找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

TZA3050VH

型号:

TZA3050VH

品牌:

NXP[ NXP ]

页数:

24 页

PDF大小:

121 K

TZA3050  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
Rev. 03 — 7 April 2005  
Product data sheet  
1. General description  
The TZA3050 is a fully integrated laser driver for burst mode optical transmission systems  
with data rates up to 1.25 Gbits/s. The TZA3050 incorporates all necessary control and  
protection functions for a laser driver application with very few external components  
required and low power dissipation. The average-loop controls the average monitor  
current in a typical programmable range from 150 µA to 1300 µA. The average-loop  
settings are memorized internally between bursts of data. The bias and modulation  
currents have a fast switch on and off time of less than 100 ns.  
The design is made in the Philips BiCMOS RF process and is available in a HBCC32  
package. The TZA3050 is intended for use in an application with a DC-coupled laser  
diode for both 3.3 V and 5 V laser supply voltages.  
The BIAS output is optimized for low voltage requirements giving a minimum of 1.25 V for  
3.3 V and 5 V laser supplies.  
2. Features  
2.1 General  
Burst mode laser driver from 30 Mbits/s to 1.25 Gbits/s  
Bias current from 10 mA up to 100 mA  
Modulation current from 6 mA up to 100 mA  
Switch on and off time for bias and modulation currents below 100 ns  
Integrated burst mode switching and memory circuit  
Rise and fall times typically 120 ps  
Jitter below 30 ps peak-to-peak value  
Retiming function via external clock with disable option  
Pulse width adjustment function with disable option  
Positive Emitter Coupled Logic (PECL), Low Voltage Positive Emitter Coupled Logic  
(LVPECL) and Current Mode Logic (CML) compatible data and clock inputs  
Internal common mode voltage available for AC-coupled data and clock inputs and for  
single-ended applications  
3.3 V supply voltage  
DC-coupled laser for 3.3 V and 5 V laser supply  
TZA3050  
Philips Semiconductors  
2.2 Control  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
Average power loop control  
Optional direct setting of bias current  
Direct setting of modulation current  
2.3 Protection  
Alarm function on operating current  
Alarm function on monitor current  
Soft start-up on bias and modulation currents during power-up  
3. Applications  
Burst mode laser driver  
4. Ordering information  
Table 1:  
Ordering information  
Type  
number  
Package  
Name  
Description  
Version  
TZA3050VH HBCC32  
plastic thermal enhanced bottom chip carrier;  
SOT560-1  
32 terminals; body 5 × 5 × 0.65 mm  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
2 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
5. Block diagram  
i.c.  
CBIAS MODIN BIASOUT BIASIN  
MON  
AVR  
32  
30  
29  
28  
27  
26  
31  
25  
24  
V
CCO  
I
BIAS  
100 µA  
100 µA  
1
BIAS  
V
CCA  
V/I  
2
CURRENT  
CONVERSION  
100  
mA/V  
V
CCD  
enable  
burst  
I
AVR  
23  
22  
GND  
LA  
V/I  
100  
mA/V  
CONTROL BLOCK  
I
100  
100  
MON  
I
enable burst  
ref  
21  
20  
LA  
3
LAQ  
DIN  
20  
kΩ  
19  
18  
100  
PRE  
AMP  
POST  
AMP  
LAQ  
PULSE  
WIDTH  
ADJUST  
4
5
6
DINQ  
TEST  
CIN  
MUX  
20  
kΩ  
GND  
I
mod  
D
C
FF  
20  
kΩ  
100  
17  
PWA  
7
8
CINQ  
GND  
disable retiming:  
20  
kΩ  
V
, V  
CIN CINQ  
< 0.3 V  
TZA3050  
V
I
1.32 V  
CCD  
9
ALRESET  
10  
kΩ  
1.4 V  
I
/12.5  
av(MON)  
/750  
BIAS  
R
Q
R
Q
ALARM  
OPERATING  
CURRENT  
ALARM  
MONITOR  
CURRENT  
3.3 V  
V AND I  
REFERENCE  
I
/1500  
mod  
+
20  
kΩ  
enable  
burst  
1.4 V  
10  
11  
12  
13  
14  
15  
16  
ALOP  
ALMON  
MAXOP VTEMP  
RREF  
MAXMON  
ENABLE  
mce158  
Fig 1. Block diagram  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
3 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
6. Pinning information  
6.1 Pinning  
V
1
32 31 30 29 28 27 26  
25  
CCA  
V
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
BIAS  
GND  
LA  
CCD  
DIN  
DINQ  
TEST  
CIN  
LA  
TZA3050VH  
LAQ  
LAQ  
GND  
CINQ  
GND  
9
10 11 12 13 14 15 16  
17  
PWA  
mce135  
Fig 2. Pin configuration  
6.2 Pin description  
Table 2:  
Symbol  
GND  
Pin description  
Pin  
Description  
die pad  
common ground plane for VCCA, VCCD, VCCO, RF and I/O; must be  
connected to ground  
VCCA  
1
2
analog supply voltage  
VCCD  
digital supply voltage  
DIN  
3
non-inverted data input (RF input)  
inverted data input (RF input)  
test pin; must be connected to ground  
non-inverted clock input (RF input)  
inverted clock input (RF input)  
ground  
DINQ  
TEST  
CIN  
4
