找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LYT5228D-TL

型号:

LYT5228D-TL

品牌:

POWERINT[ Power Integrations ]

页数:

14 页

PDF大小:

832 K

LYT5216-5228  
LYTSwitch-5 Family  
Single-Stage LED Driver IC with Combined PFC and Constant Current  
Output in Isolated and Non-Isolated Topologies  
Product Highlights  
Combined Single-Stage PFC + Accurate CC Output  
Accurate CC, better than ±3%  
Power Factor >0.9  
Low THD, <10% with typical input and output conditions  
>90% efficient in optimized designs  
High switching frequency and DCM allow compact magnetics  
LYTSwitch-5  
L
D
S
CONTROL  
DS  
DO  
Design Flexibility  
OC  
FB  
BP  
Supports buck, buck-boost, tapped-buck, boost, isolated and  
non-isolated flyback topologies  
2 MOSFET voltage options and 3 power levels for optimum device  
selection  
PI-7711-121015  
Figure 1a. Typical Application Schematic: Isolated Flyback.  
Highest Reliability  
No electrolytic bulk capacitors or optoisolators for increased lifetime  
Comprehensive protection features  
Input and output overvoltage  
Open-loop protection  
Advanced thermal control  
Thermal foldback allows output light delivery at abnormally high  
ambient temperatures  
Hysteretic shutdown provides protection during fault conditions  
LYTSwitch-5  
L
D
S
CONTROL  
Description  
DS  
DO  
FB  
BP  
OC  
The LYTSwitch™-5 family is ideal for single-stage power factor  
corrected constant current LED applications – bulbs, tubes and  
ballasts.  
Each device incorporates a high-voltage power MOSFET and discon-  
tinuous mode, variable frequency, variable on-time controller. The  
controller also provides fast (cycle-by-cycle) current limit, input and  
output OVP, plus advanced thermal management circuitry.  
PI-7799-121015  
Figure 1b. Typical Application Schematic: Non-Isolated Buck.  
Output Power Table  
The combination of a low-side switching topology, cooling via electroni-  
cally quiet SOURCE pins and frequency jitter ensures extremely low EMI.  
This reduces the size of the input filter components – greatly reducing  
audible noise.  
Output Power1  
Product2  
90-308 VAC  
LYT5225D  
9 W  
16 W  
25 W  
The part numbers shown in Table 1 describe 3 different power levels and  
two MOSFET voltage options to cost-optimize designs, while EcoSmart™  
switching technology ensures maximum efficiency for each device size  
and load condition.  
LYT5216D, LYT5226D  
LYT5218D, LYT5228D  
Table 1. Output Power Table.  
Notes:  
1. Maximum practical continuous power in an open frame design with adequate  
heat sinking, measured at 50˚C ambient (see Key Applications Considerations  
for more information).  
2. Package: D: SO-16B.  
Figure 2. SO-16B (D Package).  
www.power.com  
March 2016  
This Product is Covered by Patents and/or Pending Patent Applications.  
LYT5216-5228  
ꢐYꢍꢀꢅꢅ  
ꢒꢐꢍꢓ  
ꢊꢃꢀꢌꢈ  
ꢒꢊꢓ  
ꢃꢄꢏꢁLꢀTꢂꢃ  
5ꢛ25 ꢔ  
ꢁꢔ  
Lꢌꢈꢄ-ꢅꢄꢈꢅꢄ  
ꢒLꢓ  
ꢚꢛꢜ ꢔ  
Lꢂꢔ  
Lꢂꢔ  
Lꢌꢋ  
Lꢌꢋ  
ꢅꢂꢀ  
Lꢂꢔ  
ꢉꢁꢃꢃꢄꢈT LꢌꢋꢌT  
ꢅꢂꢀ  
ꢔꢝꢌLꢌꢋ  
ꢁꢔ  
ꢆꢐ  
ꢞꢉ  
+
ꢞꢉ  
ꢆꢐꢒꢅꢑꢓ  
ꢁꢍꢊꢀTꢄ  
ꢆꢃꢄꢇꢁꢄꢈꢉY ꢀꢈꢊ  
ꢊꢁTY ꢉYꢉLꢄ ꢉꢂꢈTꢃꢂL  
ꢆꢄꢄꢊꢐꢀꢉꢑ  
ꢒꢆꢐꢓ  
ꢆꢐ  
ꢆꢐꢒꢀꢃꢓ  
ꢂꢁTꢍꢁT  
ꢉꢂꢋꢍꢄꢈꢅꢀTꢌꢂꢈ  
ꢒꢂꢉꢓ  
ꢆꢐ  
ꢋꢁLTꢌꢍLꢌꢄꢃ  
ꢄꢕꢖꢗꢘꢙ  
ꢒꢄꢈꢓ  
ꢊꢃꢌꢔꢄꢃ ꢉꢁꢃꢃꢄꢈT  
ꢅꢄꢈꢅꢌꢈꢏ  
ꢆꢀꢁLT  
