找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QST608KT6

型号:

QST608KT6

品牌:

STMICROELECTRONICS[ ST ]

页数:

44 页

PDF大小:

837 K

QST608  
Capacitive touch sensor device  
with rotor or slider plus five extra keys and I2C interface  
Preliminary Data  
Features  
Patented charge-transfer design  
Rotor (or slider) plus five extra keys  
Up to five general-purpose outputs  
LQFP32 (7x7 mm)  
2
I C interface  
Fully “debounced” results  
Description  
Patented AKS™ Adjacent Key Suppression  
Self-calibration and auto drift compensation  
Spread-spectrum bursts to reduce EMI  
ECOPACK® (RoHS compliant) packages  
The QST608 is the ideal solution for the design of  
capacitive touch sensing user interfaces.  
Touch-sensitive controls are increasingly  
replacing electromechanical switches in home  
appliances, consumer and mobile electronics,  
and in computers and peripherals. Capacitive  
touch controls allow designers to create stylish,  
functional, and economical designs which are  
highly valued by consumers, often at lower cost  
than the electromechanical solutions they  
replace.  
Applications  
This device specifically targets human interfaces  
and front panels for a wide range of applications  
such as PC peripherals, home entertainment  
systems, gaming devices, lighting and appliance  
controls, remote controls, etc.  
The QST608 QTouch™ sensor IC is a pure digital  
solution based on Quantum's patented charge-  
transfer (QProx™) capacitive technology.  
QST devices are designed to replace mechanical  
switching/control devices and the reduced  
number of moving parts in the end product  
provides the following advantages:  
QTouch™ and QProx™ are trademarks of the  
Quantum Research Group.  
Lower customer service costs  
Reduced manufacturing costs  
Increased product lifetime  
Table 1.  
Device summary  
Feature  
Order code  
QST608KT6  
Operating supply voltage  
Supported interface  
Operating temperature  
Package  
2.4V to 5.5V  
I2C  
–40° to +85° C  
LQFP32 (7x7)  
December 2007  
Rev 1  
1/44  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
QST608  
Contents  
1
2
3
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
QST touch sensing technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Spread-spectrum operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Faulty and unused keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Detection threshold levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Detection integrator filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Self-calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Fast positive recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Forced key recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Max On-Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.10 Drift compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.11 Adjacent key suppression (AKS™) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4
Device operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset and power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Burst operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General-purpose outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
IRQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Communication packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
I2C address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Supported commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
5.2  
CS sense capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Sensitivity tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.2.1  
Increasing sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/44  
QST608  
Contents  
5.2.2  
5.2.3  
Decreasing sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Key balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.3  
5.4  
5.5  
5.6  
5.7  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Crosstalk precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PCB layout and construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Slider and rotor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.2  
6.3  
6.4  
6.5  
6.6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Capacitive sensing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
GPOn pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.6.1  
6.6.2  
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Output pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.7  
6.8  
RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
I2C control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7
8
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Device revision information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.1  
9.2  
Device identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Device revision identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.2.1  
Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3/44  
Device overview  
QST608  
1
Device overview  
The QST608 capacitive touch sensor IC is a pure digital solution based on Quantum's  
patented charge-transfer (QProx™) capacitive technology.  
This technology allows users to create simple touch panel sensing electrode interfaces for  
conventional or flexible printed circuit boards (PCB/FPCB). Sensing electrodes are part of  
the PCB layout (copper pattern or printed conductive ink) and may be used in various  
shapes (circle, rectangular, etc.).  
By implementing the QProx™ charge-transfer algorithm, the QST608 detects finger  
presence (human touch) near electrodes behind a dielectric (glass, plastic, wood, etc.). Only  
one external sampling capacitor by channel is used in the measuring circuitry to control the  
detection.  
QST technology also incorporates advanced processing techniques such as drift  
compensation, auto-calibration, noise filtering, and Quantum's patented Adjacent Key  
Suppression™ (AKS™) to ensure maximum usability and control integrity.  
In order to meet environmental requirements, ST offers this device in ECOPACK®  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
4/44  
QST608  
Pin description  
2
Pin description  
Figure 1.  
32-pin package pinout  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
GPO4 (HS)  
SNS_SCK2  
SNSK_SCK1  
SNS_SCK1  
SNSK_SCK5  
SNS_SCK5  
SNSKC_MCK1  
SNSC_MCK1  
SNSKB_MCK1  
GPO5 (HS)  
IRQ (HS)  
I2C_SDA (HS)  
I2C_SCL (HS)  
RESET  
QST608KT6  
NC  
VDD_1  
9 10 11 12 13 14 15 16  
(HS) 20mA high sink capability (on N-buffer only)  
Table 2.  
Pin  
Device pin description  
Pin name  
Type (1)  
Function  
If unused  
1
2
3
4
5
GPO4 (2)  
GPO5 (2)  
PP (HS) General purpose output 4  
PP (HS) General purpose output 5  
OD (HS) Interrupt line (active low)  
TOD (HS) I2C serial data  
Open  
Open  
Open  
Open  
Open  
IRQ  
I2C_SDA (3)  
I2C_SCL (3)  
TOD (HS) I2C serial clock  
10nF capacitor  
to ground  
6
RESET  
BD  
Reset (active low)  
7
8
9
NC  
Not connected  
Supply voltage  
Ground voltage  
Ground voltage  
Ground voltage  
Ground voltage  
Supply voltage  
VDD_1  
VSS_1  
S
S
S
S
S
S
10 VSS_2  
11 VSS_3  
12 VSS_4  
13 VDD_2  
5/44  
Pin description  
QST608  
Table 2.  
Pin  
Device pin description (continued)  
Pin name  
Type (1)  
Function  
If unused  
14 SNSA_MCK1  
15 SNSKA_MCK1  
16 SNSB_MCK1  
17 SNSKB_MCK1  
18 SNSC_MCK1  
19 SNSKC_MCK1  
SNS  
Rotor/slider 1 electrode A sense pin to Cs Open  
Rotor/slider 1 electrode A sense pin to  
Cs/Rs  
SNS  
SNS  
SNS  
SNS  
SNS  
Open  
Rotor/slider 1 electrode B sense pin to Cs Open  
Rotor/slider 1 electrode B sense pin to  
Cs/Rs  
Open  
Rotor/slider 1 electrode C sense pin to Cs Open  
Rotor/slider 1 electrode C sense pin to  
Cs/Rs  
Open  
20 SNS_SCK5  
21 SNSK_SCK5  
22 SNS_SCK1  
23 SNSK_SCK1  
24 SNS_SCK2  
25 SNSK_SCK2  
26 SNS_SCK3  
27 SNSK_SCK3  
28 SNS_SCK4  
29 SNSK_SCK4  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
Key 5 sense pin to Cs  
Key 5 sense pin to Cs/Rs  
Key 1 sense pin to Cs  
Key 1 sense pin to Cs/Rs  
Key 2 sense pin to Cs  
Key 2 sense pin to Cs/Rs  
Key 3 sense pin to Cs  
Key 3 sense pin to Cs/Rs  
Key 4 sense pin to Cs  
Key 4 sense pin to Cs/Rs  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
General purpose output 1 and  
I2C address bit 0 option resistor  
30 GPO1/ADD0 (2)  
31 GPO2/ADD1 (2)  
32 GPO3/ADD2 (2)  
PP (HS)  
PP (HS)  
PP (HS)  
Option resistor  
Option resistor  
Option resistor  
General purpose output 2 and  
I2C address bit 1 option resistor  
General purpose output 3 and  
I2C address bit 2 option resistor  
1. S: supply pin, BD: bidirectional pin, SNS: capacitive sensing pin, PP: Output push-pull, OD: Output open-  
drain, TOD: Output true open-drain and HS: 20mA high sink output (on N-buffer only).  