5
6
CINQ  
GND  
7
8
ALRESET  
ENABLE  
9
alarm reset input for alarm outputs ALMON and ALOP  
10  
enable input for modulation and bias current switch on and off  
between bursts  
ALOP  
11  
12  
13  
14  
alarm output on operating current (open-drain)  
alarm output on monitor diode current (open-drain)  
threshold level input for alarm on operating current  
temperature dependent voltage output  
ALMON  
MAXOP  
VTEMP  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
4 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
Table 2:  
Symbol  
MAXMON  
RREF  
Pin description …continued  
Pin  
15  
Description  
threshold level input for alarm on monitor diode current  
16  
reference current input; must be connected to ground with an  
accurate (1 %) 10 kresistor  
PWA  
GND  
LAQ  
17  
18  
19  
pulse width adjustment input  
ground  
inverted laser modulation output (RF output); output for dummy  
load  
LAQ  
20  
inverted laser modulation output (RF output); output for dummy  
load  
LA  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
non-inverted laser modulation output (RF output); output for laser  
non-inverted laser modulation output (RF output); output for laser  
ground  
LA  
GND  
BIAS  
current source output for the laser bias current  
supply voltage for the output stage and the laser diode  
input from the monitor photodiode (RF input)  
input for the bias current setting  
VCCO  
MON  
BIASIN  
BIASOUT  
MODIN  
CBIAS  
output of the control block for the bias current  
input for the modulation current setting  
output of the average loop; must be connected via a 100 nF  
external capacitor to GND  
i.c.  
31  
32  
internally connected  
AVR  
input for the optical average power level setting  
7. Functional description  
7.1 Data and clock input  
The TZA3050 operates with differential Positive Emitter Coupled Logic (PECL), Low  
Voltage Positive Emitter Coupled Logic (LVPECL) and Current Mode Logic (CML) data  
and clock inputs with a voltage swing from 100 mV to 1 V (p-p). It is assumed that both  
data and clock inputs carry a complementary signal with the specified peak-to-peak value  
(true differential excitation).  
The circuit generates an internal common mode voltage for AC-coupled data inputs, clock  
inputs and single-ended applications.  
If VDIN > VDINQ, the modulation current is sunk by pin LA and corresponds to an optical  
‘one’ level of the laser.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
5 of 24  
TZA3050  
Philips Semiconductors  
7.2 Retiming  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
The retiming function synchronizes the data with the clock to improve the jitter  
performance. The data latch switches on the rising edge of the clock input. The retiming  
function is disabled when both clock inputs are below 0.3 V.  
At start-up the initial polarity of the laser is unknown until the first rising edge of the clock  
input appears.  
7.3 Pulse width adjustment  
The on-duration of the laser current can be adjusted with a guaranteed range from 50 ps  
to +50 ps. The adjustment time is set by connecting a resistor, RPWA, to pin PWA. The  
maximum allowable capacitive load on pin PWA is 100 pF. Pulse width adjustment is  
disabled when pin PWA is short-circuited to ground.  
7.4 Modulator output stage  
The output stage is a high-speed bipolar differential pair with typical rise and fall times of  
120 ps and with a modulation current source of up to 100 mA. The output stage of the  
TZA3050 is optimized for DC-coupled lasers.  
The modulation current switches between the LA and LAQ outputs. For a good RF  
performance the inactive branch carries a small amount of the modulation current.  
The LA output is optimized for the laser, the LAQ output is optimized for the dummy load.  
The BIAS output is optimized for low voltage requirements (1.25 V minimum).  
7.5 Average loop control  
The average power control loop maintains a constant average power level of the monitor  
current over temperature and lifetime of the laser. The average monitor current is  
programmable over a wide current range, from 150 µA to 1300 µA typical, by tuning the  
setting resistor RAVR. The maximum allowable capacitive load on pins AVR and BIASOUT  
is 100 pF.  
7.6 Direct current setting  
The TZA3050 can also operate in open-loop mode with direct setting of the bias and  
modulation currents. The bias and modulation current sources are transconductance  
amplifiers and the output currents are determined by the BIASIN and MODIN voltages  
respectively. The bias current source has a bipolar output stage with minimum output  
