找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

IXF6402

型号:

IXF6402

品牌:

LevelOne[ LEVEL ONE ]

页数:

30 页

PDF大小:

303 K

Data Sheet  
JUNE 2000  
Revision 0.1  
IXF6402  
Broadband Access Processor  
General Description  
Features  
Flexibility, scalability, effficiency & integration of  
different traffic types for a single network is the beauty of  
the IXF6402 Broadband Access Processor. Enabling ease  
of OEM development, the IXF6402 provides industry  
standard interfaces for 64-bit/66 Mhz PCI Bus, 64-bit  
SSRAM/SDRAM Local Memory (LM) Bus and UTOPIA  
I/II/III ATM & POS interfaces for direct coupling of a  
broad range of Layer 1 physical interfaces.  
• State of the Art Process Technology  
• Sophisticated Buffer Management  
• Comprehensive Support  
• LANE Hardware Assist  
• Wide Range of Applications  
• PCI 2.1 Compliance  
The IXF6402’s 64-bit, 66Mhz LM Bus acts in concert with  
the 64-bit, 66 Mhz PCI Bus to provide up to 8 Gbps of bus  
bandwidth. An on-board DMA engine” controls access to  
and from both the PCI Bus and the LM Bus and runs in  
master or slave modes.  
• Highest Performance  
• Extensive VC Traffic Shaping & Policing  
• Upper Layer Assist  
• ATM & POS Support  
• 2 Chip OC-48c solution  
The feature rich IXF6402 obtains its full speed by using  
extensive & dedicated hardware-based state machines.  
OEMs can use APIs that run on top of the 6402’s device  
driver to achieve any value added differentiated service.  
IXF6402  
Block Diagram  
Reassembly  
or  
Rx-UTOPIA  
POS Interface  
Rx-DMA  
Rx- FIFO1  
2KB  
PCI  
Master  
64 bit  
Receive DMA,  
Receive Report  
Generator  
CMD Queue  
Rx-packet  
Enqueue Engine  
8, 16 or 32 bit  
66 MHz  
Rx-DMA  
CMD Queue  
PCI  
Slave  
Rx  
Tx  
Traffic  
Shaper  
Tx  
Time  
W heel  
Scheduler  
Tx  
Packet  
Enqueue  
Engine  
Tx  
Packet  
Pointer  
PCI 2 LM  
LM 2 PCI  
CPU DMA  
Buffer Pools  
Manager  
LM  
Slave  
Segmentation  
or  
Packet Dequeue  
Engine  
Tx-UTOPIA  
Tx- CRC 32  
Generator  
Tx-DMA  
Tx- FIFO1  
1KB  
LM  
Master  
64 bit  
66 MHz  
SSRAM  
SDRAM  
Interface  
Transmit DMA,  
Transmit Report  
Generator  
POS Interface  
8, 16 or 32 bit  
CMD Queue  
Tx-DMA  
CMD Queue  
CD00032  
IXF6402 Broadband Access Processor  
SECTION 1 - FEATURE LIST  
High Performance  
• Integrated ATM & POS Quad or Dual OC-24c  
Segmentation & Reassembly (SAR)  
Feature Rich Silicon  
• AAL Types 0, 1, 3/4 & 5  
• TM 4.0 compliant  
• Full duplex line rate operation for 64 byte packets  
• 64-bit architecture  
• Flow control: UBR, CBR, VBR, ABR  
• Full 64-byte VC descriptors  
• Scalable to OC-48  
• Hardware encapsulation & tagging  
• Hardware packet formatting  
• ATM & POS UTOPIA 1, 2 & 3 Support  
• Support for Multi-Port POS  
Extensive Traffic Shaping & Policing  
• Up to 64K VC supported  
• Traffic shaping resources for CBR, VBR  
• Granularity for rates down to 1 Kbps  
Sophisticated Buffer Management  
• Full scatter/gather DMA  
• Time wheel shaper for ABR/UBR with gauranteed  
frame rate  
• Extensive transmit and receive buffering  
• Two-dimensional link-list packet queuing  
• Dual GCRA policing per VC  
• Weighted fair queuing and dynamic priority  
arbitration  
• 164K internal packet descriptor and packet buffer  
pools  
• Maximum bandwidth utilization with UBR fill-in for  
idle cells  
• Multiple buffer sizes and buffer pools  
• Support for 2 & 4-bank-structured SDRAM  
Upper Layer Assist  
• LEC ID, ELAN ID, LLC/SNAP, MPOA, IP  
encapsulations  
State of the Art Process Technology  
• 3.3V+/- 5% tolerant I/Os  
• 64 byte header  
• Programmable header encapsulation or tagging  
• LAN, MPOA, MPLS and IP protocol assist  
• Support for both packet and VC tagging  
• 0.35um CMOS design  
• 352 pin EBGA/SBGA package  
• Power consumption 8.0W @ 100Mhz  
• 9 different transmit and receive report ring size  
configuration  
• Transmit report disable feature for reduced PCI bus  
utilization  
LANE Hardware Assist  
• LANE V1 and V2 packet header generation  
• Support 16 offset configuration per VC per packet or  
buffer in Receive process  
• LEC ID, ELAN ID, and/or LLC/SNAP encapsulation  
• Separate LANE control buffer pool with 4K bitmap  
• LANE flush protocol assist  
• Support for 32-bit cell-or-packet counters for Receive  
• Concurrent cell-or-packet counter reporting for ease  
of statistic tracking  
• Programmable packet holding mode  
Wait for Flush” reply message  
• Support for transmit per packet offset up to 256 bytes  
on byte bundary  
• Per packet CLP-bit setting in transmitting for frame  
relay congestion flag support  
2
CD00032  
IXF6402 Feature List  
Interfaces:  
• Quad OC-12c or Dual OC-24c  
• Glueless 64-bit SSRAM and SDRAM I/F  
• PCI 2.1 compliant 33 / 66 MHz, 32 / 64 bit operation  
• UTOPIA Level 1, II & III  
• ATM or Packet Over Sonet  
PCI 2.1 Compliance:  
• Single-cycle, master-based, fast back-to-back  
transaction  
• PCI read-write overlap operations when either  
operation encounters a re-try response  
• Support for PCI Master to access the 256 Mbyte  
Local Memory  
Comprehensive Support  
• Full source for device drivers provided  
• Internetworking, Development, Evaluation &  
Application -(IDEA Platform) development  
environment available  
• Complete GigaBlade™ reference design available  
• Technical support  
3
CD00032  
IXF6402 Broadband Access Processor  
SECTION 2 - ARCHITECTURAL OVERVIEW  
• RFC 1577 (Classical IP and ARP over ATM)  
• ATM Forum LANE Specification, Version 1.0  
2.1 Hardware Packet  
Processing  
The IXF6402 performs all relevant Layer 2 functions and  
provides extensive hardware assistance to your CPU,  
FPGA or ASIC-based higher-layer processing engine.  
Because all SAR, traffic shaping, tagging, encapsulation,  
buffer management & DMA is handled by the IXF6402, it  
enables your higher-layer engine to focus on application  
functions layers such as bridging, routing, encryption,  
network O/S, management and security.  
• ATM Forum LANE Version 2.0 - LUNI Baseline  
Document, Draft 5, February 1997  
• ATM Forum MPOA Specification, Version 1.0 -  
Baseline Document, February 1997  
The design incorporates numerous features to maximize  
both chip level and system level throughput. The IXF6402  
has 128 VC descriptors in its on-chip cache providing  
additional bandwidth for the whole system. Adding  
external high-speed SSRAM to the 6402's local bus  
increases total capacity to 64K VCs.  
The IXF6402 is also capable of handling any high-level  
application that relies on stateful inspection of packet  
headers as they traverse an interface boundary, such as  
security, firewalling, or encryption.  
The IXF6402 has a sophisticated buffer management  
scheme. All pointer structures (128K for transmit and 36K  
for receive) are internal to the 6402 and greatly reduces the  
number of read/write operations performed during lookup,  
segmentation and re-assembly. Multiple buffer sizes and  
non-contiguous cell splitting are fully supported in  
hardware.The IXF6402 offers support for a PCI Master to  
access 256 Mbyte Local Memory. It also supports a 4-  
bank-structured SDRAM for Packet Buffer.  