2. During reset phase, these pins are floating and their state depends on the option resistor when available.  
3. An external pull-up of 4.7 kOhm (typical) is required on these pins.  
6/44  
QST608  
QST touch sensing technology  
3
QST touch sensing technology  
3.1  
Functional description  
QST devices employ bursts of charge-transfer cycles to acquire signals. Burst mode permits  
low power operation, dramatically reduces RF emissions, lowers susceptibility to RF fields,  
and yet permits excellent speed. Signals are processed using algorithms pioneered by  
Quantum which are specifically designed to provide reliable, trouble-free operation over the  
life of the product.  
The QST switches and charge measurement hardware functions are all internal to the  
device. An external C capacitor accumulates the charge from sense-plate C , which is  
S
X
then measured. Larger values of C cause the charge transferred into C to rise more  
X
S
rapidly, reducing available resolution. As a minimum resolution is required for proper  
operation, this can result in dramatically reduced gain. Larger values of C reduce the rise  
S
of differential voltage across it, increasing available resolution by permitting longer QST  
bursts. The value of C can thus be increased to allow larger values of C to be tolerated.  
S
X
The device is responsive to both C and C , and changes in either can result in substantial  
X
S
changes in sensor gain.  
Figure 2. QTouch™ measuring circuitry  
C
T
(~5 pF)  
Earth  
SNSK_SCKn  
Sense capacitor  
(a few nF)  
C
S
SNS_SCKn  
C (~20 pF)  
x
Ai12569  
3.2  
Spread-spectrum operation  
The bursts operate over a spread of frequencies, so that external fields will have minimal  
effect on key operation and emissions are very weak. Spread-spectrum operation works  
with the Detection Integrator mechanism (DI) to dramatically reduce the probability of false  
detection due to noise.  
7/44  
QST touch sensing technology  
QST608  
3.3  
Faulty and unused keys  
Any sensing channel that does not have its sense capacitor (C ) fitted is assumed to be  
S
either faulty or unused. This channel takes no further part in operation unless a Master-  
commanded recalibration operation shows it to have an in-range burst count again. Faulty,  
unused or disabled keys are still bursted but not processed to avoid modifying the sensitivity  
of active keys.  
This is important for sensing channels that have an open or short circuit fault across C .  
S
Such channels would otherwise cause very long acquire bursts, and in consequence would  
slow the operation of the entire QST device.  
To optimize touch response time and device power consumption, if some keys are not used,  
we recommend to try suppressing the ones which belong to the same burst. Bursts which  
do not have any keys implemented will then not be processed.  
3.4  
3.5  
Detection threshold levels  
The key capacitance change induced by the presence of a finger is sensed by the variation  
in the number of charge transfer pulses to load the capacitor. The difference in the pulse  
count number is compared to a threshold in order to detect the key as pressed or not.  
Two different thresholds, one for detection and one for the end of detection, create an  
hysteresis in order to prevent erratic behavior.  
The default threshold levels and hysteresis values are described in Section 6.5: Capacitive  
sensing characteristics on page 32.  
Detection integrator filter  
Detect Integrator (DI) filter mechanism works together with spread spectrum operation to  
dramatically reduce the effects of noise on key states. The DI mechanism requires a  
specified number of measurements that qualify as detections (and these must occur in a  
row) or the detection will not be reported.  
In a similar manner, the end of a touch (loss of signal) also has to be confirmed over several  
measurements. This process acts as a type of “debounce” mechanism against noise.  
The default DI value for confirming start of touch and end of touch is described in  
Section 6.5: Capacitive sensing characteristics on page 32.  
3.6  
Self-calibration  
On power-up, all keys are self-calibrated to provide reliable operation under almost any  
conditions. The calibration phase is used to compute a reference value per key which is then  
used by the process determining if a key is touched or not. The reference is an average of 8  
single acquisitions. As a result, the calibration time of the system can be simply calculated  
using the following formula: t  
= 8 * Burst_Period. The methodology used to measure the  
CAL  
burst period is described in application note AN2547. For a maximum calibration duration  
(t ), please refer to Section 6.5: Capacitive sensing characteristics on page 32.  
CAL  
8/44  
QST608  
QST touch sensing technology  
3.7  
Fast positive recalibration  
The device autorecalibrates a key when its signal reflects a decrease in capacitance higher  
than a fixed threshold (PosRecalTh) for a defined number of acquisitions (PoseRecalI).  
3.8  
3.9  
Forced key recalibration  
A recalibration of the device may be issued at any time by sending to the QST device the  
2
appropriate I C command or by tying the RESET pin to ground.  
2
It is possible to recalibrate independently any individual key using an I C command.  
Max On-Duration  
The device can time out and automatically recalibrate each key independently after a fixed  
duration of continuous touch detection. This prevents the keys from becoming ‘stuck on’ due  
to foreign objects or other sudden influences. This is known as the Max On-Duration feature.  
After recalibration, the key will continue to operate normally, even if partially or fully  
obstructed. Max On-Duration works independently per channel: a timeout on one channel  
has no effect on another channel.  
Infinite timeout is useful in applications where a prolonged detection can occur and where  
the output must reflect the detection no matter how long. In infinite timeout mode, the  
designer should take care to ensure that drift in C , C , and V do not cause the device to  
S
X
DD  
remain “stuck on” inadvertently even when the touching object is removed from the sense  
field. Timeout durations are not accurate and can vary substantially depending on V and  
DD  
temperature values, and should not be relied upon for critical functions.  
3.10  
Drift compensation  
Signal drift can occur because of changes in C , C , and V over time. Depending on the  
X
S
DD  
C type and quality, the signal may vary substantially with temperature and veiling. If keys  
S
are subject to extremes of temperature or humidity, the signal can also drift. It is crucial that  
drift be compensated, otherwise false detections, non detections, and sensitivity shifts will  
follow.  
Drift compensation slowly corrects the reference level of each key while no detection is in  
effect. The rate of reference adjustment must be performed slowly or else legitimate  
detections can also be ignored. The device compensates drift on each channel  
independently using a maximum compensation rate to the reference level.  
Once a touch is sensed, the drift compensation mechanism ceases since the signal is  
legitimately high, and therefore should not cause the reference level to change.  
The signal drift compensation is “asymmetric”: the reference level compensates drift in one  
direction faster than it does in the other. Specifically, it compensates faster for increasing  
signals than for decreasing signals. Decreasing signals should not be compensated for  
quickly, since an approaching finger could be compensated for partially or entirely while  
approaching the sense electrode. However, an obstruction over the sense pad, for which the  
sensor has already made full allowance, could suddenly be removed leaving the sensor with  
an artificially elevated reference level and thus become insensitive to touch. In this latter  
case, the sensor will compensate for the object's removal very quickly, usually in only a few  
seconds.  