capacitance for optimum RF performance.  
7.7 Soft start  
At power-up the bias and modulation current sources are released when VCCA > 2.7 V, the  
reference voltage has reached the correct value of 1.2 V and the voltage on pin ENABLE  
is HIGH.  
The control loop starts with minimum bias and modulation current at power-up provided  
the device is enabled. The current levels increase until the input current on pin MON  
matches the programmed average level.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
6 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
7.8 Burst mode  
The TZA3050 is compliant with burst mode application. Fast switch on and off of bias and  
modulation currents is allowed in less than 100 ns via pin ENABLE.  
When internal average loop control is used, the average power settings can be maintained  
between two bursts of data via an external capacitor on pin CBIAS.  
During a burst, this capacitor defines the time constant of the loop. Between bursts, the  
capacitor is automatically disconnected from the internal circuitry and is used as a  
memory cell.  
A more complex memory cell can also be connected to pin CBIAS.  
7.9 Alarm functions  
The TZA3050 features two alarm functions for the detection of excessive laser operating  
current and monitor diode current due to laser ageing, laser malfunctioning or a high laser  
temperature. The alarm threshold levels are programmed by a resistor or a current  
source. The operating current equals the bias current plus half of the modulation current.  
7.10 Enable  
A LOW level on the enable input disables the bias and modulation current sources: the  
laser is off. A HIGH level on the enable input or an open enable input switches both  
current sources on: the laser is operational.  
7.11 Reference block  
The reference voltage is derived from a band gap circuit and is available at pin RREF. An  
accurate (1 %) 10 kresistor has to be connected to pin RREF to provide the internal  
reference current. The maximum allowable capacitive load on pin RREF is 100 pF.  
The reference voltage on the setting pins MAXOP, MAXMON, PWA and AVR is buffered  
and derived from the band gap voltage.  
The output voltage on pin VTEMP reflects the junction temperature of the TZA3050. The  
temperature coefficient of VVTEMP equals 2.2 mV/K.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
7 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
8. Limiting values  
Table 3:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
All voltages are referenced to ground; positive currents flow into the IC.  
Symbol  
VCCD  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.8  
Max  
+3.5  
+3.5  
+3.5  
+5.3  
4.1  
Unit  
V
digital supply voltage  
analog supply voltage  
RF output supply voltage  
VCCA  
V
VCCO  
3.3 V laser supply  
5 V laser supply  
VCCO = 3.3 V  
VCCO = 5 V  
V
V
Vo(LA)  
Vo(LAQ)  
VBIAS  
Vn  
output voltage at pin LA  
output voltage at pin LAQ  
bias voltage  
V
1.2  
4.5  
V
VCCO = 3.3 V  
VCCO = 5 V  
1.6  
4.5  
V
2.0  
5.2  
V
VCCO = 3.3 V  
VCCO = 5 V  
0.8  
3.6  
V
0.8  
4.1  
V
voltage on all other input and output  
pins  
analog inputs and outputs  
digital inputs and outputs  
input current on pins  
0.5  
0.5  
VCCA + 0.5 V  
VCCD + 0.5 V  
In  
MAXOP, MAXMON, RREF, PWA  
and AVR  
1.0  
0
mA  
VTEMP and BIASOUT  
ALOP, ALMON and MON  
ambient temperature  
junction temperature  
storage temperature  
1.0  
0
+1.0  
5.0  
mA  
mA  
°C  
Tamb  
Tj  
40  
40  
65  
+85  
+125  
+150  
°C  
Tstg  
°C  
9. Thermal characteristics  
Table 4:  
Thermal characteristics  
In compliance with JEDEC standards JESD51-5 and JESD51-7.  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from  
junction to ambient  
4 layer printed-circuit board in still air with 9 plated  
vias connected with the heatsink and the first ground  
plane in the PCB  
35  
K/W  
HBCC32 die pad soldered to PCB  
60  
K/W  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
8 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
10. Static characteristics  
Table 5:  
Static characteristics  
Tamb = 40 °C to +85 °C; Rth(j-a) = 35 K/W; Ptot = 400 mW; VCCA = 3.14 V to 3.47 V; VCCD = 3.14 V to 3.47 V; VCCO = 3.14 V  
to 3.47 V; RAVR = 7.5 k; RMODIN = 6.2 k; RBIASIN = 6.8 k; RPWA = 10 k; RRREF = 10 k(1 %); RMAXMON = 13 k;  
R
MAXOP = 20 k; positive currents flow into the IC; all voltages are referenced to ground; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies: pins VCCA, VCCD and VCCO  
VCCA  
VCCD  
VCCO  
analog supply voltage  
digital supply voltage  
3.14  
3.14  