The IXF6402 supports a multitude of encapsulation  
methods that accelerate packet processing at layers 2 and 3,  
and can automate packet header generation using the LEC  
ID, ELAN ID, MAC address or any required bit field. It  
also performs LLC/SNAP encapsulation, LANE, MPLS,  
IP protocols and any custom packet tagging schemes.  
Unlike traditional SARs, which only link buffers to VCs  
and perform no packet processing, the IXF6402 uses a two-  
dimensional link list to first, link packets on a per-VC  
basis, and second, link buffers on a per-packet basis with  
enqueue/dequeue pointers to control the link list.  
2.2 ATM Processing  
In addition to features for higher layer processing, the  
IXF6402 still comprises a full suite of ATM processing  
functions.  
Enabling tremendous flexibility to perform extensive  
packet processing assist in hardware, as the IXF6402 can  
differentiate between packets within a given VC. The  
IXF6402 supports multiple packets per VC, with multiple  
buffers per p acket. The GigaBlade subsystem uses this  
feature to provide complete LANE 1.0 data path processing  
in hardware.  
It supports ATM AAL-0, 1, 3/4 and 5 and can deliver true  
UBR, CBR, VBR and ABR for up to 64K VC's. The design  
features full 64-byte VC descriptors and multiple SONET  
ports.  
In ATM mode, the IXF6402 provides all of the necessary  
termination functions currently established by the ATM  
Forum and IETF including:  
• ATM Forum UNI 3.1 ATM Adaptation Layer and  
ATM Layer Specifications  
• ATM Forum Traffic Management Specifications,  
Rev. 4.0  
• RFC 1483 (Multi Protocol Encapsulation Over ATM  
Adaptation Layer 5)  
• RFC 1626 (Default IP MTU for Use Over ATM  
AAL 5)  
4
CD00032  
IXF6402 Architectural Overview  
Applications  
ILMI  
Signaling  
MPLS  
Hardware Assist  
LANE  
Hardware State Machine  
Not Supported  
RFC 1483  
RFC 1577  
RFC 1626  
AAL 1, 3/4, 5  
ATM Layer  
Physical  
There is no embedded RISC processor in the path of any  
per-cell or per-packet transaction that would slow device  
operation or system throughput. This massive hardware  
assist off loads the local CPU saving valuable cycles for  
other critical tasks such as bridging, routing, encryption,  
policy execution and security.  
Figure 1: ATM Functionality  
2.3 Traffic Shaping and  
Policing  
The IXF6402 provides the most granular and efficient  
traffic shaping in the industry, making it an ideal fit for  
DSLAM, VoIP and class-of-service sensitive applications.  
It includes 16 on-chip traffic shapers for CBR/VBR, along  
with a complete TM 4.0 compliant ABR scheduler with  
guaranteed MCR not Zero” hardware support and on  
board RM cell processing. The CBR/VBR shape has the  
support for automatic link/dink feature upon packet  
availability to improve bandwidth utilization.  
2.4 Basic Operation  
Using the IXF6402 is simple. To send a packet to the  
SONET infrastructure you issue an Add-Packet”  
command. The command is 64-bit and specifies how you  
want the packet encapsulated, tagged, what the target VPI/  
VCI is, what the traffic shaping parameters are. As well as  
the packet location and length. This can/may immediately  
followed by a series of “add-buffer” commands (8-byte  
each) telling the engine where the additional payload  
resides (in local SDRAM or across the PCI bus) in case the  
packet is spread across several buffers. From this point on  
the IXF6402 takes control. If required, the payload is  
encapsulated and tagged then passed to the traffic shapers  
and then to the Segmentation Engine. As it passes through  
the packet-cell boundary, cell headers are automatically  
generated as specified in the descriptor.  
During segmentation, if the CBR/VBR VC has no packet  
to send the hardware will dink the VC from shape. During  
an ADD PACKET command the hardware will link the VC  
into the shape.  
During segmentation, if the ABR VC has no packet to send,  
the hardware will remove the VC from the scheduler table.  
During an “ADD PACKET command, the hardware will  
add the VC back into the scheduler table.  
On the receive side, the IXF6402 performs VPI/VCI to 16-  
bit VC descriptor mapping and allocates buffer from its  
internal pools (36K). It polices the traffic using the GCRA  
virtual scheduling algorithm and has the ability to count or  
drop the non-conforming cells or packets. The IXF6402  
offers the ability to differentiate between control and data  
Each VC can be independently shaped within a VP to rates  
as low as 1Kbps giving you unprecedented control over  
traffic on a per-VC basis. The IXF6402's leaky take out  
bucket and virtual scheduling algorithms have been  
implemented for per VC policing.  
5
CD00032  
IXF6402 Broadband Access Processor  
packets by directing all control packets to a different port  
than the data packets according to the on-chip 4K small  
buffer pool setting and dedicating the other on-chip 32k  
large buffer pool strictly to data packets.  
ring. There is also an automatic receive buffer recover  
feature upon completition of a CPU DMA tranfer from  
local bus to PCI bus.  
Up to 32 Mbytes of SDRAM can be used for local  
buffering to support host latency, a large number of  
connections or virtual channels (VCs). For applications  
that support a smaller number of virtual channels, such as a  
low-end network interface card, local memory is not  
required. The chip’s internal 32 Kbytes of memory  
provides fast local storage for cells and descriptor  
buffering.  
The process of associating a packet with a descriptor is an  
application-level function. For example, if your application  
is routing, IP route matches will direct packets destined to  
a remote subnet to a VPI/VCI defined in a local or  
centralized table. In LAN Emulation or Bridging, a similar  
process occurs based on the MAC/LECID address.  
The IXF6402 can perform any desired combination of  
operations on individual packets and reliably deliver wire-  
speed OC-24c performance for 64-byte packets. Designs  
must issue the requisite add-packet” commands at  
whatever rates are required to achieve target performance  
levels.  
Full support for newly developed ABR service category  
and multi protocols, such as TCP/IP over ATM, are also  
supported. On-chip memory enables cached VC  
descriptors to be registered and allows extensive cell  
buffering, which further enhances performance for dual  
chip OC-48c rate operation.  
To handle changes to networking standards, the IXF6402  
obtains configuration information from the PCI address  
space or from a tightly-coupled local RISC processor. The  
local RISC processor is not in the critical path of any per-  
cell or per-packet transaction and, when coupled with the  
extensive hardware assist of the IXF6402 is able to support  
multi protocol data rates of 622 Mbps, full duplex. The  
processor further increases overall end-system  
performance and manageability by off-loading ATM  
service-specific software functions, IP over ATM, and  
network statistical and management functions from the  
end-system’s main processor. This allows the load to be  
distributed to each local processor which greatly reduces  
system bus bandwidth.  
An intelligent DMA interface provides a high-speed  
transfer mechanism between the chip’s internal or local  
memory and external host memory or PCI address space.  
The architecture also provides SSRAM and SDRAM  
support. In very high-performance applications, part of the  
memory can be allocated to SSRAM. Architectural  
innovations make the SRAMs unnecessary in OC-3c  
applications and optional in some OC-48c applications.  