9/44  
QST touch sensing technology  
QST608  
Caution:  
When only one key is enabled or if keys are very close together, the common drift  
compensation must be disabled or its rate must be reduced to ensure correct device  
operation.  
3.11  
Adjacent key suppression (AKS™)  
Adjacent key suppression (AKS™) is a Quantum-patented feature which prevents multiple  
keys from responding to a single touch. This can happen with closely spaced keys, or a  
scroll wheel that has buttons very near it.  
The QST608 supports two AKS modes:  
Locking AKS  
Once a key is considered as “touched”, all other keys are locked in an untouched state.  
To unlock these keys, the touched key must return to an untouched state. Then, the key  
having the lowest key ID number is declared as the “touched” one.  
Unlocking AKS  
On each acquisition, the signal strengths from each key are compared and the key with  
the highest signal level is declared as the “touched” one.  
2
In I C mode, up to 8 AKS groups can be specified.  
Note:  
All keys belonging to the same AKS group must have the same AKS mode.  
If a rotor/slider belonging to an AKS group is touched, it locks others keys even if the AKS  
group mode is unlocking.  
10/44  
QST608  
Device operating mode  
4
Device operating mode  
2
The QST608 only supports one operating mode featuring an I C interface. This interface  
offers a large range of device configurations.  
4.1  
Main features  
5 general-purpose outputs  
Configuration of up to 8 AKS groups  
Large range of low power modes  
Accessible internal capacitive sensing parameters  
Continuous range of Max On-Duration  
11/44  
Device operating mode  
Figure 3.  
QST608  
Typical application schematic  
VDD  
2.4 to 5.5V  
Volt. Reg.  
VUNREG  
4.7µF  
4.7µF  
100nF  
100nF  
VDD  
8
13  
Keep these parts close to IC  
VDD_1 VDD_2  
5
4
3
21  
I2C_SCL  
I2C_SDA  
IRQ  
Key5  
Key4  
Key3  
Key2  
Key1  
Pos. 0  
SNSK_SCK5  
10kΩ  
RS4  
10kΩ  
RS3  
10kΩ  
RS2  
10kΩ  
RS1  
10kΩ  
To Host  
CS5  
CS4  
CS3  
CS2  
CS1  
20  
29  
28  
27  
26  
25  
24  
23  
22  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
SNS_SCK2  
SNSK_SCK1  
2
GPO5  
GPO4  
GPO5  
GPO4  
1
32  
ADD2/GPO3  
ADD1/GPO2  
GPO3  
VDD  
VSS  
SNS_SCK1  
RSR3  
1MΩ  
1MΩ  
19  
18  
31  
30  
SNSKC_MCK1  
SNSC_MCK1  
10kΩ  
CSR3  
RSR1  
10kΩ  
GPO2  
VDD  
VSS  
15  
14  
See Note 1  
SNSKA_MCK1  
SNSA_MCK1  
ADD0/GPO1  
RESET  
GPO1  
VDD  
VSS  
CSR1  
1MΩ  
RSR2  
17  
16  
SNSKB_MCK1  
SNSB_MCK1  
10kΩ  
CSR2  
6
10 nF  
VSS_1  
VSS_2  
10  
VSS_3  
11  
VSS_4  
12  
9
Ai12575  
Note:  
1
If you decide to use a rotor with a center dome button, Key 5 must be used.  
12/44  
QST608  
Device operating mode  
4.2  
Reset and power-up  
At power-up, the device configures itself according to the ADD[2:0] option resistors. The  
device start-up and configuration may take up to t  
.
Setup  
When the power is established, it is possible to force a new device configuration by applying  
a negative pulse on the RESET pin.  
The RESET pin is a bidirectional pin with an internal pull-up. The line is forced low when the  
device resets itself (through an I²C command, for example).  
A 10nF capacitor is recommended on the RESET pin to ensure reliable start-up and noise  
immunity.  
4.3  
Burst operation  
The device operates in “Burst” mode. Each key touch is acquired using a burst of charge-  
transfer sensing pulses whose count varies depending on the value of the sense capacitor  
C and the load capacitance C . Key touches are acquired using several successive bursts  
S
X
of pulses:  
Burst A: Keys 1 to 4  
Burst B: Keys 5  
Burst C: R1, R2 and R3 (for rotor or slider)  
Bursts always operate in an A-B-C sequence. If all keys belonging to a same burst are not  
implemented, the QST device will not perform the Burst in order to improve the response  
time and reduce the power consumption when in Low Power (LP) mode.  
In Low Power mode, the device sleeps in an ultra-low current state between bursts to reduce  
power consumption.  
Note:  
1
If you decide to use a rotor with a center dome button, Key 5 must be used.  
13/44  
Device operating mode  
QST608  
4.4  
Low power mode  
In order to reduce the device power consumption, the QST family include scalable low  
power modes.  
Internal device frequency  
The internal device frequency can be modified to better adapt to the device low power  
2
mode usage and I C speed.  
Only two speeds are available: maximum frequency and reduced frequency.  
Standard low power mode  
When the device is in standard low power mode, a window with very low power  
consumption is inserted between the acquisition of the last active key and the following  
acquisition of the first active key.  
This window duration is programmable as the 'sleep duration time'.  
Note that the sleep window insertion is cancelled in the following conditions:  
If a change is detected on a key, in order to speed up the DI process, the sleep  
window insertion is skipped until the end of the DI process.  
When a key change is actually detected and reported with a negative pulse on the  
IRQ pin. In this case, the low power mode is disabled until a command is received  
from the host.  
2
2
Inside an I C command, between the Write and the Read I C frames, the sleep  
period is skipped.  
Free run in detect  
The behavior in this mode is the same as in the standard low power mode except that  
the sleep window insertion is always skipped if any of the active keys is detected as  
touched.  
This is useful to improve the wheel response time.  
Deep Sleep mode  
In deep sleep mode, the device enters a very low power mode indefinitely. The device  
2
resumes its operations after receiving an I C frame with the device address or a reset.  
2
Caution:  
If an I C frame is received while in sleep or deep sleep mode, the device wakes up but does  
2
not acknowledge the frame (even if it has an I C frame with the device address). The host  
must therefore send again the frame until it is taken in account and acknowledged.  
14/44  
QST608  
Device operating mode  
4.5  
General-purpose outputs  
2
Up to 5 general-purpose outputs can be controlled using the I C interface. These general-  
purpose pins are configured in output push pull mode 0 by default. Their state can be  
changed using the SET_GPIO_STATE I C command.  
2
Figure 4.  
Optional LED schematic  
VUNREG  
R
GPO  
n
C (10 nF)  
Ai12570  
4.6  
4.7  
IRQ pin  
The IRQ pin is an open drain output with an internal pull-up. It can be used to inform the  
Master device about any change in the key status. The IRQ line is pulled low every time the  
state of any of the enabled keys changes. This includes any change in the touch state of the  
key, position change of the rotor/slider, a faulty key or new calibration of one or more keys.  
The reported changes may then be accessed by the Master device by using the  
GET_KEY_STATE command.  
To improve communication response time, this signal suspends Low Power mode until the  
Master device has issued a communication with the QST device.  
Communication packet  
The communication between the Master device and the QST608 (Slave) consists of two  
2
standard I C frames.  
The first frame is sent by the Master device using the QST608 device address with the write  
bit set. The data bytes consist of the command byte which is eventually followed by the  
parameters and a checksum byte.  
