CL = 15 nF, Vcc = 18V  
Fig. 7  
Fig. 8  
Rise Time vs. Load Capacitance  
40  
50  
35  
30  
25  
20  
15  
10  
5
8V  
40  
30  
20  
10  
10V  
12V  
tR  
tF  
18V  
16V  
14V  
0
0
0k  
5k  
10k  
15k  
20k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Load Capacitance (pF)  
Temperature (°C)  
Fall Time vs. Load Capacitance  
Max / Min Input vs. Case Temperature  
VCC=18V CL=15nF  
Fig. 10  
3.2  
Fig. 9  
40  
3.0  
8V  
12V  
14V  
Minimum Input High  
Maximum Input Low  
2.8  
10V  
30  
20  
10  
2.6  
18V  
16V  
2.4  
2.2  
2.0  
1.8  
1.6  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0k  
5k  
10k  
15k  
20k  
Temperature (oC)  
Load Capacitance (pF)  
7
IXDI514 / IXDN514  
Supply Current vs. Load Capacitance  
Vcc=18V  
Supply Current vs. Frequency  
Vcc=18V  
Fig. 11  
Fig. 12  
1000  
1000  
CL= 30 nF  
15 nF  
100  
2 MHz  
100  
10  
1
1 MHz  
5000 pF  
2000 pF  
10  
500 kHz  
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
100k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 13  
Supply Current vs. Load Capacitance  
Vcc=12V  
Fig. 14  
Supply Current vs. Frequency  
Vcc=12V  
1000  
1000  
CL = 30 nF  
15 nF  
100  
10  
1
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
500 kHz  
10  
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 15  
Supply Current vs. Load Capacitance  
Vcc=8V  
Supply Current vs. Frequency  
Vcc=8V  
Fig. 16  
1000  
100  
10  
1000  
CL= 30 nF  
15 nF  
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
10  
1
500 kHz  
1
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
8
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDI514 / IXDN514  
Propagation Delay vs. Input Voltage  
CL=15nF VCC=15V  
Fig. 17  
Propagation Delay vs. Supply Voltage  
CL=15nF VIN=5V@1kHz  
Fig. 18  
50  
50  
tOFFDLY  
40  
30  
20  
10  
40  
30  
20  
10  
0
tONDLY  
tONDLY  
tOFFDLY  
0
2
4
6
8
10  
12  
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Propagation Delay vs. Case Temperature  
CL = 2500pF, VCC = 18V  
Fig. 19  
Quiescent Supply Current vs. Case Temperature  
Fig. 20  
VCC=18V V =5V@1kHz  
IN  
0.60  
50  
45  
40  
35  
30  
25  
20  
15  
0.58  
0.56  
0.54  
0.52  
0.50  
tONDLY  
tOFFDLY  
10  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
o
Temperature ( C)  
Temperature (°C)  
P Channel Output Current vs. Case Temperature  
CC=18V CL=.1uF  
Fig. 21  
N Channel Output Current vs. Case Temperature  
VCC=18V CL=.1uF  
Fig. 22  
V
16  
17  
16  
15  
14  
15  
14  
13  
12  
-40  
-20  
0
20  
40  
o
60  
80  
100  
-40  
-20  
0
20  
40  
o
60  
80  
100  
Temperature ( C)  
Temperature ( C)  
9
IXDI514 / IXDN514  
Fig. 24  
High State Output Resistance  
vs. Supply Voltage  
Enable Threshold vs. Supply Voltage  
Fig. 23  
14  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
12  
10  
8
6
4
2
0
8
10  
15  
20  
25  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Supply Voltage (V)  
Supply Voltage (V)  
Low-State Output Resistance  
vs. Supply Voltage  
Fig. 25  
VCC vs. P Channel Output Current  
CL=.1uF VIN=0-5V@1kHz  
Fig. 26  
1.0  
0
-2  
-4  
0.8  
0.6  
0.4  
0.2  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
0.0  
8
10  
15  
20  
25  
8
10  
15  
20  
25  
Supply Voltage (V)  
Vcc  
Fig. 27  
Vcc vs. N Channel Output Current  
CL=.1uF V =0-5V@1kHz  
IN  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
8
10  
15  
20  
25  
Vcc  
10  
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDI514 / IXDN514  
PIN CONFIGURATIONS  
8 PIN DIP (PI)  
8 PIN DIP (PI)  
8 PIN SOIC (SIA)  
8 PIN SOIC (SIA)  
1
8
7
6
5
1
2
8
7
6
5
VCC  
OUT  
OUT  
GND  
VCC  
OUT  
OUT  
GND  
I
I
VCC  
IN  
VCC  
IN  
X
D
I
5
1
4
X
D
N
5
1
4
2
3
3
NC  
NC  
4
4
GND  