3.14  
4.75  
-
3.3  
3.3  
3.3  
5.0  
40  
3.47  
3.47  
3.47  
5.25  
55  
V
V
RF output supply voltage 3.3 V laser supply  
5 V laser supply  
V
V
ICCA  
ICCD  
ICCO  
analog supply current  
mA  
mA  
mA  
digital supply current  
-
45  
60  
RF output supply current pins LA and LAQ  
-
20  
30  
open-circuit; 3.3 V and 5 V  
laser supply  
[1]  
Ptot  
total power dissipation  
core power dissipation  
VBIAS = 3.3 V; Imod = 16 mA;  
-
-
412  
264  
-
-
mW  
mW  
IBIAS = 20 mA  
Pcore  
excluding Io(LA), Io(LAQ) and  
IBIAS; PWA and retiming off  
Data and clock inputs: pins DIN and CIN  
Vi(p-p)  
input voltage swing  
(peak-to-peak value)  
Vi(DIN) = VCCD 2 V to VCCD  
;
100  
-
-
1000  
-
mV  
V
Vi(CIN) = VCCD 2 V to VCCD  
Vint(cm)  
internal common mode AC-coupled inputs  
voltage  
V
CCD 1.32  
[2]  
VIO  
input offset voltage  
10  
0
+10  
130  
mV  
Zi(dif)  
differential input  
impedance  
80  
100  
Zi(cm)  
common mode input  
impedance  
-
-
10  
-
-
kΩ  
Vi(CIN)(dis)  
input voltage for disabled VCIN = VCINQ  
retiming  
0.3  
V
Monitor photodiode input: pin MON  
Vi(MON)  
Zi(MON)  
input voltage  
Iav = 150 µA to 1300 µA  
Iav = 150 µA to 1300 µA  
0.9  
-
1.1  
27  
1.3  
-
V
input impedance  
Setting for average loop control: pins MON and AVR  
Iav(MON)(low)  
Iav(MON)(max)  
Iav(MON)  
low average monitor  
current setting  
IAVR > 250 µA  
-
-
150  
-
µA  
µA  
%
maximum average  
monitor current setting  
IAVR = 50 µA  
1150  
10  
1300  
-
relative accuracy of  
average current on pin  
MON  
temperature and VCCA  
variations; IAVR = 550 µA  
+10  
Vref(AVR)  
Isink(AVR)  
9397 750 14806  
reference voltage on pin IAVR = 250 µA to 15 µA;  
1.14  
1.20  
-
1.26  
V
AVR  
CAVR < 100 pF  
current sink on pin AVR  
280  
15  
µA  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
9 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
Table 5:  
Static characteristics …continued  
Tamb = 40 °C to +85 °C; Rth(j-a) = 35 K/W; Ptot = 400 mW; VCCA = 3.14 V to 3.47 V; VCCD = 3.14 V to 3.47 V; VCCO = 3.14 V  
to 3.47 V; RAVR = 7.5 k; RMODIN = 6.2 k; RBIASIN = 6.8 k; RPWA = 10 k; RRREF = 10 k(1 %); RMAXMON = 13 k;  
R
MAXOP = 20 k; positive currents flow into the IC; all voltages are referenced to ground; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Control loop bias output: pin BIASOUT  
Isource(BIASOUT) source current  
VBIASOUT = 0.5 V to 1.5 V;  
C
-
-
-
200  
µA  
µA  
BIASOUT < 100 pF  
VBIASOUT = 0.5 V to 1.5 V;  
BIASOUT < 100 pF  
Bias current source: pins BIASIN and BIAS  
Isink(BIASOUT)  
sink current  
200  
-
C
gm(bias)  
bias transconductance  
VBIASIN = 0.5 V to 1.5 V;  
BIAS = VCCO  
89  
110  
131  
mA/V  
V
Isource(BIASIN)  
source current at pin  
BIASIN  
VBIASIN = 0.5 V to 1.5 V  
110  
100  
95  
µA  
IBIAS(max)  
IBIAS(min)  
IBIAS(dis)  
Vo(BIAS)  
maximum bias current  
minimum bias current  
bias current at disable  
VBIASIN = 1.8 V  
100  
-
-
mA  
mA  
µA  
V
VBIASIN = 0 V to 0.4 V  
VENABLE < 0.8 V  
-
0.2  
0.4  
100  
-
-
-
-
output voltage on pin  
BIAS  
1.25  
Modulation current source: pin MODIN  
gm(mod)  
modulation  
VMODIN = 0.5 V to 1.5 V;  
77  
95  
112  
mA/V  
transconductance  
VLA = VLAQ = VCCO  
Isource(MODIN)  
source current at pin  
MODIN  
VMODIN = 0.5 V to 1.5 V  
110  
100  
95  
µA  
Modulation current outputs: pins LA and LAQ  
[3]  
[3]  
[3]  
Io(LA)(max)(on)  
Io(LA)(min)(on)  
Io(LA)(min)(off)  
maximum laser  
modulation output  
current at LA on  
V
MODIN = 1.8 V;  
100  
-
-
mA  
mA  
mA  
VLA = VCCO = 3.3 V  
minimum laser  
modulation output  
current at LA on  
V
V
MODIN = 0 V to 0.4 V;  
LA = VCCO = 3.3 V  
-
-
5
-
6
2
minimum laser  
VMODIN = 1.5 V;  
modulation output  
current at LA off  
VLA = VCCO = 3.3 V  
Z
o(LA), Zo(LAQ) output impedance LA  
80  
-
100  
-
130  
200  
and LAQ pins  
Io(LA)(dis)  
Io(LAQ)(dis)  
,
non-inverted and  
inverted laser  
VENABLE < 0.8 V  
µA  
modulation output  
current at disable  
Vo(LA)(min)  
minimum output voltage VCCO = 3.3 V  
1.2  
1.6  
-
-
-
-
V
V
at pin LA  
VCCO = 5 V  
Enable function: pin ENABLE  
VIL  
LOW-level input voltage bias and modulation  
-
-
-
0.8  
-
V
V
currents disabled  
VIH  
HIGH-level input voltage bias and modulation  
currents enabled  
2.0  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
10 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
Table 5:  
Static characteristics …continued  
Tamb = 40 °C to +85 °C; Rth(j-a) = 35 K/W; Ptot = 400 mW; VCCA = 3.14 V to 3.47 V; VCCD = 3.14 V to 3.47 V; VCCO = 3.14 V  
to 3.47 V; RAVR = 7.5 k; RMODIN = 6.2 k; RBIASIN = 6.8 k; RPWA = 10 k; RRREF = 10 k(1 %); RMAXMON = 13 k;  