The second one is sent by the Master device using the QST608 device address with the  
write bit reset. The QST608 completes the frame with data according to the command  
previously sent by the Master device. The device finishes the frame by sending a checksum  
byte for communication integrity verification.  
If the read frame is omitted, the command may not be taken into account and the low power  
mode (if active) is suspended.  
To initiate the communicate with the QST608, the Master device must send the  
GET_DEVICE_INFO command in order to unlock access to all the other commands.  
15/44  
Device operating mode  
QST608  
4.8  
I2C address selection  
2
2
The QST608 offers several different 7-bit I C addresses. The selected I C address is  
configured by tying high or low the pins ADD[2:0] (see Table 3).  
Table 3.  
I²C address versus option resistor  
I2C Address  
ADD[6:3]  
ADD2  
ADD1  
ADD0  
Hex value  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0110  
16/44  
QST608  
Device operating mode  
4.9  
Supported commands  
Table 4 lists the supported I²C commands and available arguments.  
2
Note:  
For more information on the supported commands and I C protocol, please refer to the QST  
standard communication protocol reference manual.  
Table 4.  
Supported commands  
I2C commands  
Description  
CALIBRATE_KEY (All keys)  
Write  
Read  
0x98  
Forces the recalibration of all keys.  
ErrCode: Standard Error code (see Table 5)  
ErrCode  
CALIBRATE_KEY (Single key)  
Write  
Read  
0x9B KeyID Checksum Forces the recalibration of a single key.  
KeyId: Binary-coded key number (see Table 8)  
ErrCode  
ErrCode: Standard Error code (see Table 5)  
GET_DEBUG_INFO  
Returns the debug info of the single KeyID channel.  
Write  
0xF7 KeyID Checksum  
KeyId: Binary-coded key number (see Table 8)  
Answer for single-channel key.  
KeyDbgState: Current Key Debug state (see Table 13)  
RefMSB: Reference Count MSB  
RefLSB: Reference Count LSB  
BCMSB: Burst Count MSB  
0x0B KeyDbgState  
RefMSB RefLSB  
(SCKey) BCMSB BCLSB  
Checksum  
Read  
BCLSB: Burst Count LSB  
0x1C KeyDbgState  
KeyPos RefAMSB  
RefALSB BCAMSB  
Answer for multi-channel key.  
KeyDbgState: Current Key Debug state (see Table 13)  
KeyPos: Current key position (8-bit resolution)  
RefnMSB: Reference n Count MSB  
RefnLSB: Reference n Count LSB  
BCnMSB: Burst Count n MSB  
Read  
BCALSB RefBMSB  
(MCKey) RefBLSB BCBMSB  
BCBLSB RefCMSB  
RefCLSB BCCMSB  
BCCLSB Checksum  
BCnLSB: Burst Count n LSB  
GET_DEVICE_INFO  
Write  
0x85  
Returns the QST608 device version and ASCII-coded device  
name. This command must be sent first to enable the  
communication flow.  
0x15 MainVers SubVers  
NbSCkey NbMCkey  
MainVers: Device main version  
SubVer: Device sub-version  
NbSCkey: 0x05 single-channel keys  
NbMCkey: 0x01 multi-channel key  
Q S T 6 0 8: ASCII-coded device name  
Read  
‘Q’ ’S’ ‘T’ ‘6’ ‘0’ ‘8’  
Checksum  
GET_KEY_ERROR  
Write  
0xC4  
Returns the error information on each key.  
0x11 KeyError1  
KeyError2 ... KeyError8  
CheckSum  
KeyErrorN: KeyError byte description (see Table 6)  
Read  
17/44  
Device operating mode  
Table 4.  
QST608  
Supported commands (continued)  
I2C commands  
GET_KEY_STATE  
Description  
Write  
0xC1  
Returns the state of all keys.  
AllKeyState: Touched/untouched state for all 5 keys and  
rotor/slider. Refer to Table 7: AllKeyState.  
RotPos: Rotor/slider absolute position  
0x07 AllKeyState  
RotPos KeyError  
Checksum  
Read  
KeyError: Refer to Table 6: KeyError byte description  
GET_PROTOCOL_VERSION  
Write  
0x80  
Returns the QST608 protocol version.  
MainVers: Protocol main version  
SubVer: Protocol sub-version  
0x07 MainVers SubVer  
I2CSpeed Checksum  
Read  
I2CSpeed: 0x00 (100 kHz maximum)  
RESET_DEVICE  
Write  
Read  
0xFD  
Restarts the device (options Read and Calibration) after  
reading the ErrCode (see Table 5).  
ErrCode  
SET_DETECT_INTEGRATORS  
0x03 0x04 0x00 DI EDI Sets the detection, End Of Detection and Positive Recalibration  
Write  
PosRecalI CheckSum  
Integrators for all keys.  
DI: Detection Integrator 1) 3)  
EDI: End of Detection Integrator 1) 3)  
PosRecalI: Positive Recalibration Integrator 1) 3)  
ErrCode: Standard Error code (see Table 5)  
Read  
ErrCode  
SET_DRIFT_COMPENSATION  
0x04 0x05 0x00  
PosDriftI NegDriftI  
Sets the positive and negative common and differential drift  
rate for all keys.  
Write  
ComFact DifFact  
Checksum  
PosDriftI: Positive drift integrator  
NegDriftI: Negative drift integrator  
ComFact: Common time step factor  
DifFact: Differential time step factor  
ErrCode: Standard Error code (see Table 5)  
Read  
ErrCode  
SET_GPIO_STATE  
0x08 0x01 GPOState  
Checksum  
Controls the state of the general-purpose outputs.  
GPOState: State of general-purpose outputs (see Table 10)  
ErrCode: Standard Error code (see Table 5)  
Write  
Read  
ErrCode  
SET_KEY_ACTIVATION (See Note 4)  
0x97 KeyActivation  
Checksum  
Enables or disables a single key.  
Write  
KeyActivation: Byte containing the key number selection and  
requested state (seeTable 8).  
ErrCode: Standard Error code (see Table 5)  
Read  
ErrCode  
18/44  
QST608  
Device operating mode  
Table 4.  
Supported commands (continued)  
I2C commands  
Description  
SET_KEY_GROUP  
0x00 0x09  
AKSGrpMode Key1Grp  
Defines the AKS groups for each key.  
Key2Grp Key3Grp  
Key4Grp Key5Grp  
Key6Grp Key7Grp  
Key8Grp CheckSum  
AKSGrpMode: AKS mode selection of each group (see  
Table 11)  
KeynGrp: AKS group selection for key n (see Table 12)  
ErrCode: Standard Error code (see Table 5)  
Write  
Read  
ErrCode  
SET_LOW_POWER_MODE  
0x92 LowPowerMode  
Checksum  
Selects standard or Low Power mode.  
Write  
LowPowerMode: Configure Low Power mode (see Table 9)  
ErrCode: Standard Error code (see Table 5)  
Read  
ErrCode  
SET_MAX_ON_DURATION  
0x8A MaxOnDuration  
Checksum  
Sets the maximum detected ON time before triggering an  
automatic recalibration.  
Write  
MaxOnDuration: Time, in second (0 for infinite)  
ErrCode: Standard Error code (see Table 5)  
Read  
ErrCode  
SET_MCKEY_PARAMETERS  
0x02 0x07 0x00 DeTh  
EofDeTh PosRecalTh  
Resolution DirChI  
DirChTh Checksum  
Sets the Detection, End Of Detection and Positive  
Recalibration Thresholds for all keys.  