The IXF6402 generates packet and/or buffer reports  
providing all information the user needs to know about the  
transmitted or reassambled packets. It communicates with  
external intelligence using a single location or a circular  
6
CD00032  
IXF6402 Pin Configuration  
SECTION 3 - PIN CONFIGURATION  
Figure 2: IXF6402 Pin Configuration  
A
B
C
D
E
F
G
H
J
K
L
M
N
1
2
3
4
5
GND  
GND  
TXCLAV  
(3)  
TXCLAV  
(0)  
TXEN#  
TXDATA  
(14)  
TXDATA  
(10)  
TXDATA  
(6)  
TXDATA  
(3)  
RCDATA  
(15)  
RCDATA  
(12)  
RCCLK  
GND  
GND  
VCC  
GND  
TXL-  
CAV(1)  
TXA-  
DDR(0)  
TXDATA  
(15)  
TXDATA  
(11)  
TXDATA  
(7)  
TXDATA  
(4)  
TXDATA  
(1)  
RCDATA  
(13)  
RCDATA  
(9)  
RCDATA  
(7)  
LM_IRL(0)  
LM_SA(2)  
LM_SA(3)  
LM_A(2)  
GND  
VCC  
TXCLAV  
(2)  
TXA-  
DDR(1)  
TXPRTY  
TXDATA  
(12)  
TXDATA  
(8)  
TXDATA  
(5)  
TXDATA  
(2)  
RCDATA  
(14)  
RCDATA  
(9)  
RCDATA  
(7)  
LM_IRL(1)  
NC(GND)  
LM_SA(4)  
EXT_CLK  
VCC  
TXA-  
DDR(2)  
TXSOC  
TXDATA  
(13)  
TXDATA  
(9)  
VCC  
TXCLK  
TXDATA  
(0)  
RCDATA  
(11)  
VCC  
LM_RCM  
CS#  
OTEOP  
LM_IRL(2)  
IRMOD(1)  
6
OTMOD(1) LM_SA(6)  
IRMOD(0) LM_SA(5)  
7
LM_A(4)  
LM_A(7)  
LM_A(10)  
OTMOD(0) LM_A(3) IREOP  
8
LM_A(6)  
LM_A(9)  
LM_A(5)  
LM_CS#  
LM_A(12)  
VCC  
9
LM_A(8)  
LM_A(11)  
10  
11  
IXF6402  
CPUDMA_ DMAQF  
BUSY  
LM_A(16)  
LM_A(15)  
LM_A(14)  
LM_A(13)  
12  
352SGBA  
Bottom View  
(Left Side)  
GND  
GND  
LM_A(17)  
LM_A(19)  
LM_CLK  
IERR  
VCC  
13  
14  
LM_A(18)  
LM_A(23)  
LM_RD#  
LM_D(1)  
LM_A(22)  
LM_WR#  
LM_D(0)  
LM_A(21)  
LM_A(25)  
LM_A(20)  
LM_A(24)  
15  
16  
17  
SSRAMC  
S#(0)  
LM_WE#  
(0)  
LM_D(4)  
LM_D(3)  
LM_D(7)  
LM_D(9)  
LM_D(2)  
LM_D(6)  
LM_D(8)  
VCC  
VCC  
Power Pin (+3V)  
Ground Pin  
NC(VCC)  
NC(GND)  
Reserved Power pin  
(+3V)  
18  
19  
20  
21  
22  
23  
24  
25  
26  
LM_WE#  
(1)  
LM_D  
GND  
Reserved Ground Pin  
LM_D(10)  
SSRAMC  
S#(1)  
CLOCK  
Clock Input Pin  
LM_D(13)  
SSRAMCS LM_D(13)  
#(2)  
LM_D(11)  
LM_D(14)  
VCC  
LM_WE#  
(2)  
NC(VCC)  
LM_D(17)  
GND  
LM_D(15)  
LM_D(16)  
VCC  
IRVAL  
LM_D(18)  
GND  
LM_D(22)  
LM_D(23)  
NC(Vcc)  
LM_D(24)  
E
LM_WE#  
(3)  
LM_D(26)  
LM_D(27)  
LM_D(28)  
LM_D(29)  
G
LM_D(30)  
VCC  
LM_D(33)  
LM_D(37)  
LM_D(38)  
LM_D(39)  
LM_RAS# LM_D(41)  
(1)  
NC(GND)  
LM_D(20)  
LM_D(21)  
D
NC(GND)  
LM_D(31)  
LM_CAS# LM_D(34)  
(0)  
LM_CAS# LM_D(42)  
(1)  
VCC  
GND  
SSRAMC  
S#(3)  
LM_WE#  
(4)  
SDRAMC  
S#(0)  
LM_D(35)  
LM_D(36)  
K
SDRAMC  
S#(1)  
LM_D(43)  
GND  
GND  
LM_D(19)  
C
LM_D(25)  
LM_RAS# LM_D(32)  
(0)  
LM_WE#  
(5)  
LM_D  
(40)  
GND  
A
B
F
H
J
L
M
N
7
CD00032  
IXF6402 Broadband Access Processor  
Figure 2: IXF6402 Pin Configuration (cont)  
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
GND  
RCDATA  
(0)  
RCCLAV  
(2)  
RCADDR  
(1)  
RCEN#  
DIS_ALL# TCK  
TDO  
PLI_AD  
(27)  
NC(VCC)  
PCI_AD  
(24)  
GND  
GND  
1
RCDATA  
(4)  
RCDATA  
(1)  
RCCLAV  
(3)  
RCADDR  
(2)  
TCADDR  
(0)  
TMS  
TDI  
TRST#  
NC(GND)  
PCI_AD  
(15)  
GND  
VCC  
GND  
GND  
2
RCDATA  
(5)  
RCDATA(  
2)  
RCSOC  
RCCLAV  
(0)  
PCI_INT#  
PCI_RST  
#
PCI_REQ  
#
PCI_AD  
(30)  
PCI_AD  
(28)  
PCI_AD  
(26)  
VCC  
PCI_AD  
(23)  
3
RCDATA  
(6)  
RCDATA  
(3)  
RCPRTY  
RCCLAV  
(1)  
VCC  
PCI_CLK  
PCI_GNT  
#
PCI_AD  
(3)  
PCI_AD  
(29)  
VCC  
PCI_CBE  
#(3)  
PCI_IDSE PCI_AD(2  
4
L#  
2)  
PCI_AD  
(21)  
PCI_AD  
(20)  
PCI_AD  
(19)  
PCI_AD  
(18)  
5
PCI_AD  
(17)  
PCI_AD  
(16)  
PCI_CBE  
#(2)  
PCI_FRA  
ME#  
6
PCI_IRDY PCI_TRD  
PCI_DEV  
SEL#  
PCI_STO  
P
7
#
Y#  
PCI_PER  
R#  
PCI_SER  
R#  
PCI_PARI PCI_CBE  
8
TY  
#(1)  
IXF6402  
VCC  
PCI_AD  
(15)  
PCI_AD  
(14)  
PCI_AD  
(13)  
9
PCI_AD  
(12)  
PCI_AD  
(11)  
PCI_AD  
(10)  
PCI_AD  
(9)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
352SGBA  
Bottom View  
(Left Side)  
PCI_AD  
(8)  
PCI_CBE  
#(0)  
PCI_AD  
(7)  
PCI_AD  
(8)  
PCI_AD  
(5)  
PCI_AD  
(4)  
PCI_AD  
(3)  
PCI_AD  
(2)  
VCC  
PCI_AD  
(1)  
PCI_AD  
(0)  
GND  
PCI_ACK  
#
PCI_REQ  
64#  
PCI_CBE  
#(7)  
GND  
VCC  
Power Pin (+3V)  
NC(VCC)  
NC(GND)  
Reserved Power pin  
(+3V)  
PCI_CBE  
#(6)  
PCI_CBE  
#(5)  
PCI_CBE  
#(4)  
PCI_AD  
(63)  
GND  
Ground Pin  
Reserved Ground Pin  
PCI_AD  
(62)  
PCI_AD  
(61)  
PCI_AD  
(60)  
PCI_AD  
(59)  
CLOCK  
Clock Input Pin  
PCI_AD  
(58)  
PCI_AD  
(57)  
PCI_AD  
(56)  
PCI_AD  
(55)  
VCC  
PCI_AD  
(54)  
PCI_AD  
(53)  
PCI_AD  
(52)  
PCI_AD  
(51)  
PCI_AD  
(50)  
PCI_AD  
(49)  
PCI_AD  
(48)  
PCI_AD  
(47)  
PCI_AD  
(46)  
PCI_AD  
(45)  
PCI_AD  
(44)  
PCI_AD  
(43)  
PCI_AD  
(42)  
PCI_AD  
(41)  
NC (Vcc)  
PCI_AD  
(40)  
PCI_AD  
(39)  
PCI_AD  
(38)  
PCI_AD  
(37)  
VCC  
LM_D(46)  
LM_D(47)  
LM_CAS# LM_D(50)  
(2)  
VCC  
LM_RAS# LM_D(57)  
(3)  
LM_D(61)  
LM_D(62)  
LM_D(63)  
LM_BWAI VCC  
T#  
NC(GND)  
PCI_AD  
(38)  
PCI_AD  
(35)  
LM_D(44)  
LM_D(45)  
GND  
SDRAMC  
S#(2)  
LM_D(51)  
LM_D(52)  
LM_D(53)  
U
LM_D(54)  
LM_D(55)  
LM_CAS# LM_D(58)  
(3)  
LM_BACK NC(VCC)  
#
VCC  
GND  
VCC  
GND  
AE  
PCI_AD(3  
4)  
LM_WE  
#(6)  
LM_D(48)  
SDRAMC  
S#(3)  
LM_D(59)  
LM_D(60)  
Y
LM_BRE  
Q#  
PCI_PARI GND  
TY64  
GND  
GND  
AF  
LM_RAS# LM_D(49)  
(2)  
LM_WE#  
(7)  
LM_D(58)  
LM_BREL OLM_CLK PCI_AD  
PCI_AD  
(33)  
#
(32)  
P
R
T
V
W
AA  
AB  
AC  
AD  
8
CD00032  
IXF6402 Signal Definitions  
SECTION 4 - SIGNAL DEFINITIONS  
Table 1: PCI Bus Signals  
Pin Numbers  
Signal Name  
I/O  
I/O  
Description  
AF15, AC16, AD16, AE16, AF16,  
AC17, AD17, AE17, AF17, AD18,  
AE18, AF18, AC19, AD19, AE19,  
AF19, AC20, AD20, AE20, AF20,  
AC21, AD21, AE21, AC22, AD22,  
AE22, AF22, AE23, AF23, AF24,  
AD26, AC26, AA4, AA3, AB4, AB3,  
AB1, AC3, AC2, AD1, AF3, AF4, AC5,  
AD5, AE5, AF5, AC6, AD6, AD9, AE9,  
AF9, AC10, AD10, AE10, AF10, AC11,  
AE11, AF11, AC12, AD12, AE12,  
AF12, AD13, AE13  
PCI_AD[63:0]  
PCI Bus Multi-plexed 64-bit Address/Data. During a  
data phase, the upper 32 bits are meaningful when both  
PCI_REQ64# and PCI_ACK# are asserted. During the  
address phase, only the lower 32 bits are used.  