GND  
6 LEAD DFN (D1)  
(Bottom View)  
6 LEAD DFN (D1)  
(Bottom View)  
I
I
6
5
4
IN  
6
5
4
IN  
VCC  
1
2
3
VCC  
1
2
3
X
D
I
5
1
4
X
D
N
5
1
4
OUT  
GND  
N/C  
OUT  
GND  
N/C  
GND  
GND  
NOTE: Solder tabs on bottoms of DFN packages are grounded  
Supply Bypassing, Grounding Practices And Output Lead inductance  
GROUNDING  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXD_514, it is very important to observe certain  
design criteria in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
In order for the design to turn the load off properly, the IXD_514  
must be able to drain this 5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXD_514  
and its load. Path #2 is between the IXD_514 and its power  
supply. Path #3 is between the IXD_514 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, the returning  
ground current from the load may develop a voltage that would  
have a detrimental effect on the logic line driving the IXD_514.  
Say, forexample, weareusingtheIXD_514tochargea5000pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=5000pF &  
t=25ns, we can determine that to charge 5000pF to 25 volts  
in25nswilltakeaconstantcurrentof5A. (Inreality,thecharging  
current won’t be constant, and will peak somewhere around  
8A).  
OUTPUTLEADINDUCTANCE  
SUPPLYBYPASSING  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
farther than 2” (5mm) from the load, then the output leads  
should be treated as transmission lines. In this case, a twisted-  
pair should be considered, and the return line of each twisted  
pair should be placed as close as possible to the ground pin  
of the driver, and connected directly to the ground terminal of the  
load.  
In order for our design to turn the load on properly, the IXD_514  
must be able to draw this 5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is an order of  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected and should have low inductance, low resistance and  
high-pulse current-service ratings). Lead lengths may radiate  
at high frequency due to inductance, so care should be taken  
to keep the lengths of the leads between these bypass  
capacitors and the IXD_514 to an absolute minimum.  
11  
IXDI514 / IXDN514  
PRELIMINARYTECHNICALINFORMATION  
The product presented herein is under development.  
The Technical Specifications offered are derived from  
data gathered during objective characterizations of  
preliminary engineering lots; but also may yet contain  
some information supplied during a pre-production  
design evaluation. IXYS reserves the right to change  
limits, test conditions, and dimensions without notice.  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
E
H
B
C
D
E
e
H
h
L
M
N
D
A
A1  
e
B
h X 45  
N
L
C
M
0.035 [0.90]  
0.137 [3.48]  
0.197±0.005 [5.00±0.13]  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
S0.002^0.000;  
o
[S0.05^0.00;o  
]
0.018 [0.47]  
0.100 [2.54]  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
12  
Copyright © 2006 IXYS CORPORATION All rights reserved  
厂商 型号 描述 页数 下载

IXYS

IXD1201P341PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P412PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P422PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P442PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P571DR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P571MR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P592MR [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201T222DR [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201T312MR [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201T312MR-G [ Fixed Positive Standard Regulator ] 22 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.277866s