Write  
DeTh: Detection Threshold 1) 2)  
EofDeTh: End of Detection Threshold 1) 2)  
PosRecalTh: Positive Recalibration Threshold 1) 2)  
Resolution: Rotor/slider resolution of the reported position (1  
to 7 for 1-bit to 7-bit)  
DirChI: Direction Change Integrator 1) 3)  
DirChTh: Direction Change Threshold 1) 3)  
ErrCode: Standard Error code (see Table 5)  
Read  
ErrCode  
SET_SCKEY_PARAMETERS  
0x01 0x04 0x00 DeTh  
EofDeTh PosRecalTh  
Checksum  
Sets the Detection, End Of Detection and Positive  
Recalibration Thresholds for all keys.  
Write  
Read  
DeTh: Detection Threshold 1) 2)  
EofDeTh: End of Detection Threshold1) 2)  
PosRecalTh: Positive Recalibration Threshold1) 2)  
ErrCode: Standard Error code (see Table 5)  
ErrCode  
Note:  
1
2
3
4
See Section 6.5: Capacitive sensing characteristics on page 32 for default values.  
The value is a signed character (0x80...0x7F <=> -128 ... +128).  
The value is an unsigned number (0x00..0xFF <=> 0 ... 255).  
Enabling or disabling keys triggers a new calibration of all enabled keys.  
19/44  
Device operating mode  
Error codes  
QST608  
2
Table 5 lists the I C error codes.  
Table 5.  
ErrCode  
ErrCode  
Description  
0x01  
0x83  
0x85  
0xA1  
0xA3  
0xE0  
No Error  
Command not supported  
Parameter not supported  
Parity Error  
Checksum Error  
Initialization process (GET_FIRMWARE_INFO command not received)  
KeyError byte description  
Table 6.  
Bit 7  
KeyError byte description  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key State  
0
0
0
0
Key error codes  
Key state (Bit 7)  
When set to ‘1’, the corresponding key is touched. This bit is always cleared for the  
GET_KEY_STATE command.  
Key error codes (Bits 2:0)  
When answering the GET_KEY_STATE command, the key error code corresponds to  
the error codes of all the keys ORed toghether. When answering the  
GET_KEY_ERROR command, each key error code describes the errors of one defined  
key.  
Bit 0: When set to ‘1’, calibration in progress  
Bit 1: When set to ‘1’, maximum count reached  
Bit 2: When set to ‘1’, minimum count not reached  
All key state description  
Table 7.  
Bit 7  
AllKeyState  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Rotor 1  
State  
0
0
Key 5 State Key 4 State Key 3 State Key 2 State Key 1 State  
Key n state  
When set to ‘1’, the corresponding key or rotor is touched.  
20/44  
QST608  
Device operating mode  
Key activation description  
Table 8.  
Bit 7  
KeyActivation  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key  
Activation  
0
0
0
Key ID (binary coded)  
Key activation (Bit 7)  
0: Key disabled  
1: Key enabled  
Key identifier (Bits 3:0)  
0000: All keys  
0001: Key 1  
0010: Key 2  
0011: Key 3  
0100: Key 4  
0101: Key 5  
0111: Rotor/Slider 1  
Low power mode description  
Table 9.  
Bit 7  
SetLowPower  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Free Run  
in Detect  
Freq  
Sleep Duration Factor  
Device Frequency (Bit 7)  
0: Reduced internal frequency (default)  
1: Maximum internal frequency  
Free Run in Detect (Bit 6)  
0: Low Power mode is always enabled, whatever the state of the keys.  
1: Low Power mode is automatically suspended when any key is in Detect state.  
Low Power mode is automatically resumed when no key is in Detect state.  
Sleep Duration Factor (Bits 5 to 0)  
0x00 or 0x20 to 0x3E: Low power mode is disabled.  
0x01 to 0x19: Low Power mode. The sleep duration is ‘Sleep Duration Factor’ x 20  
milliseconds (20 ms to 500 ms)  
2
0x3F: Deep Sleep mode is entered immediately. Only a reset or an I C frame with  
the correct device address allows exiting Deep Sleep mode.  
2
Note:  
1
2
When the device is in Sleep or Deep Sleep, any I C bus activity will wake-up the device.  
2
The I C QST device address is not acknowledged but forces the QST device to exit from  
Low Power mode. The Master device will have to repeat the command to ensure that it is  
taken in account.  
21/44  
Device operating mode  
QST608  
Bit 0  
GPO state description  
Table 10. GPOState  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
GPO 5  
state  
GPO 4  
state  
GPO 3  
state  
GPO 2  
state  
GPO 1  
state  
0
0
0
GPOState  
Defines the state of the selected general-purpose output pin. For more information, see  
Section 4.5: General-purpose outputs on page 15.  
0: GPO state is ‘0’  
1: GPO state is ‘1’  
AKS group mode description  
Table 11. AKSGrpnMode  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AKSGrp8 AKSGrp7 AKSGrp6 AKSGrp5 AKSGrp4 AKSGrp3 AKSGrp2 AKSGrp1  
Mode Mode Mode Mode Mode Mode Mode Mode  
AKSGrpnMode  
Defines the type of AKS for the Group n:  
0: Locking AKS  
First key pressed within the group locks out all other keys.  
1: Unlocking AKS  
Most heavily pressed key (highest signal level) is selected over all other  
keys in the group.  
AKS group selection description  
Table 12. KeynGrp  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Grp8  
Grp7  
Grp6  
Grp5  
Grp4  
Grp3  
Grp2  
Grp1  
Grpx  
The selected key is a member of AKS Group x.  
22/44  
QST608  
Device operating mode  
Key debug state description  
Table 13. KeyDbgState  
Value  
Description  
0x01  
0x02  
0x04  
0x08  
0x11  
0x14  
0x24  
On-going calibration  
Key released  
Key touched  
Key in error  
Key calibration filter triggered (PosRecalI)  
Key detection filter triggered (DI)  
Key end of detection filter triggered (EDI)  
23/44  
Design guidelines  
QST608  
5
Design guidelines  
5.1  
CS sense capacitor  
The C sense capacitors accumulate the charge from the key electrodes and determine  
S
sensitivity. Higher values of C make the corresponding sensing channel more sensitive.  
S
The values of C can differ for each channel, permitting differences in sensitivity from key to  
S
key or to balance unequal sensitivities. Unequal sensitivities can occur due to key size and  
placement differences and stray wiring capacitances. More stray capacitance on a sense  
trace will desensitize the corresponding key. Increasing the C for that key will compensate  
S
for the loss of sensitivity.  
The C capacitors can be virtually any plastic film or low- to medium-K ceramic capacitor.  
S
The normal C range is 1nF to 50nF depending on the sensitivity required: larger values of  
S
C require better quality to ensure reliable sensing. In certain circumstances the normal C  
range may be exceeded. Acceptable capacitor types for most uses include PPS film,  
S
S
polypropylene film, and NP0 and X5R / X7R ceramics. Lower grades than X5R or X7R are  
not recommended.  