ꢎꢀꢈꢊLꢌꢈꢏ  
ꢒꢊꢅꢓ  
ꢀꢁTꢂ-ꢃꢄꢅTꢀꢃT  
ꢅꢂꢁꢃꢉꢄ  
ꢒꢅꢓ  
ꢊꢀTꢀ  
ꢂꢁTꢍꢁT  
ꢒꢊꢂꢓ  
ꢀꢁꢂꢃꢃꢄ3ꢂ110ꢅ1ꢄ  
Figure 3. Block Diagram.  
2
Rev. C 03/16  
www.power.com  
LYT5216-5228  
OUTPUT COMPENSATION (OC) Pin  
Output OVP for all topologies. Output voltage compensation for indirect  
output current sense topologies.  
Pin Functional Description  
LINE SENSE (L) Pin  
The LINE-SENSE pin measures input voltage. Input OVP is activated  
when LINE-SENSE pin current exceeds the predetermined threshold.  
DRAIN (D) Pin  
High-voltage internal MOSFET (725 V or 650 V).  
DATA OUTPUT (DO) Pin  
Describes auto-restart events.  
SOURCE (S) Pin:  
Power and signal ground.  
DRIVER CURRENT SENSE (DS) Pin  
DRIVER CURRENT SENSE pin senses the driver current. This current is  
used to deduce output current: it is multiplied by the input voltage and  
the result is then divided by the output voltage to obtain output current.  
ꢀ ꢁꢂꢃꢄꢂꢅꢆ ꢇꢈꢉ-16ꢊꢋ  
RDS (W)  
Topology  
6 k 12 K  
Buck, Buck-Boost, Isolated Flyback  
ꢉꢌ ꢊꢁ  
16 15 1ꢍ 1ꢎ 12 11 1ꢏ  
24 k  
Non-Isolated Flyback  
Table 2. Topology Selection Resistor.  
FEEDBACK (FB) Pin  
In normal operation the preset threshold on the FEEDBACK pin is  
300 mV.  
Cycle skipping is triggered when voltage on this pin exceeds 600 mV.  
Auto-Restart is triggered when voltage on this pin exceeds 2 V.  
1
2
5
8
ꢒꢊ L ꢀꢉ ꢀꢈ ꢑꢌ  
BYPASS (BP) Pin  
5.25 V supply rail.  
ꢀꢁꢂꢃꢃ1ꢄꢂ0ꢅ101ꢆ  
Figure 4. Pin Configuration.  
3
Rev. C 03/16  
www.power.com  
LYT5216-5228  
Applications Example  
12 W Tube Lamp Driver Accurate Regulation, High  
Power Factor, Low ATHD Design Example (DER-515)  
ꢅ1  
3.3 ꢔꢙ  
ꢈTꢇ  
ꢍꢎꢏꢐꢑꢊꢒꢓ RCꢉ Cꢓꢒꢔꢎ  
R1  
10 ꢖ  
ꢉꢈ  
ꢇ1  
ꢢꢋꢉ1ꢈ  
Cꢗ  
Rꢀ  
R11  
100 µꢋ  
100 ꢌ  
6ꢗ0 ꢖΩ  
1ꢗ0 ꢖΩ  
Rꢛ1ꢡ  
R3  
ꢀ ꢁΩ  
C3  
1ꢂ  
ꢀ.ꢀ µꢋ  
ꢃꢈ0 ꢌ  
ꢚR1  
ꢚ10ꢛꢜꢝ  
1000 ꢌ  
C1  
100 ꢊꢋ  
ꢃꢈ0 ꢌ  
Cꢀ  
1ꢈ0 ꢊꢋ  
ꢃꢈ0 ꢌ  
ꢓ5 ꢑꢔ 16ꢏ ꢕꢒ  
ꢉꢕ  
ꢁꢄRꢛ160ꢇ3ꢝ  
ꢋ1  
ꢈ ꢞ  
Rꢃ  
ꢀ ꢁΩ  
1ꢂ  
L
ꢎꢏ - ꢐꢏ8 Rꢌ1  
ꢑꢒꢃ 3ꢀ0 ꢌꢞC  
LYTꢁꢉꢊꢋꢌꢍ-5  
ꢄ1  
Rꢕ  
ꢅꢆꢇꢈꢀꢀ6ꢉ  
L
6.0ꢃ ꢖΩ  
1ꢂ  
ꢃꢂꢇTꢈꢂL  
ꢀꢁ  
ꢀꢂ  
Rꢗ  
6.0ꢃ ꢖΩ  
1ꢂ  
ꢄꢅ  
ꢅꢆ  
ꢂꢃ  
Rꢈ  
ꢉ6  
100 ꢖΩ  
ꢚꢞꢌꢀ1ꢣꢜꢕꢜꢋ  
1ꢂ  
ꢇ1  
ꢢꢋꢉ1ꢈ  
R6  
Rꢘ  
ꢃ0.ꢀ ꢖΩ  
1ꢂ  
C6  
1ꢈ0 ꢊꢋ  
ꢀꢈ ꢌ  
Cꢃ  
10 µꢋ  
10 ꢌ  
6.ꢀ ꢖΩ  
Cꢕ  
10 µꢋ  
ꢀꢈ ꢌ  
Cꢈ  
1 µꢋ  
10 ꢌ  
ꢟꢠꢜꢕꢕ63ꢜ1ꢀ031ꢈ ꢙꢅꢚꢚ  
R10  
3 Ω  
1ꢂ  
Figure 5. 12 W, 75 V, 160 mA Non-Isolated Tube Lamp Driver for Wide Input Range of 90 VAC to 308 VAC using LYT5526D.  
voltage into a single package, greatly reducing component count.  
The integrated 725 V power MOSFET provides a large drain voltage  
margin in universal input AC applications thus increasing reliability.  
A 625 V MOSFET option is also offered to reduce cost in applications  
where the voltage stress on the MOSFET is lower. Configured to  
operate as a discontinuous conduction mode buck-boost converter,  
U1 provides high power factor and very low ATHD via its internal  
control algorithm (the design also features low input capacitance to  
further reduce THD and increase PF). Discontinuous conduction  
mode inherently eliminates reverse current from the output diode  
when the MOSFET is in the off-state reducing high frequency noise  
and allowing the use of a simpler, smaller EMI filter which also  