R
MAXOP = 20 k; positive currents flow into the IC; all voltages are referenced to ground; unless otherwise specified.  
Symbol  
Rpu(int)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
internal pull-up  
resistance  
-
20  
-
kΩ  
Alarm reset: pin ALRESET  
VIL  
LOW-level input voltage no reset  
HIGH-level input voltage reset  
-
-
0.8  
V
VIH  
2.0  
-
-
-
-
V
Rpd(int)  
internal pull-down  
resistance  
10  
kΩ  
Alarm operating current: pins MAXOP and ALOP  
Vref(MAXOP)  
reference voltage on  
pin MAXOP  
IMAXOP = 10 µA to 200 µA  
1.15  
1.2  
775  
-
1.25  
-
V
NMAXOP  
ratio of Ioper(alarm) and  
IMAXOP  
Ioper(alarm) = 7.5 mA to  
150 mA  
-
VD(ALOP)L  
drain voltage at active  
alarm  
IALOP = 500 µA  
0
0.4  
V
V
Alarm monitor current: pins MAXMON and ALMON  
Vref(MAXMON)  
reference voltage on  
pin MAXMON  
IMAXMON = 10 µA to 200 µA  
1.15  
1.2  
15  
-
1.25  
-
NMAXMON  
ratio of IMON(alarm) and  
IMAXMON  
IMON(alarm) = 150 µA to  
3000 µA  
-
VD(ALMON)L  
drain voltage at active  
alarm  
IALMON = 500 µA  
0
0.4  
V
Reference block: pins RREF and VTEMP  
VRREF  
reference voltage  
RRREF = 10 k(1%);  
1.15  
1.20  
1.20  
2.2  
-
1.25  
1.27  
-
V
C
RREF < 100 pF  
[4]  
[4]  
VVTEMP  
temperature dependent Tj = 25 °C; CVTEMP < 2 nF  
voltage  
1.14  
V
TCVTEMP  
Isource(VTEMP)  
Isink(VTEMP)  
temperature coefficient  
of VVTEMP  
Tj = 25 °C to + 125 °C  
-
mV/K  
mA  
mA  
source current of  
pin VTEMP  
-
1  
-
sink current of  
pin VTEMP  
1
-
[1] The total power dissipation Ptot is calculated with VBIAS = VCCO = 3.3 V and IBIAS = 20 mA. In the application VBIAS will be VCCO minus  
the laser diode voltage which results in a lower total power dissipation.  
[2] The specification of the offset voltage is guaranteed by design.  
100  
100 + ZL(LA)  
[3] The relation between the sink current Io(LA) and the modulation current Imod is: Io(LA) = Imod  
×
where ZL(LA) is the  
-------------------------------  
external load on pin LA. The voltage on pin MODIN programmes the modulation current Imod. This current is divided between ZL(LA) and  
the 100 internal resistor connected to pins LA. When the modulation current is programmed to 100 mA, a typical ZL(LA) of 25 will  
result in an Io(LA) current of 80 mA, while 20 mA flows via the internal resistor. This corresponds to a voltage swing of 2 V on the real  
application load.  
[4] VVTEMP = 1.31 + TCVTEMP × Tj and Tj = Tamb + Ptot × Rth(j-a)  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
11 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
11. Dynamic characteristics  
Table 6:  
Dynamic characteristics  
Tamb = 40 °C to +85 °C; Rth(j-a) = 35 K/W; Ptot = 420 mW; VCCA = 3.14 V to 3.47 V; VCCD = 3.14 V to 3.47 V; VCCO = 3.14 V  
to 3.47 V; RAVR = 7.5 k; RMODIN = 6.2 k; RBIASIN = 6.8 k; RPWA = 10 k; RRREF = 10 k(1%); RMAXMON = 13 k;  
R
MAXOP = 20 k; positive currents flow into the IC; all voltages are referenced to ground; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF path  
BR  
bit rate  
average loop control  
0.03  
-
-
-
1.25  
30  
Gbits/s  
ps  
J(LA)(p-p)  
jitter of pin LA output signal RL = 25 Ω  
(peak-to-peak value)  
tr, tf  
rise and fall time of voltage 20 % to 80 %; RL = 25 ;  
-
120  
150  
ps  
on pin LA  
Imod = 30 mA  
tsu(D)  
th(D)  
data input set-up time  
data input hold time  
switch-on time at enable  
60  
60  
-
-
-
-
-
ps  
ps  
ns  
-
[1]  
[1]  
to(en)  
from 50 % of enable to 90 %  
of steady state typical bias and  
modulation current  
100  
to(dis)  
switch-off time at disable  
from 50 % of enable to 10 %  
of steady state typical bias and  
modulation current  
-
-
100  
ns  
Current control  
tcint  
average loop time constant average loop control;  
CBIAS = 100 nF  
-
5
-
ms  
C
tburst(min)  
tidle(max)  
minimum burst time  
ENABLE pin HIGH  
30  
-
-
-
-
µs  
maximum time between two ENABLE pin LOW  
bursts  
8
ms  
Pulse width adjustment  
tPWA(min) minimum pulse width  
adjustment on pins LA  
RPWA = 6.7 k;  
PWA < 100 pF  
-
100  
0
50  
ps  
ps  
ps  
C
tPWA  
pulse width adjustment on RPWA = 10 k; CPWA < 100 pF  
-
-
-
pins LA  
tPWA(max)  
maximum pulse width  
adjustment on pins LA  
RPWA = 20 k; CPWA < 100 pF  
50  
100  
[1] The switch-on and switch-off time at enable and disable given are the absolute maximum values. They depend strongly on the following  
parameters: bias current, modulation current, bias inductance and laser supply voltage. More detailed information available upon  
request.  
12. Application information  
12.1 Design equations  
12.1.1 Bias and modulation currents  