AE14, AC15, AD15, AE15, AD4, AE6,  
AF8, AD11  
PCI_CBE#[7:0]  
I/O  
PCI Bus Command and Byte Enable. During an  
address phase, PCI_CBE# represents a PCI bus com-  
mand. During a data phase it represents a byte enable.  
AF6  
AE4  
PCI_FRAME#  
PCI_IDSEL  
I/O  
I
PCI Bus Cycle Frame. This signal is driven by the Bus  
master to indicate the start and end of a transaction.  
PCI Bus Initialization Device Select. This signal is  
used as a chip select during configuration read and  
write transactions.  
AC7  
AD7  
PCI_IRDY#  
PCI_TRDY#  
I/O  
I/O  
PCI Bus Initiator Ready. When asserted, the bus master  
is ready to complete the current data phase.  
PCI Bus Target Ready. This signal is driven by the tar-  
get to indicate its ability to complete current data  
phase.  
AE7  
PCI_DEVSEL#  
I/O  
PCI Bus Device Select. When driven, this signal indi-  
cates that the driving device has decoded its address as  
the target of the current access.  
AF7  
V3  
PCI_STOP#  
PCI_INT#  
I/O  
O
PCI Bus Stop. The PCI target asserts this signal to  
request the bus master to stop the current transaction.  
PCI Bus Interrupt Signal. This signal should be con-  
nected to INTA# of the PCI connector.  
AD8  
PCI_SERR#  
O
PCI Bus System Error. This signal is used to report  
address parity errors, data parity on the Special Cycle  
command, or any other system error where the result  
will be catastrophic. PCI_SERR# is an open drain sig-  
nal.  
9
CD00032  
IXF6402 Broadband Access Processor  
AC8  
PCI_PERR#  
I/O  
PCI Bus Parity Error. This bit is only used for reporting  
data parity errors during all PCI transactions, except  
for a Special Cycle.  
Table 1: PCI Bus Signals (cont)  
Pin Numbers  
Signal Name  
I/O  
Description  
AE8  
PCI_PARITY  
I/O  
PCI Bus Parity Bit. Sets even parity across  
PCI_AD[31:0] and PCI_C/BE#[3:0].  
W4  
Y3  
PCI_CLK  
I
PCI Bus Clock. Up to 66 MHz.  
PCI_REQ#  
O
PCI Bus Request. The IXF6402 asserts this signal  
when it is trying to access the PCI bus.  
Y4  
PCI_GNT#  
PCI_RST#  
I
I
PCI Bus Grant for the IXF6402.  
W3  
PCI Bus Reset. This is the master reset signal for  
IXF6402.  
AD14  
AC14  
PCI_REQ64#  
PCI_ACK64#  
I/O  
I/O  
PCI Bus Request 64-bit Transfer. When asserted, this  
signal indicates a 64-bit transaction.  
PCI Bus Acknowledge 64-bit. When asserted, this sig-  
nal indicates the target is willing to transfer data using  
64 bits.  
AC25  
PCI_PARITY64  
I/O  
PCI Bus Parity Doubleword. Sets even parity across  
PCI_AD[63:32] and PCI_C/BE#[7:4].  
Table 2: Local Memory Bus Signals  
Pin Numbers  
AB23  
Signal Name  
I/O  
Description  
LM_BWAIT#  
O
Local Bus External Master Wait. During slave access, after the external  
master asserts LM_CS#, the IXF6402 asserts this signal when it is not  
ready for a data transaction. The IXF6402 removes LM_BWAIT# when it  
is ready for transaction. During slave read access, the data on the local bus  
is valid the cycle AFTER LM_BWAIT# is deasserted. The external master  
must hold the data until 1 cycle after this signal is deasserted during a  
slave write transaction.  
AB24  
LM_BACK#  
I
Local Bus Acknowledge. This is the grant signal to the IXF6402 bus  
request. It should remain asserted throughout the transaction. To optimize  
the performance of the chip, external logic can assert this signal all the  
time. However, if external master is present, external logic needs to  
deassert this signal only when external master requires the bus by asserting  
LM_BREL# and LM_BREQ# is deasserted by the IXF6402. After  
LM_BACK# is deasserted, it must remain deasserted until the external  
master has completed the transaction.  
10  
CD00032  
IXF6402 Signal Definitions  
AB25  
LM_BREQ#  
O
Local Bus Request. When asserted, this signal indicates that the IXF6402  
wants to access the local bus. Once it is asserted, it remains asserted until  
the external master asserts LM_BREL#. If the IXF6402 is idle when  
LM_BREL# is asserted, the IXF6402 deasserts LM_BREQ# in the next  
clock cycle; otherwise, it will be 2 cycles after the IXF6402 finishes the  
current transaction. The IXF6402 deasserts this signal for 1 cycle only.  
Table 2: Local Memory Bus Signals (cont)  
Pin Numbers  
Signal Name  
I/O  
I/O  
Description  
AA25, AA24, AA23,  
Y26:Y23, W26,  
LM_D[63:0]  
Local Bus Data. Output during master write or slave read. Input when  
master read or slave write. When writing to SSRAM or SDRAM, data is  
valid on every clock provided any of the memory chip enables are  
asserted. During SSRAM read access, data is valid 1 cycle after  
SSRAMCS# is asserted; therefore, the first cycle after SSRAMCS# is  
deasserted, data is still valid. When reading from SDRAM, depending on  
the CAS latency value, data could be valid 3 clock AFTER SDRAMCS# is  
asserted. As a result, data could still be valid for 3 cycles after  
SDRAMCS# has been removed. Data is invalid in all other cycles when  
IXF6402 is in master mode. During slave write, the external device must  
put the valid data on the data bus in the same cycle that it asserts LM_CS#,  
and the value of the data must be held until for 1 cycle after LM_BWAIT#  
is deasserted. During slave read, data is valid 1 cycle after LM_BWAIT#  
is deasserted and it is held until LM_CS# is deasserted by the external  
device.  
V25, V24, U26:U23,  
T26, T25, R24, R23,  
P25, P24, N25:N23,  
M26, L25, L24, L23,  
K26:K23, J26, H24,  
H23, G26:G23, F26,  
E26, E24, E23, D26,  
D25, C26, A24, B23,  
C23, D22, A21, C22,  
C21, D21, A20, B20,  
C20, B19, C19, D19,  
A18, B18, C18, A17,  
B17  
V26, R25, L26, H25, LM_WE#[7:0]  
F23, A22, A19, D17  
I/O  
Local Bus Write Enable. Output during master read/write and input during  
slave read/write.  