5.2  
Sensitivity tuning  
Sensitivity can be altered to suit various applications and situations on a channel-by-  
channel basis. The easiest and most direct way to impact sensitivity is to alter the value of  
each C : more C yields higher sensitivity. Each channel has its own C value and can  
S
S
S
therefore be independently adjusted.  
5.2.1  
5.2.2  
Increasing sensitivity  
Sensitivity can also be increased by using larger electrode areas, reducing panel thickness,  
or using a panel material with a higher dielectric constant.  
Decreasing sensitivity  
In some cases the circuit may be too sensitive. Gain can be lowered further by a number of  
strategies:  
making the electrode smaller  
making the electrode into a sparse mesh using a high space-to-conductor ratio  
decreasing the C capacitors  
S
5.2.3  
Key balance  
A number of factors can cause sensitivity imbalances. Notably, SNS wiring to electrodes can  
have differing stray amounts of capacitance to ground. Increasing load capacitance will  
cause a decrease in gain. Key size differences, and proximity to other metal surfaces can  
also impact gain.  
The keys may thus require “balancing” to achieve similar sensitivity levels. This can be best  
accomplished by trimming the values of the C capacitors to achieve equilibrium. The R  
S
S
resistors have no effect on sensitivity and should not be altered. Load capacitances to  
ground can also be added to overly sensitive channels to reduce their gain.  
These should be in the order of a few picofarads.  
24/44  
QST608  
Design guidelines  
5.3  
Power supply  
If the power supply fluctuates slowly with temperature, the QST device compensates  
automatically for these changes with only minor changes in sensitivity. However, if the  
supply voltage drifts or shifts quickly, the drift compensation mechanism is not able to keep  
up, causing sensitivity anomalies or false detections.  
The power supply should be locally regulated, using a three-terminal regulator. If the supply  
is shared with another electronic system, care should be taken to ensure that the supply is  
free of digital spikes, sags and surges which can cause adverse effects. It is not  
recommended to include a series inductor in the power supply to the QST device.  
For proper operation, a 0.1 µF or greater bypass capacitor must be used between V and  
DD  
V
V
. The bypass capacitor should be routed with very short tracks to the device’s V and  
pins.  
SS  
SS  
DD  
The PCB should, if possible, include a copper pour under and around the device, but not  
extensively under the SNS lines.  
5.4  
5.5  
ESD protection  
In normal environmental conditions, only one series resistor is required for ESD  
suppression. A 10 kOhm R resistor in series with the sense trace is sufficient in most  
cases. The dielectric panel (glass or plastic) usually provides a high degree of isolation to  
prevent ESD discharge from reaching the circuit. R should be placed close to the chip. If  
S
S
the C load is high, R can prevent total charge and transfer and as a result gain can  
X
S
deteriorate. If a reduction in R increases gain noticeably, the lower value should be used.  
Conversely, increasing the R can result in added ESD and EMC benefits, provided that the  
increase does not decrease sensitivity.  
S
S
Crosstalk precautions  
Adjacent sense traces might require intervening ground traces in order to reduce capacitive  
cross bleed if high sensitivity is required or high values of delta-C are anticipated (for  
X
example, from direct human touch to an electrode connection). In normal touch applications  
behind plastic panels, this is rarely a problem regardless of how the electrodes are wired.  
Higher values of R will make crosstalk problems worse; try to keep R to 22 kOhm or less  
S
S
if possible. In general try to keep the QST device close to the electrodes and reduce the  
adjacency of the sense wiring to ground planes and other signal traces; this will reduce the  
C load, reduce interference effects, and increase signal gain. The one and only valid  
x
reason to run ground near SNS traces is to provide crosstalk isolation between traces, and  
then only on an as-needed basis.  
5.6  
PCB layout and construction  
The PCB traces, wiring, and any components associated with or in contact with either SNS  
pin will become touch sensitive and should be treated with caution to limit the touch area to  
the desired location.  
Multiple touch electrodes connected to any sensing channel can be used, for example, to  
create control surfaces on both sides of an object.  
25/44  
Design guidelines  
QST608  
It is important to limit the amount of stray capacitance on the SNS terminals, for example by  
minimizing trace lengths and widths to allow for higher gain without requiring higher values  
of C . Under heavy delta-C loading of one key, cross coupling to another key’s trace can  
S
X
cause the other key to trigger. Therefore, electrode traces from adjacent keys should not be  
run close to each other over long runs in order to minimize cross-coupling if large values of  
delta-C are expected, for example when an electrode is directly touched. This is not a  
X
problem when the electrodes are working through a plastic panel with normal touch  
sensitivity.  
For additional information on PCB layout and construction, please contact your local ST  
Sales Office for a list of available application notes.  
5.7  
Slider and rotor layout  
The QST608 can connect to either a rotor or a linear slider element (Figure 5). The basis of  
these designs is found in US Patent 4,264,903 (expired).  
Figure 5.  
Slider and rotor construction  
Position 0  
SNSC_MCK1  
SNSC_MCK1 SNSA_MCK1 SNSB_MCK1 SNSC_MCK1  
0
1 to 126  
127  
Position 43  
SNSA_MCK1  
Position 85  
SNSB_MCK1  
Positions 0 to 127 (at 7 bits)  
1. Tips of triangles should be spaced 4mm apart.  
The first and last positions of the linear slider have larger touch areas.  
Figure 6. Slider layout details  
26/44  
QST608  
Design guidelines  
Figure 7.  
Rotor layout details  
As with touch button electrodes, rotors and sliders can be constructed as etched areas on a  
PCB or flex circuit, or from clear conductors such as Indium Tin Oxide (ITO) or screen-  
printed Orgacon™ (Agfa) to allow backlighting effects, or for use over an LCD display.  
27/44  
Electrical characteristics  
QST608  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25°C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
6.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V (for the 4.5V ≤  
A
DD  
V
5.5 V voltage range) and V = 3.3 V (for the 3.0 V V 3.6 V voltage range).  
DD  
DD DD  
They are given only as design guidelines and are not tested.  
6.1.3  
6.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Figure 8.  
Pin loading conditions  
Output pin  
28/44  
QST608  
Electrical characteristics  
6.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Figure 9. Pin input voltage  
Input pin  
VIN  
6.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 14. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
65 to +150  
°C  
Table 15. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD VSS Supply voltage  
7.0  
VSS0.3 to VDD+0.3  
4000  
VIN  
Input voltage on any pin (1)(2)  
V
VESD(HBM) Electrostatic discharge voltage (Human Body Model)  
VESD(CDM) Electrostatic discharge voltage (Charge Device Model)  
500  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up  
or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os).  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be  
respected.  
29/44  
Electrical characteristics  
QST608  
Unit  
Table 16. Current characteristics  
Symbol  
Ratings  
Maximum value  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by RESET pin  
75  
150  
20  
40  
25  
5
IIO  
Output current sunk by output pin  
mA  
Output current source by output pin  
Injected current on RESET pin  
(2)  
IINJ(PIN)  
(3)  
Injected current on output pin  
5
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly ensured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be  
respected.  
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
6.3  
Operating conditions  
Table 17. Operating conditions  
Symbol  
Feature  
Value  
Unit  
VDD  
TA  
Operating supply voltage  
Operating temperature  
2.4 to 5.5  
V
C
-40° to +85°  
30/44  
QST608  
Electrical characteristics  
6.4  
Supply current characteristics  
(1)  
Table 18. Supply current characteristics  
Reduced freq.  
mode (Typ.)  