The bias and modulation currents are determined by the voltages on pins BIASIN and  
MODIN. For average loop control the BIASIN voltage is applied by the BIASOUT pin and  
the MODIN voltage is applied by an external voltage source or an external resistor  
RMODIN  
.
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
12 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
For direct setting of bias and modulation currents, the BIASIN and MODIN voltages have  
to be applied by external voltage sources or by external resistors RBIASIN and RMODIN  
connected to the BIASIN and MODIN pins:  
IBIAS = (RBIASIN × 100 µA 0.5 V) × gm(bias) [mA]  
Imod = (RMODIN × 100 µA 0.5 V) × gm(mod) + 5 [mA]  
The transconductance gm(mod) defines the relation between the voltage on pin MODIN and  
the modulation current.  
The bias and modulation current sources operate with an input voltage range from 0.5 V  
to 1.5 V. The output current is at its minimum level for an input voltage below 0.4 V;  
see Figure 3 and Figure 4. The graphs indicate the values with a load of 0 . When the  
load is not zero, the relation between Io(LA) and Imod is given in Table 5, Table note 3.  
100  
I
BIAS  
(mA)  
g
=
m(bias)  
100 mA/V  
I
BIAS(min)  
0.2  
0
0.5  
1.5  
mce136  
V
BIASIN  
(V)  
Fig 3. Bias current as function of BIASIN voltage  
105  
I
= I  
mod o(LA)  
(mA)  
g
=
m(mod)  
100 mA/V  
I
o(LA)(min)  
5
0
0.5  
1.5  
mgt891  
V
(V)  
MODIN  
LA current when LA output is on  
Vo(LA) = VCCO  
Fig 4. Modulation current as a function of MODIN voltage  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
13 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
12.1.2 Average monitor current  
The bias and modulation current sources are temperature compensated and keep the  
adjusted current level stable over the temperature range.  
The bias and modulation currents increase with increasing resistor values for RBIASIN and  
RMODIN respectively; this allows resistor tuning to start at a minimum current level.  
The average monitor current Iav(MON) in average loop operation is determined by the  
source current of the AVR pin (IAVR). The current can be sunk by an external current  
source or by an external resistor, RAVR, connected to ground. The equation is:  
V AVR  
Iav(MON) = 1580 5.26 × IAVR = 1580 5.26 ×  
A]  
-------------  
RAVR  
The average monitor current increases with decreasing IAVR or increasing RAVR; this  
allows resistor tuning of RAVR to start at a minimum IAVR current level (Figure 5).  
The formula used to program AVR is valid for typical conditions; tuning is necessary to  
achieve absolute accuracy of the AVR value.  
I
av(MON)  
(µA)  
1300  
I
= 1580 5.26 × I  
µA  
AVR  
av(MON)  
150  
0
50  
250  
I
(µA)  
AVR  
mce137  
Fig 5. Typical average monitor current as a function of IAVR  
12.1.3 Alarm operating current  
The operating current for the DC-coupled laser application equals the bias current plus  
half of the modulation current:  
Imod  
Ioper = IBIAS  
+
----------  
2
The alarm threshold Ioper(alarm) on the operating current is determined by the source  
current of the MAXOP pin. The current range for IMAXOP is from 10 µA to 200 µA which  
corresponds with an Ioper(alarm) from 7.5 mA to 150 mA.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
14 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
The IMAXOP current can be sunk by an external current source or by connecting RMAXOP to  
ground:  
VMAXOP  
Ioper(alarm) = NMAXOP  
×
--------------------  
RMAXOP  
The detection level is independent of burst mode timing.  
12.1.4 Alarm monitor current  
The alarm threshold IMON(alarm) on the monitor current is determined by the source current  
of the MAXMON pin. The current range for IMAXMON is from 10 µA to 200 µA, which  
corresponds with an IMON(alarm) from 150 µA to 3000 µA. The IMAXMON current can be  
sunk by an external current source or by connecting RMAXMON to ground:  
VMAXMON  
IMON(alarm) = NMAXMON  
×
-------------------------  
RMAXMON  
As the detected IMON is an average current, the alarm threshold is a function of the burst  
mode timing. The formula can be used as a reference for a mode where signal is always  
present.  
12.1.5 Pulse width adjustment  
The pulse width adjustment time is determined by resistor RPWA  
:
RPWA – 10 kΩ  
tPWA = 200 ×  
[ps]  
-----------------------------------  
RPWA  
The tPWA typical range is from 100 ps to +100 ps, which corresponds with an RPWA  
resistance ranging from 6.7 kminimum to 20 kmaximum (Figure 6). The PWA function  
is disabled when the PWA input is short-circuited to ground, the tPWA is 0 ps for a disabled  