LM_WE#[7] controls LM_D[63:56].  
LM_WE#[6] controls LM_D[55:48].  
LM_WE#[5] controls LM_D[47:40].  
LM_WE#[4] controls LM_D[39:32].  
LM_WE#[3] controls LM_D[31:24].  
LM_WE#[2] controls LM_D[23:16].  
LM_WE#[1] controls LM_D[15:8].  
LM_WE#[0] controls LM_D[7:0].  
LM_WE#[2 i] and LM_WE#[2 i+1] should be connected to DQML and  
DQMU of the SDRAM, respectively, where i is 0 to 3. When connected to  
SSRAM, LM_WE#[i] should be connected to BWi#. LM_WE# has the  
same timing as local memory chip select when the IXF6402 is performing  
a master write.  
W25, T24, M25, J25 SDRAMCS#[3:0]  
O
Local Bus SDRAM Chip Select. When asserted, the IXF6402 wants to  
access SDRAM. These signals are asserted 2 cycles after LM_BACK# is  
asserted if there is a transaction pending. They remain asserted until the  
burst transaction has completed. Note that when these signals are  
deasserted at the end of the read cycle, it does not mean the data is invalid  
from then on; also, these signals are for flow- through only. Please see  
LM_D for more information.  
11  
CD00032  
IXF6402 Broadband Access Processor  
F25, B21, D20, C17  
SSRAMCS#[3:0]  
I/O  
Local Bus SSRAM Chip Select. When asserted, the IXF6402 wants to  
access SSRAM. These signals should be connected to CS# and ADSC#.  
ADSP# and ADV# should be tied high. These signals are asserted 2 cycles  
after LM_BACKLM_BREQ# is asserted if there is a transaction pending.  
They remain asserted until the burst transaction has completed. Note that  
when these signals are deasserted at the end of the read cycle, it does not  
mean the data is invalid from then on. Please see LM_D for more informa-  
tion.  
Table 2: Local Memory Bus Signals (cont)  
Pin Numbers  
AB26  
Signal Name  
I/O  
Description  
OLM_CLK#  
O
Local memory clock output  
W24, T23, M24, J24  
LM_CAS#[3:0]  
I/O  
Local Bus SDRAM Column Address Strobe Command. When this signal  
and SDRAMCS# are both asserted while LM_RAS# is deasserted, then  
the column address is selected. They remain asserted until the transaction  
has completed. These signals are also asserted for 1 cycle during either  
refresh or mode set. They should be connected directly to CAS# of a  
SDRAM. They are input and shaped during slave external master access  
local SDRAM.  
W23, R26, M23,  
H26  
LM_RAS#[3:0]  
I/O  
Local Bus SSRAM Colum Address Strobe Command. When this signal  
and SDRAMCS# are both asserted while LM_RAS# is deasserted, then  
the colum address is selected. They remain asserted until the transaction  
has completed. These signals are also asserted for 1 cycle during either  
refresh or mode set. They are imput and shaped during slave external mas-  
ter access local SDRAM.  
AA26  
LM_BREL#  
LM_A[25:2]  
I
Local Bus Release. The external master asserts this signal to indicate that  
it intents to use the local bus. It deasserts this signal once it detects that  
LM_BREQ# is deasserted. To improve performance, the external master  
should not assert this signal until there is a transaction waiting to be per-  
formed.  
10 C16, D16, A15,  
B15, C15, D15, B14,  
C14, B13, A12, B12,  
D22, A21, C11, D11,  
A10, B10, D10, A9,  
B9, C9, A8, C8, A6  
I/O  
Local Bus Address. The SDRAM row address is selected by LM_A[14:3].  
The SDRAM column address is represented by LM_A[10:3] if a "x16"  
device is chosen. During SSRAM operation, a new address is presented on  
every clock if SSRAMCS# is asserted. When the external master is per-  
forming a slave transaction, it must hold the address until LM_BWAIT# is  
deasserted.  
B16  
LM_WR#  
LM_RD#  
I/O  
I/O  
Local Bus Write. Asserted when the IXF6402 accesses SDRAM and has  
the same timing as SDRAMCS#. Note that this signal is NOT asserted  
during a master write to SSRAM. During Slave access, the external master  
asserts LM_WR# to indicate a write access. The external logic should hold  
the signal until the IXF6402 deasserts lm_wait#.  
A16  
Local Bus Read. Asserted when the current transaction performed by the  
IXF6402 is a read instruction to SSRAM. It has the same timing as  
SSRAMCS#. Please notice that this signal is NOT used when a master  
read from SDRAM is performed. This signal is asserted by the external  
master during a slave read transaction and external logic should hold the  
signal until the IXF6402 deasserts lm_wait#.  
12  
CD00032  
IXF6402 Signal Definitions  
C13  
LM_CLK  
LM_CS#  
I
Local Bus Clock. This is the master clock for the local memory bus and  
the IXF6402.  
C10  
I
Local memory chip when asserted the IXF6402 wants to access local  
memory.  
B7, D7, B6, A5, A4  
LM_SA[6:2]  
O
Local Bus Spare Memory Address. When LM_A[6:2] is used for  
SDRAM. The LM_SA[6:2] should be used for SSRAM or vice-versa. This  
signal has the same timing as LM_A. However, instead of becoming input  
during a slave access, these pins will be tristated.  
D6, B4, A3  
LM_IRL[2:0]  
O
Local Bus Interrupt. LM_IRL[0] is asserted when any bit in the Error  
Interrupt register is set. LM_IRL[1] is set when any bit in the Status Inter-  
rupt register is asserted. LM_IRL[2] is set when any bit in the Status[2:0]  
register is set.  
Table 2: Local Memory Bus Signals (cont)  
Description  
Pin Numbers  
Signal Name  
I/O  
C5  
LM_ROMCS#  
O
Local Bus Expansion ROM Chip Select. If ROM is present, this signal  
will be asserted during the booting process. PCI Master Access Expansion  
ROM. Only 16-bit EPROM is supported by the IXF6402 and it should be  
connected to LM_A[18:3] and LM_A[63:48].  
Table 3: UTOPIA Bus Signals  
Pin Numbers  
C1, D3, D2, D1  
Signal Name  
TXCLAV[3:0]  
I/O  
Description  
I
UTOPIA Bus Transmit Cell Available. When asserted, this signal indi-  
cates that MPHY is ready to accept the transfer of a complete cell.  
E4, E3, E2  
TXADDR[2:0]  
TXDATA[15:0]  
TXSOC  
O
UTOPIA Bus Transmit MPHY Address. When address polling is enabled,  
these signal are the MPHY address. When address polling is disabled,  
these signals are used as TXEN#[3:1].  
F2, F1, G4:G1,  
H4:H1, J3:J1, K3,  
K2, L4  
O
UTOPIA Bus Transmit Data. This bus carries the ATM cell and is only  
valid when TXEN# is asserted.  
F4  
O
UTOPIA Bus Transmit Start of Cell. When asserted, this signal indicates  
that the current data on TXDATA is the beginning of a new ATM cell. F3  
TXPRTY O UTOPIA Bus Transmit Data Parity. TXPRTY serves as the  
odd parity bit over TXDATA[15:0]. When FPE (Force Parity Error) is set  
in the UTOPIA control register, the IXF6402 asserts even parity on this  
pin.  
F3  
E1  
TXPRTY  
TXEN#  
O
UTOPIA Bus Transmit Data Parity. TXPRTY serves as the odd parity bit  
over TXDATA[15:0]. When FPE ( Force Parity Error ) is set in the  
UTOPIA Control register, the IXF6402 assert even parity on this pin.  
O
UTOPIA Bus Transmit Enable. When asserted, this signal indicates that  
the current cycle contains a valid ATM cell. K4 TXCLK I UTOPIA Bus  
Transmit Clock. This signal is the UTOPIA Bus transmit clock.  
13  
CD00032  
IXF6402 Broadband Access Processor  
K4  
TXCLK  
I
I
UTOPIA Bus Transmit Clock. This signal is the UTOPIA Bus transmit  
clock.  
T2, T1, U4, U3  
U2, U1, V2  
RCCLAV[3:0]  
RCADDR[2:0]  
UTOPIA Bus Receive Cell Available. When asserted, MPHY is ready to  
transfer a complete cell.  