Max. frequency  
Unit  
Symbol  
Parameter  
Conditions  
mode (Typ.)  
VDD = 2.4 V  
1.82  
2.34  
3.60  
499  
Average suppy current  
Free Run mode  
IDD (FR)  
VDD = 3.3 V  
3.85  
6.11  
mA  
µA  
VDD = 5 V  
VDD = 2.4 V  
IDD  
(Sleep  
100ms)  
Average suppy current  
100ms Sleep mode  
V
DD = 3.3 V  
695  
645  
VDD = 5 V  
1189  
130  
1189  
VDD = 2.4 V  
IDD  
(Sleep  
500ms)  
Average suppy current  
500ms Sleep mode  
VDD = 3.3 V  
185  
152  
287  
µA  
µA  
VDD = 5 V  
328  
Average suppy current  
Deep sleep mode  
IDD Halt  
1
1. The results performed at T = 25°C and based on CS = 4.7nF for single-channel keys and CS = 47nF for  
multi-channel keys.  
Figure 10. IDD Sleep mode current characteristics  
31/44  
Electrical characteristics  
QST608  
6.5  
Capacitive sensing characteristics  
Table 19. External sensing components  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CS  
CX  
CT  
RS  
Sense capacitor  
100  
100  
nF  
pF  
Equivalent electrode capacitor  
Equivalent touch capacitor  
Serial resistance  
5
pF  
10  
22  
kOhm  
Table 20. Capacitive sensing parameters  
Symbol  
Parameter  
Calibration duration  
Min. Default Max.  
Unit  
tCAL  
tSetup  
TBD  
100  
ms  
Setup duration  
ms  
ResMCKey  
DI  
Resolution (MCKey)  
1
0
7
2
8
bits  
Detection integrator  
255  
–1  
Counts  
Counts  
Counts  
Counts  
Counts  
Counts  
Counts  
Counts  
Counts  
DeThSCKey  
DeThMCKey  
EDI  
Default detection threshold (SCKey)  
Detection threshold (MCKey)  
End of detection integrator  
–128  
–128  
0
–10  
–30  
2
–1  
255  
–1  
EofDeThSCKey End of detection threshold (SCKey)  
EofDeThMCKey End of detection threshold (MCKey)  
–128  
–128  
0
–8  
–20  
5
–1  
PosRecalI  
Positive recalibration integrator  
255  
128  
128  
PosRecalThSCKey Positive recalibration threshold (SCKey)  
PosRecalThMCKey Positive recalibration threshold (MCKey)  
1
6
1
30  
DirChI  
Wheel/Slider Direction Change Integrator  
Wheel/Slider Direction Change Threshold  
0
3
4
255 positions  
255 positions  
DirChTh  
0
MaxOnDuration Max on-duration delay  
s
1
Infinite  
1
255  
25.5  
25.5  
25.5  
25.5  
PosDiffDrift  
NegDiffDrift  
PosComDrift  
NegComDrift  
Positive differential drift compensation rate  
0.1  
0.1  
0.1  
0.1  
s/level  
s/level  
s/level  
s/level  
Negative differential drift compensation rate  
Positive common drift compensation rate  
Negative common drift compensation rate  
1
0.2  
0.2  
10  
10  
10  
2
PosDriftI  
NegDriftI  
ComFact  
DiffFact  
Positive drift integrator  
Negative drift integrator  
Common time step factor  
Differential time step factor  
Burst length (SCKey)  
0
255  
255  
255  
255  
0
0
0
BurstSCKey  
BurstMCKey  
20  
50  
2000 Counts  
5000 Counts  
Burst length (MCKey)  
32/44  
 
QST608  
Electrical characteristics  
6.6  
GPOn pin characteristics  
6.6.1  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 21. General characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
Input low level voltage (1)  
VSS 0.3  
0.3x VDD  
V
VDD  
0.3  
+
VIH  
Input high level voltage (1)  
0.7x VDD  
VHys  
IL  
Schmitt trigger voltage hysteresis(2)  
Input leakage current  
400  
mV  
μA  
pF  
VSS VIN VDD  
1
CIO  
I/O pin capacitance  
5
CL = 50 pF  
tf(IO)out Output high to low level fall time (2) Between 10%  
and 90%  
25  
25  
ns  
tr(IO)out Output low to high level rise time (2)  
1. Not tested in production, guaranteed by characterization.  
2. Data based on validation/design results.  
6.6.2  
Output pin characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 22. Output pin current  
Symbol  
Parameter  
Conditions  
IIO  
Min.  
Max.  
Unit  
=
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time (see  
Figure 16)  
1.3  
(1)  
+20mA  
VOL  
IIO = +8mA  
0.75  
Output high level voltage for an I/O pin when  
4 pins are sourced at same time (see  
Figure 21)  
IIO = -5mA VDD1.5  
IO = -2mA VDD0.8  
(2)  
VOH  
I
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +8mA  
IO = -2mA VDD0.8  
0.5  
0.6  
V
Output high level voltage for an I/O pin when  
4 pins are sourced at same time (Figure 19)  
(2)(3)  
VOH  
I
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +8mA  
Output high level voltage for an I/O pin when  
4 pins are sourced at same time  
(2)(3)  
VOH  
IIO = -2mA VDD0.9  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the  
sum of IIO (output and RESET pins) must not exceed IVDD..  
3. Not tested in production, based on characterization results.  
33/44  
Electrical characteristics  
QST608  
Figure 11.  
Typical VOL at VDD = 2.4 V  
Figure 12.  
Typical VOL vs VDD at Iload = 2 mA  
VOLvs VDD @Iload=2 mA HS Pins  
VOL vs Iload @ VDD = 2.4 V HS pins  
120  
110  
100  
90  
-40°C  
25°C  
1200  
1000  
800  
600  
400  
200  
0
-40°C  
25°C  
85°C  
125°C  
85°C  
125°C  
80  
70  
60  
50  
40  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
VDD [V]  
0
2
4
6
8
10  
12  
14  
16  
Iload [mA]  
Figure 13.  
Typical VOL at VDD = 3 V  
Figure 14.  
Typical VOL vs VDD at Iload = 8 mA  
VOL vs VDD@Iload = 8 mAHS Pins  
VOLvs Iload @ VDD = 3 V HS pins  
540  
490  
440  
390  
340  
290  
240  
190  
140  
-40°C  
25°C  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-40°C  
25°C  
85°C  
85°C  
125°C  
125°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
VDD [V]  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Iload [mA]  
Figure 15.  
Typical VOL at VDD = 5 V  
Figure 16.  
Typical VOL vs VDD at Iload = 12 mA  
VOL vs VDD @Iload = 12 mA HS Pins  
VOL vs Iload @ VDD = 5 V HS pins  
1040  
940  
840  
740  
640  
540  
440  
340  
240  
140  
-40°C  
25°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
85°C  
125°C  
85°C  
125°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
VDD [V]  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Iload [mA]  
34/44  
QST608  
Electrical characteristics  
Figure 17.  
Typical VDD-VOH vs. Iload at VDD = 2.4 V Figure 18.  
Typical VDD-VOH vs. VDD at Iload = 2 mA  
VDD-VOH vs Iload @ VDD = 2.4 V HS Pins  
VDD-VOH vs VDD @Iload = 2 mA HS Pins  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
700  
600  
500  
400  
300  
200  
100  
0
85°C  
125°C  
VDD[V]  
2
4
Iload[mA]  
Figure 19.  