PWA function.  
100  
t
PWA  
(ps)  
6.7  
0
10  
20  
R
(k)  
PWA  
100  
mgt893  
Fig 6. Typical pulse width adjustment  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
15 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
12.2 Burst mode application  
In burst mode application, data flow is not constant, data (the ‘burst‘) is interrupted with  
significant idle times when no data is present and the laser is shut-down.  
When using average loop control, the control is only done during a burst of data and the  
average value should be stored during idle time.  
The TZA3050 requires only one external capacitor to perform this storage. A typical  
100 nF lossless capacitor connected to pin CBIAS will define the time constant of the loop  
during bursts (typical 5 ms) and will also define the accuracy of the value stored between  
bursts. Tuning of the external capacitor allows tuning of the average loop time constant  
depending on the duty cycle and the burst duration.  
When pin ENABLE is LOW, an internal switch is opened and the external capacitor is  
connected to a high-impedance point. When pin ENABLE is HIGH, the internal switch is  
closed and the external capacitor is connected to the internal average loop control circuit.  
The ENABLE pin also controls the on and off switch state of the bias and modulation  
current output stages resulting in burst-to-idle and idle-to-burst times below 100 ns on the  
full current range available, with a typical load of 25 on pins LA and LAQ.  
It is not recommended to use the TZA3050 without an external capacitor on pin CBIAS as  
this would result in a too small time constant, with the risk of pattern dependent behavior.  
Table 7 shows time constants for different CBIAS capacitors.  
Table 7:  
Typical time constant of the average loop  
Capacitor CCBIAS  
10 nF  
Time constant (typ.)  
<1 ms  
5 ms  
100 nF  
470 nF  
30 ms  
Using a smaller CBIAS capacitor allows a faster loop recovery in short burst period  
applications, but it also means a shorter storage period. A 100 nF is considered as a  
convenient value, even in applications with short burst time (minimum 30 µs), and large  
idle time (maximum 8 ms) applications as shown in Figure 7.  
Enable  
burst > 30 µs  
idle < 8 ms  
mce138  
Fig 7. Timing between burst and Idle mode  
At power-up, the memorized value on pin CBIAS is reset by connecting pin CBIAS  
internally to ground. The timing in Figure 7 does not take into account the initial charging  
of the storage circuit. This initial timing is directly proportional to the value of the CBIAS  
capacitor and to the duty cycle settings of the application.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
16 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
12.3 Average loop control  
A simplified application using the TZA3050 with average loop control and a DC-coupled  
laser at 3.3 V or 5 V laser voltage is illustrated in Figure 8. The average power level is  
determined by the resistor RAVR. The average loop controls the bias current with the  
BIASOUT output connected to the BIASIN input. The modulation current is determined by  
the MODIN input voltage, which is generated by the resistor RMODIN and the 100 µA  
source current of the MODIN pin.  
The average loop setting is maintained between bursts with a capacitor connected to pin  
CBIAS. When pin ENABLE is HIGH, the internal average loop regulates the average  
power. When pin ENABLE is LOW, an internal switch is opened and the previous average  
loop state is stored on the CBIAS capacitor.  
3.3 V or 5 V  
laser with  
monitor diode  
V
V
CCA  
3.3 V  
3.3 V  
1
32 31 30 29 28 27 26  
25  
BIAS  
GND  
LA  
CCD  
DIN  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
DINQ  
LA  
TEST  
CIN  
TZA3050  
LAQ  
LAQ  
GND  
CINQ  
GND  
ALRESET  
9
10 11 12 13 14 15 16  
17  
mce139  
Fig 8. TZA3050 with DC-coupled laser and average loop control  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
17 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
13. Package outline  
HBCC32: plastic thermal enhanced bottom chip carrier; 32 terminals; body 5 x 5 x 0.65 mm  
SOT560-1  
D
x
B
b
v
M
M
C
C
A B  
1
w
v
M
M
C
A
B
w
C
ball A1  
index area  
b
b
3
E
v
M
C
C
A
B
w
M
b
v
M
M
C
C
A B  
2
w
detail X  
x
C
A
B
C
e
1
e
y
v
A
e
2
E
e
1 4  
1
32  
A
X
D
1
1
A
e
2
3
A
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
A
A
b
E
e
e
1
w
b
b
b
D
D
E
e
e
e
v
x
y
UNIT  
1
2
1
1
2
3
1
2
3
4
max.  
0.10 0.7  
0.05 0.6  
0.35 0.5  
0.20 0.3  
0.50 0.50 5.1  
0.35 0.35 4.9  
3.2  
3.0  
5.1  
4.9  