O
UTOPIA Bus Receive MPHY Address. When address polling is enabled,  
these signals are the Receive MPHY address. When polling is disabled,  
these signals are used as RxEn#[3:1].  
K1, L3:L1, M4:M2,  
N3, N2, P4:P2,  
R4:R1  
RCDATA[15:0]  
I
UTOPIA Bus Receive Data. These signals carry the ATM cell and are  
valid only in cycles following those with RCEN# asserted.  
T3  
RCSOC  
I
UTOPIA Bus Receive Start of Cell. This signal indicates the current data  
on RCDATA is the beginning of a new ATM cell.  
T4  
RCPRTY  
I
UTOPIA Bus Receive Data Parity. This signal is only valid in cycles  
following those with RCEN# asserted. This bit serves as the odd parity bit  
over RCDATA[15:0]. When FPE (Force Parity Error) is set in the  
UTOPIA Control register, the IXF6402 assert even parity on this pin.  
V1  
RCEN#  
O
UTOPIA Bus Receive Enable. When asserted, indicates that the IXF6402  
is ready to accept a ATM cell in the following cycles.  
M1  
D5  
RCCLK  
TEOP  
I
UTOPIA Bus Receive Clock This is the UTOPIA Bus receive clock.  
Tx end of packet  
O
I
D8  
REOP  
Rx end of packet  
D13  
RERR  
I
Rx packet error, assert only when reop is asserted.  
C6  
C7  
RMOD [ 1:0 ]  
I
Rx module indicates the number of valid bytes in rx data.  
8 bit mode - not applicable  
16 bit mode - only rmod [ 0 ] is used  
0: only rmod [ 15:0 ] are valid  
1: only rcDATA [ 15:8 ] are valid  
32 bit mode -  
00 : Rc Data[ 31:0 ] are valid  
01 : Rc Data [ 31: 8 ] are valid  
10 : Rc Data [ 31: 16 ] are valid  
11 : Rc Data [ 31: 24 ] are valid  
A7  
B8  
TMOD[ 1:0 ]  
O
Tx modulo indicates the number of valid bytes in tcdata.  
8 bit mode - not applicable  
16 bit mode - only TMOD [ 0 ] is used  
0 : Tx Data [ 15:0 ] are valid  
1 : only Tx Data [ 15 ] are valid  
32 bit mode -  
00 : Tx Data [ 31: 0 ] are valid  
01 : Tx Data [ 31: 8 ] are valid  
10 : Tx Data [ 31: 16 ] are valid  
11 : Tx Data [ 31: 24 ] are valid  
14  
CD00032  
IXF6402 Signal Definitions  
Table 4: Support For POS Feature  
SIGNAL  
NAME  
PIN #  
I/O  
SIGNAL DEFINITIONS  
Transmit EOP  
When in ATM Mode  
No Connect  
D5  
D8  
D13  
C6  
OTEOP  
O-4mA  
IREOP  
I
Receive EOP  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
No Connect  
No Connect  
Pullup  
IERR  
I
Receive Error  
IRMOD(1)  
IRMOD(0)  
OTMOD(1)  
OTMOD(0)  
IRVAL  
I
Receive Modulo(1)  
Receive Modulo(0)  
Transmit Modulo(1)  
Transmit Modulo(0)  
POS RC-Data Valid  
C7  
I
A7  
B8  
O-4mA  
O-4mA  
I
A23  
Table 5: JTAG Signals  
Pin Numbers  
W2  
Signal Name  
I/O  
Description  
TMS  
I
JTAG Test Mode Select. It is used to control the state of the TAP controller  
in the device.  
Y1  
TCK  
TDI  
I
I
JTAG Input Clock.  
Y2  
JTAG Data Input.  
AA1  
AA2  
TDO  
TRST#  
O
I
JTAG Data Output.  
JTAG Test Reset. This will reset the TAP controller.  
Table 6: Miscellaneous Signals  
Pin Numbers  
Signal Name  
I/O  
Description  
W1  
B11  
C4  
DIS_ALL#  
I
Disable All. This signal disables all output and tristate  
signals. For normal operation, this signal should be  
high. A11 PKT_BUSY O Packet Processor Busy.  
CPUDMA_BUSY  
EXT_CLK  
O
DMA Queue Full. C4 EXT_CLK I External Clock.  
This clock can be used as an external clock source for  
the shaper.  
I
External clock . This clock can be used as an external  
source for the traffic shaper.  
15  
CD00032  
IXF6402 Broadband Access Processor  
A11  
PKT_BUSY  
O
The purpose of this pin is to help the hardware to keep  
track of whether the IXF6402’s four entry  
Transmit_ADD_PKT_QUEUE and 2-entry  
ADD_BUFFER_QUEUE are available to accept  
another command.  
B5, D24, F24, AB2, AD23  
NC(GND)  
NC(VCC)  
GND  
I
I
No connect (reserved for ground).  
No connect (reserved for power).  
Ground.  
B22, E25, AC1, AC24, AF21  
A1, A2, A13, A14, A25, A26, B1, B3,  
B24, B26, C2, C25, N1, N26, P1, P26,  
AD2, AD25, AE1, AE3, AE24, AE26,  
AF1, AF2, AF13, AF14, AF25, AF26  
I
C3, C24, D9, D18, J4, J23, V4, V23,  
AC9, AC18, AD3, AD24  
VCC  
VCC  
I
Power, 3.3V.  
Pover, 2.5V.  
B2, B25, D4, D14, D23, N4, P23, AC4,  
AC13, AC23, AE2, AE25  
16  
CD00032  
IXF6402 Electrical Characteristics  
SECTION 5 - ELECTRICAL CHARACTERISTICS  
Above which the useful life of the chip may be impaired.  
For user guidelines, not tested.  
Table 7: Absolute Maximum Ratings  
Rating  
Value  
Case Temperature under bias  
Storage Temperature  
0 C to 85 C  
-65 C to 150 C  
-55 C to 125 C  
Ambient Temperature (Power ON)  
Voltage on any pin  
-0.3V to Vcc+0.3V (with respect to GND)  
DC Input Voltage  
0.5V to 7.0V  
30mA  
Output current into TTL Outputs (LOW)  
Output current into PECL Outputs (HIGH)  
Table 8: Operating Range  
-50mA  
Range  
Ambient Temperature  
VCC  
Commercial  
0 C to +70 C  
3.3V ± 5%  
Table 9: DC Characteristics  
Item  
Symbol  
Min  
Type  
Max  
Vcc+0.3  
Units  
Condition  
Notes  
Input Voltage  
(LV-TTL level)  
VIHT  
VILT  
2.0  
-0.3  
-
-
V
-
0.8  
V
V
V
V
Input Voltage  
TTL Level  
Schmitt  
VTT-  
VTT  
0.8  
0.3  
-
-
-
-
Vcc = 3.3V  
Vcc = 3.3V  
Vcc = 3.3V  
VTT+  
2.0  
Input Voltage  
(CMOS level)  
VTT-  
AVTT  
0.3Vcc  
0.3  
-
-
-
-
V
V
FCC = 3.3V  
Vcc = 3.3V  
17  
CD00032  
IXF6402 Broadband Access Processor  
Table 9: DC Characteristics  
Item  
Symbol  
Min  
2.4  
Type  
Max  
Units  
Condition  
Notes  
Output Voltage  
(TTL level)  
VOHT  
VOLT  
-
-
-
0.4  
V
V
IOH = -2/-4/-8/-12/-24 mA  
IOL = 2/4/8/12/24 mA  
-
Output Voltage  
(CMOS level)  
VOHC  
VOLC  
Vcc-0.1  
-
-
-
-
0.1  
V
V
VCC = 3.3V  
VCC = 3.3V  
Input leak current  
Output leak current  
ILI  
-
-
-
-
1.0  
1.0  
mA  
mA  
-
ILO  
High impedance output  
mode  
Pull up current (TTL)  
IPUT  
IPUC  
120  
60  
330  
165  
800  
400  
mA  
mA  
VIN = GND  
VIN = GND  
Pull up current  
(CMOS)  
Pull down current  
(TTL)  
IPDT  
120  
330  
800  
mA  
mA  
VIN = VCC  
Pull down current  
(CMOS)  
IPDC  
60  
165  
400  
VIN = VCC  
Output high mini-  
mum current  
IOH (min)  
IOH (max)  
IOL(min)  
IOL (max)  
-12VCC  
-
-
-
-
-
mA  
mA  
mA  
mA  
VOUT = 0.3VCC  
VOUT = 0.7VCC  
VOUT = 0.6VCC  
VOUT = 1.8VCC  
1
output high maximum  
current  
-
-32VCC  
-
Output low Minimum  
current  
-16VCC  
-
1
output low maximum  
current  
38VCC  
Output High Voltage  
Output Low Voltage  
High clamp current  
VOH  
VOL  
ICH  
0.9VCC  
-
-
-
-
-
V
V
IOUT = -1.5mA  
0.1VCC  
-
IOUT = 1.5mA  
25 +  
ma  
VCC+4>VIN>=VCC+1  
(VIN-  
VCC-1)  
/ 0.015  
Low clamp current  
ICL  
-25 +  
-
-
ma  
-3 < VIN >= -1  
(VIN+1)  
/ 0.015  
Output Rise slew rate  
Output Fall slew rate  
Tx  
Tx  
1
1
-
-
4
4
V/ns  
V/ns  
0.3VCC to 0.6VCC  
0.6VCC to 0.3VCC  
2
2
Note: VCC = 3.3V ± 0.3V, Ta = 0° C to +70° C  
Notes:  
specified here, i.e. half sized drivers may be used on these  
signals. This specification does not apply to PCI_CLK and  
PCI_RST# which are system outputs. Switching Current  
High” specifications are not relevant to PCI_SERR# and  
PCI_INT# which are open drain outputs.  