Typical VDD-VOH vs. Iload at VDD = 3 V  
Figure 20.  
Typical VDD-VOH vs. VDD at Iload = 4 mA  
VDD-VOH vs Iload @ VDD = 3 V HS Pins  
VDD-VOH vs VDD @Iload = 4 mA HS Pins  
1800  
1600  
1400  
1200  
1000  
800  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
600  
400  
600  
200  
400  
0
200  
0
VDD [V]  
0
2
4
6
Iload[mA]  
Figure 21.  
Typical VDD-VOH vs. Iload at VDD = 5 V  
VDD-VOH vs Iload @ VDD = 5 V HS Pins  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
-40°C  
25°C  
85°C  
125°C  
0
0
2
4
6
8
10  
12  
14  
Iload[mA]  
35/44  
Electrical characteristics  
QST608  
6.7  
RESET pin  
T = -40°C to 125°C, unless otherwise specified.  
A
Table 23. RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
VSS 0.3  
0.3x VDD  
VDD + 0.3  
V
0.7 x VDD  
Schmitt trigger voltage  
hysteresis(1)  
Vhys  
VOL  
2
V
Output low level  
voltage(2)  
VDD = 5V IIO = +2mA  
200  
mV  
VDD = 5V  
VIN = VSS  
30  
20  
50  
70  
Pull-up equivalent  
resistor(3)  
RON  
kΩ  
μs  
VDD = 3V  
90(1)  
Generated reset pulse  
duration  
tw(RSTL)out  
Internal reset sources  
90(1)  
External reset pulse  
hold time(4)  
th(RSTL)in  
μs  
tg(RSTL)in Filtered glitch duration  
200  
ns  
1. Data based on characterization results, not tested in production.  
2. The IIO current sunk must always respect the absolute maximum rating specified in Table 16: Current  
characteristics on page 30 and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin  
between VILmax and VDD  
.
4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses  
applied on RESET pin with a duration below th(RSTL)in can be ignored.  
36/44  
QST608  
Electrical characteristics  
I2C control interface  
6.8  
Subject to general operating conditions for V , and T unless otherwise specified.  
DD  
A
2
2
The QST608 I C interface meets the requirements of the Standard I C communication  
protocol described in the following table with the restriction mentioned below:  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
Table 24. I²C characteristics  
100 kHz speed  
Symbol  
Parameter  
Unit  
Min. (1)  
Max. (1)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
µs  
ns  
250  
0 (2)  
th(SDA)  
SDA data hold time  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
1000  
300  
ns  
µs  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
tsu(STA)  
Repeated START condition setup time  
tsu(STO) STOP condition setup time  
μs  
µs  
pF  
tw(STO:STA) STOP to START condition time (bus free)  
Cb  
Capacitive load for each bus line  
400  
Data based on standard I2C protocol requirement, not tested in production.  
1.  
2. The maximum hold time of the START condition has only to be met if the interface does not stretch the low  
period of the SCL signal.  
(1)  
Table 25. IRQ specific pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
tW(IRQ) IRQ pulse width  
10  
15  
µs  
VDD = 5V  
VDD = 3V  
100  
120  
300  
140  
RIRQ  
IRQ internal pull-up (2)  
kΩ  
1. For additional pin parameters, please use the pin description in Section 6.6: GPOn pin characteristics on  
page 33.  
2. The IRQ pull-up equivalent resistor is based on a resistive transistor.  
37/44  
Electrical characteristics  
Figure 22.  
QST608  
2
Typical application with I C bus and timing diagram  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
QST device  
REPEATED START  
START  
t
t
w(STO:STA)  
su(STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
38/44  
QST608  
Package mechanical data  
7
Package mechanical data  
Figure 23. 32-pin low profile quad flat package (7x7) outline  
Seating  
plane  
C
A
A2  
c
A1  
b
0.25 mm  
Gage plane  
ccc  
C
D
K
L
D1  
A1  
L1  
D3  
24  
17  
16  
25  
E3 E1  
E
32  
9
Pin 1  
identification  
1
8
e
5V_ME  
39/44  
Package mechanical data  
QST608  
Max.  
Table 26. 32-pin low profile quad flat package mechanical data  
mm  
inches(1)  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
1.400  
0.370  
0.0551  
0.0146  
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
D1  
D3  
E
0.2205  
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3543  
0.3622  
0.2835  
E1  
E3  
e
0.2756  
0.2205  
0.0315  
L
0.450  
0.0°  
0.750  
7.0°  
0.0177  
0.0°  
0.0236  
0.0295  
7.0°  
L1  
K
0.0394  
3.5°  
Tolerance (mm)  
0.10  
Tolerance (inches)  
0.0039  
ccc  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
40/44  
QST608  
Part numbering  
8
Part numbering  
Table 27. Ordering information scheme  
Example:  
QST  
6
08  
K
T
6
Device type  
QST = Capacitive touch sensor  
Device sub-family  
1: QTouch (3 to 5 V)  
5: QMatrix (3 to 5 V)  
6: QSlide/QWheel (3 to 5 V)  
11: QTouch (1.8 to 3.6 V)  
15: QMatrix (1.8 to 3.6 V)  
16: QSlide/QWheel (1.8 to 3.6 V)  
Channel count  
Number of channels  
Pin count  
A: 8 pins  
Y: 16 pins  
K: 32 pins  
S: 44 pins  
C: 48 pins  
M: 80 pins  
Package  
B: DIP (dual in-line)  
H: BGA (ball grid array)  
M: SO (small outline)  
N: TSSOP (thin-shrink small outline package)  
T: LQFP (thin quad flat)  
U: QFN (dual quad flat no lead)  
Temperature range  
0: +25°C  
1: 0 to +70°C  
5: –10°C to +85°C  
6: –40°C to +85°C  
7: –40°C to +105°C  
9: –40°C to + 125°C  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
The category of second Level Interconnect is marked on the package and on the inner box  
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to  
soldering conditions are also marked on the inner box label.  
41/44  
Device revision information  
QST608  
9
Device revision information  
9.1  
Device identification  
Figure 24. Device revision identification  
LQFP Package  
A
QST608KT6  
BQRG  
V10  
C
D
E
H
F
G
I
K
a
J
Table 28. Device revision identification  
Marking  
Device revision  
V10  
First revision  
9.2  
Device revision identification  
The marking on the right side of the second line (Line B) of the package top face identifies  
the device revision.  
2
The device revision can also be obtained using the GET_DEVICE_INFO I C command. For  
more information, refer to Section 4.9: Supported commands on page 16.  
This section identifies the device deviations from the present specification for each device  
revision.  
9.2.1  
Revision 1.0  
First device revision.  
42/44  
QST608  
Revision history  
10  
Revision history  
Table 29. Document revision history  
Date  
Revision  
Changes  
10-Dec-2007  
1
First release.  
43/44  
QST608  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
44/44  
厂商 型号 描述 页数 下载

SAMTEC

QST-110-01-F-T [ Board Stacking Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator, Socket, ROHS COMPLIANT ] 1 页

SAMTEC

QST-110-01-G-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-01-M-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-01-S-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-01-S-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-F-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-G-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-G-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-L-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-L-T [ Board Stacking Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator, Socket, ROHS COMPLIANT ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.197696s