3.2  
3.0  
mm  
0.8  
0.15 0.15 0.05  
0.5  
4.2  
4.2 4.15 4.15  
0.2  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
00-02-01  
03-03-12  
SOT560-1  
MO-217  
Fig 9. Package outline SOT560-1 (HBCC32)  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
18 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
14. Soldering  
14.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
14.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
14.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
19 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
14.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
14.5 Package related soldering information  
Table 8:  
Package [1]  
Suitability of surface mount IC packages for wave and reflow soldering methods  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
20 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
21 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
15. Revision history  
Table 9:  
Revision history  
Document ID  
TZA3050_3  
Release date Data sheet status  
20050407 Product data sheet  
Change notice Doc. number  
Supersedes  
-
9397 750 14806 TZA3050_2  
Modifications:  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors.  
TZA3050_2  
Modifications:  
TZA3050_1  
20030326  
Product specification  
-
9397 750 11274 TZA3050_1  
Specification changed from Preliminary to Product.  
20021106  
Preliminary  
specification  
-
9397 750 10204  
-
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
22 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
16. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
17. Definitions  
18. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
19. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14806  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 03 — 7 April 2005  
23 of 24  
TZA3050  
Philips Semiconductors  
30 Mbits/s up to 1.25 Gbits/s burst mode laser driver  
20. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
16  
17  
18  
19  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 23  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Contact information . . . . . . . . . . . . . . . . . . . . 23  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
2.3  
3
4
5
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
Functional description . . . . . . . . . . . . . . . . . . . 5  
Data and clock input . . . . . . . . . . . . . . . . . . . . . 5  
Retiming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pulse width adjustment. . . . . . . . . . . . . . . . . . . 6  
Modulator output stage. . . . . . . . . . . . . . . . . . . 6  
Average loop control. . . . . . . . . . . . . . . . . . . . . 6  
Direct current setting. . . . . . . . . . . . . . . . . . . . . 6  
Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Alarm functions. . . . . . . . . . . . . . . . . . . . . . . . . 7  
Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Reference block . . . . . . . . . . . . . . . . . . . . . . . . 7  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 8  
Dynamic characteristics . . . . . . . . . . . . . . . . . 11  
9
10  
11  
12  
12.1  
Application information. . . . . . . . . . . . . . . . . . 12  
Design equations . . . . . . . . . . . . . . . . . . . . . . 12  
Bias and modulation currents . . . . . . . . . . . . . 12  
Average monitor current . . . . . . . . . . . . . . . . . 13  
Alarm operating current . . . . . . . . . . . . . . . . . 14  
Alarm monitor current. . . . . . . . . . . . . . . . . . . 15  
Pulse width adjustment. . . . . . . . . . . . . . . . . . 15  
Burst mode application . . . . . . . . . . . . . . . . . . 15  
Average loop control. . . . . . . . . . . . . . . . . . . . 17  
12.1.1  
12.1.2  
12.1.3  
12.1.4  
12.1.5  
12.2  
12.3  
13  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 18  
14  
14.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 19  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 19  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 20  
Package related soldering information . . . . . . 20  
14.2  
14.3  
14.4  
14.5  
15  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 22  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 7 April 2005  
Document number: 9397 750 14806  
Published in The Netherlands  
厂商 型号 描述 页数 下载

RHOMBUS-IND

TZA1-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

NXP

TZA1000 QIC读写放大器[ QIC read-write amplifier ] 24 页

NXP

TZA1000T/N3 [ IC 1 CHANNEL READ WRITE AMPLIFIER CIRCUIT, PDSO24, 7.50 MM, PLASTIC, SOT-137-1, SOP-24, Drive Electronics ] 26 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.226608s