Switching current characteristics for the PCI_REQ64# and  
PCI_GNT# pins are permitted to be one half of what is  
18  
CD00032  
IXF6402 Electrical Characteristics  
This parameter is to be interpreted as the cumulative edge  
rate across the specified range rather than the instantaneous  
rate at any point within the transition range. The specified  
load is optional. The designer may elect to meet this  
parameter with an unloaded output per rev 2.0 of the PCI  
spec. However, adherence to both maximum and minimum  
parameters is now required (the max is no longer simply a  
guideline).  
DC curves with one exception: from a quiescent or steady  
state condition, the current associated with the AC drive  
point must be reached within the output delay time, Tval.  
Note however, that this delay time also includes necessary  
logic time. The partitioning of Tval between clock  
distribution, logic and output buffer is not specified, but the  
faster the buffer (as long as it does not exceed the  
maximum rise/fall time specification) the more time  
allowed for logic delay inside the part.  
The V/I curves define the min and max output buffer drive  
strength. These curves should be interpreted as traditional  
pin  
0.5 inch maximum  
Vcc  
10pF  
1 KOhm  
1 KOhm  
Output buffer  
Figure 3: Tval (min) and Slew Rate  
19  
CD00032  
IXF6402 Broadband Access Processor  
SECTION 6 - TIMING SPECIFICATIONS  
compliance with clock specification is measured at the add-  
in board component, not at the connector slot.  
6.1 Clock Timing  
The clock waveform must be delivered to each 66Mhz PCI  
component in the system. In the case of add-in boards,  
Fig 4 shows the clock waveform and required measurement  
points for 3.3V signaling environments.  
Tcyc  
3.3V CLOCK  
Thigh  
0.6Vcc  
0.5Vcc  
0.4Vcc  
0.3Vcc  
0.2Vcc  
Tlow  
0.4Vcc, peak-to-peak  
(minimum)  
Figure 4: 3.3V CLOCK Waveform  
20  
CD00032  
IXF6402 Timing Specifications  
6.2 Clock Specifications  
Table 10: 33Mhz / 66Mhz Timing Parameters  
Symbol  
Parameter  
66Mhz  
max  
33Mhz  
max  
Units  
Notes  
min  
15  
6
min  
30  
12  
12  
1
Tcyc  
Clock cycle time  
ns  
1, 3  
Thigh  
Tlow  
Tslew  
Clock high time  
Clock low time  
Clock slew rate  
9
9
4
18  
18  
4
ns  
6
ns  
1.5  
V/ns  
2
Notes:  
In general, all 66.6Mhz PC components must work with a  
clock frequency of up to 66.6Mhz. Device operational  
parameters at frequencies under 33Mhz must conform to  
the specifications in Chapter 4 of the PCI specification, rev  
2.1. The clock frequency may be changed at any time  
during the operation of the system as long as the clock  
edges remain “clean” (monotonic) and the minimum cycle  
and high and low times are not violated. The clock maybe  
stopped only in a low state. A variance on this specification  
is allowed for components designed for use on the system  
planar only. For clock frequency between 33Mhz and  
66.6Mhz, the clock frequency may not change except in  
conjunction with a PCI reset.  
Rise and Fall times are specified in terms of the edge rate  
measured in V/ns. This slew rate must be met across the  
minimum peak-to-peak portion of the clock waveform as  
shown in Fig 4. Clock slew rate is measured by the slew  
rate circuit shown in Table 10. The minimum clock rate  
must not be violated for any single clock cycle, i.e.  
accounting for all system jitter.  
21  
CD00032  
IXF6402 Broadband Access Processor  
description is an extract from the ATM Form UTOPIA  
Level 2 Specification, Version 1.0 of June 1995 (af-phy-  
0039.0000).  
6.3 UTOPIA Timing  
Parameters  
The IXF6402 UTOPIA interface is fully compliant with  
the ATM Forum Specifications. The following timing  
Table 11: Transmit timing (16-bit data bus, Û50 MHz at cell interface)  
Signal Name  
TxClk  
DIR  
Item  
f1  
tT2  
tT3  
tT4  
Description  
Min  
Max  
50MHz  
60%  
5%  
TxClk frequency (nominal)  
TxClk duty cycle  
TxClk peak-to-peak jitter  
TxClk rise/fall time  
0
40%  
-
-
2ns  
TxData[15:0],  
A=>P  
tT5  
tT6  
Clock to Output Valid @ 35 pf  
2
-
14  
-
TxPrty, TxSOC,  
TxEnb*, Txaddr  
TxFull*/  
TxClav  
A<=P  
tT7  
tT8  
Input setup to TxClk  
Input hold from TxClk  
4ns  
1ns  
-
-
Table 12: Receive timing (16-bit data bus, Û50 MHz at cell interface, single-PHY)  
Signal Name  
RxClk  
DIR  
Item  
f1  
tT2  
tT3  
tT4  
Description  
Min  
Max  
50MHz  
60%  
5%  
RxClk frequency (nominal)  
RxClk duty cycle  
RxClk peak-to-peak jitter  
TxClk rise/fall time  
0
40%  
-
-
2ns  
RxEnb*, Rxaddr  
A=>P  
A<=P  
tT5  
tT6  
Clock to Output Valid @ 35 pf  
2
-
14  
-
RxData[15:0],  
RxPrty, RxSOC,  
RxEmpty*/RxClav  
tT7  
tT8  
Input setup to RxClk  
Input hold from RxClk  
4ns  
1ns  
-
-
22  
CD00032  
IXF6402 Timing Specifications  
6.4 PCI Timing Parameters  
Table 13: 33Mhz and 66Mhz Timing Parameters  
Symbol  
Parameter  
66Mhz  
33Mhz  
min max  
Units  
Notes  
min  
2
max  
6
Tval  
PCI_CLK to signal valid delay – bused signals  
2
2
11  
12  
ns  
ns  
1, 2, 3, 7  
1, 2, 3, 7  
Tval(ptp)  
PCI_CLK to signal valid delay – point-to-point  
signals  
2
6
Ton  
Float to active delay  
2
2
ns  
ns  
ns  
ns  
1, 7, 8  
1, 8  
Toff  
Active to Float delay  
14  
28  
Tsu  
Input setup time to PCI_CLK – bused signals  
3
5
3, 4  
Tsu(ptp)  
Input setup time to PCI_CLK – point-to-point  
signals  
10,  
12  
3, 4  
Th  
Input Hold time from PCI_CLK  
0
1
0
1
ns  
ms  
us  
ns  
ns  
4
5
5
5
Trst  
RESET active time after Power stable  
RESET active time after PCI_CLK stable  
RESET active to output float delay  
PCI_REQ64# to PCI_RST# setup time  
Trst-clk  
Trst-off  
Trrsu  
100  
100  
40  
40  
50  
10Tc  
yc  
10Tc  
yc  
Trrh  
PCI_RST# to PCI_REQ64# HOLD time  
0
50  
0
ns  
Notes:  
It is important that all driven signal transitions drive to their  
Voh or Vol level within one Tcyc.  
if a mechanism is provided to guarantee a minimum value  
of 2ns when M66EN is deasserted.  
Minimum times are measured at the package pin with the  
load circuit. Maximum times are measured with the load  
circuit.  
For purpose of active/float timing measurements, the HI-Z  
or “off” state is defined as when the total current delivered  
through the component pin is less than or equal to the  
current leakage specification.  
PCI_REQ64# and PCI_GNT# are point-to-point signals  
and have different input setup times than do bused signals.  
The PCI_REQ64# and PCI_GNT# signals have a setup  
time of 5 ns at 66.6Mhz. All other signals are bused.  
PCI_RST# is asserted and deasserted asynchronously with  
respect to PCI_CLK. All output drivers must be floated  
when PCI_RST# is active.  
When M66EN is asserted, the minimum specification for  
Tval(min), Tval(ptp)(min) and Ton may be reduced to 1ns  
23  
CD00032  
IXF6402 Broadband Access Processor  
Vth  
Vtl  
CLK  
Tfval  
Vtfall  
Output delay  
Trval  
Vtrise  
Tristate  
Output  
Ton  
Toff  
Figure 5: Output timing measurement  
conditions  
Vth  
Vtl  
Vtest  
CLK  
Tsu  
Th  
Vth  
Input  
Vtl  
Vmax  
Valid  
Vtest  
Figure 6: Input timing measurement  
conditions  
24  
CD00032  
IXF6402 Timing Specifications  
pin  
0.5 inch maximum  
10pF  
25 ohm  
Output buffer  
Figure 7: Tval (max) Rising edge  
pin  
0.5 inch maximum  
Vcc  
10pF  
25 Ohm  
Output buffer  
Figure 8: Tval (max) Falling edge  
25  
CD00032  
IXF6402 Broadband Access Processor  
6.5 Local Memory Bus  
Timing  
Table 14: Local Memory Bus Timing Parameters  
Symbol  
Parameter  
66Mhz  
max  
33Mhz  
min max  
Units  
Notes  
min  
15  
6
Tcyc  
Clock cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 3 (clk timing)  
Thigh  
Tlow  
Clock high time  
Clock low time  
Input setup  
9
9
6
Tsetup  
Thold  
Tdelay  
Thigh-z  
3
Input hold  
3
Output delay  
4
10  
14  
High impedance delay  
5
Thigh  
Tlow  
CLK  
Tsetup Thold  
Inputs  
Tcyc  
Inputs  
Tdly  
Th-iZ  
Valid  
Outputs  
Figure 9: Local Memory Bus Timing  
Specifications  
26  
CD00032  
IXF6402 Package Information  
SECTION 7 - PACKAGE INFORMATION  
Figure 10: 352-pin Ball Array  
Parameter  
Millimiters  
Nom  
Min  
Max  
Package Height  
Ball Height  
A
1
1.41  
0.56  
1.54  
0.63  
1.67  
0.70  
A
Package Body Thickness  
A
0.85  
0.91  
0.97  
2
Package Body Width  
Ball Foot Print  
D
1
34.90  
31.65  
35.00  
31.75  
35.10  
31.85  
D
Package Body Length  
Ball ( Lead ) Count  
E
1,  
34.90  
31.65  
35.00  
31.75  
35.10  
31.85  
E
Ball Matrix  
No. Of Rows Deep  
M, N  
26 x 26  
2 - 4  
M
1
Ball ( Lead ) Width  
Ball Pitch  
b
e
0.60  
0.75  
1.27  
0.90  
Complanarity  
aaa  
bbb  
ccc  
ddd  
p
0.15  
0.15  
0.20  
0.50  
0.35  
0.635  
Parallel  
Top Flatness  
Seating Plane Clearance  
Encapsulation Height  
Solder Ball Placement  
0.15  
0.20  
0.33  
0.30  
s
Table 15: 352-pin Ball Array  
27  
CD00032  
IXF6402 Broadband Access Processor  
NOTES  
28  
CD00032  
IXF6402 NOTES  
29  
CD00032  
OPO Headquaters  
47509 Seabridge Drive  
Fremont, California 94538  
Telephone: (510) 497 3960  
Fax: (510) 497 3980  
The Americas  
International  
EAST  
WEST  
ASIA/PACIFIC  
EUROPE  
Eastern Area Headquarters & Western Area  
Northeastern Regional Office Headquarters  
Asia / Pacific Area  
Headquarters  
European Area Headquarters &  
Southern Regional Office  
234 Littleton Road, Unit 1A  
Westford, MA 01886  
USA  
Tel: (978) 692-1193  
Fax: (978) 692-1124  
3375 Scott Blvd., #110  
Santa Clara, CA 95054  
USA  
Tel: (408) 496-1950  
Fax: (408) 496-1955  
101 Thomson Road  
United Square #08-01  
Singapore 307591  
Singapore  
Tel: +65 353 6722  
Fax: +65 353 6711  
Parc Technopolis-Bat. Zeta 3,  
avenue du Canada -  
Z.A. de Courtaboeuf  
Les Ulis Cedex 91974  
France  
Tel: +33 1 64 86 2828  
Fax: +33 1 60 92 0608  
North Central  
Regional Office  
South Central  
Regional Office  
Central Asia/Pacific  
Regional Office  
Central Europe  
Regional Office  
One Pierce Place  
Suite 500E  
Itasca, IL 60143  
USA  
800 East Campbell Road  
Suite 199  
Richardson, TX 75081  
USA  
12F-1, No. 128, Section3, Lilienthalstr. 25  
Ming Sheng East Road  
Taipei , Taiwan,  
R.O.C.  
D-85399 Hallbergmoos  
Germany  
Tel: +49 81 16 006 817  
Tel: (630) 250-6044  
Fax: (630) 250-6045  
Tel: (972) 680-5207  
Fax: (972) 680-5236  
Tel: +886 2 2547 5227 Fax: +49 81 16 006 815  
Fax: +886 2 2547 5228  
Southeastern  
Regional Office  
Southwestern  
Regional Office  
Northern Asia/Pacific  
Regional Office  
Northern Europe  
Regional Office  
4020 WestChase Blvd  
Suite 100  
Raleigh, NC 27607  
USA  
28203 Cabot Road  
Suite 300  
Laguna Niguel, CA 92677  
USA  
Nishi-Shinjuku, Mizuma Torshamnsgatan 35  
Building 8F 164/40 Kista/Stockholm,  
3-3-13, Nishi-Shinjuku, Sweden  
Shinjuku-Ku  
Tel: +46 8 750 3980  
Tel: (919) 836-9798  
Fax: (919) 836-9818  
Tel: (949) 365-5655  
Fax: (949) 365-5653  
Tokyo, 160-0023 Japan Fax: +46 8 750 3982  
Tel: +81 3 3347-8630  
Fax: +81 3 3347-8635  
Latin/South America  
Headquarters  
Israel  
Regional Office  
9750 Goethe Road  
Sacramento, CA 95827  
USA  
Tel: (916) 855-5000  
Fax: (916) 854-1102  
Regus Instant Offices-Harel House  
3 Abba Hillel Silver Street  
Ramat Gan, 52522 Israel  
Tel: +972-3-754-1130  
Fax: +972-3-754-1100  
Revision  
Date  
Status  
Data Sheet  
0.1  
6/00  
The products listed in this publication are covered by one or more of the following patents. Additional patents pending.  
5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746; 5,166,635; 5,181,228;  
5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,267,746; 5,461,661; 5,493,243; 5,534,863; 5,574,726; 5,581,585; 5,608,341; 5,671,249; 5,666,129; 5,701,099  
Copyright © 1999 Level One Communications, Inc., an Intel company. Specifications subject to change without notice.  
Document # CD00032  
All rights reserved. Printed in the United States of America.  
厂商 型号 描述 页数 下载

ILSI

IXF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15AF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15AT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15BF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15BT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15CF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15CT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15DF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A15DT 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

ILSI

IXF-10A20AF 晶体滤波器3线金属包装[ Crystal Filter 3 Lead Metal Package ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.235375s