improves efficiency.  
The circuit shown in Figure 5 is configured as a buck-boost power  
supply utilizing the LYT5526D from the LYTSwitch-5 family of ICs.  
This type of LED driver configuration is common for tube lamp  
applications where accurate regulation, high efficiency, high power  
factor and low ATHD are required along with low component count  
for high reliability. The output can drive an LED load from 70 V to 80 V  
with a constant output current of 160 mA ±3% across input range of  
90 VAC to 308 VAC and can operate in a maximum ambient tempera-  
ture of 100 ºC with good margin below the thermal foldback  
protection point. It has an efficiency of greater than 89%, very low  
ATHD% (less than 10%) and high power factor of greater than 0.95  
measured at nominal input voltages (115 VAC and 230 VAC).  
LYTSwitch-5 also can be configured in a buck topology, and has  
advantages where low ATHD is not a critical requirement. Buck  
designs can realize between 15% to 33% ATHD. Advantages of buck  
over buck-boost configuration are:  
Input Filter  
AC input power is rectified by bridge BR1. 1000 V voltage rating is  
recommended (the maximum clamp voltage for a typical 320 V  
varistor is 850 V). The rectified DC is filtered by the input capacitors  
C1 and C2. Too much capacitance degrades power factor and ATHD,  
so the values of the input capacitors were adjusted to the minimum  
values necessary to meet EMI with a suitable margin. Inductor L1,  
C1 and C2 form a π (pi) filter, which attenuates conducted differential  
and common mode EMI currents. Resistor R1 across L1 damps the  
Q of the filter inductor to improve filtering without reducing low  
frequency attenuation. F1 provides input protection against  
catastrophic failure such as short-circuit after the fuse. For cost  
Lower stress voltage on the driver MOSFET.  
Higher system efficiency.  
Potentially smaller EMI filter – dependent on power, shape and size  
of system.  
Circuit Description  
The LYTSwitch-5 device (U1- LYT5526D) combines a high-voltage  
power MOSFET, variable frequency and on-time control engine, fast  
start-up, and protection functions including line and output over-  
4
Rev. C 03/16  
www.power.com  
LYT5216-5228  
reduction, this can be replaced by a fusible resistor (typically a flame  
proof wire-wound type) which would need to be rated to withstand  
the instantaneous dissipation induced when charging the input  
capacitance when first connected to the input line.  
It is important to note that for accurate output current regulation the  
use of 1% tolerance for LINE SENSE pin resistors (R3 and R4) is  
recommended. This recommendation also applies to OUTPUT  
COMPENSATION pin resistor R5, FEEDBACK pin resistor R9 (capacitor  
C6 at least X7R type), and DRIVER CURRENT SENSE pin resistor R7  
and R10.  
Selection of fuse (F1) type and rating is dependent on input surge  
requirements. Typical minimum requirement for tube application is  
500 V differential surges. This design meets a 3 kV surge specifica-  
tion, so a 5-ampere slow blow fuse was used. A fast-blow fuse with  
a high ampere energy (I2T) rating could also be used.  
Diode D6 and C7 provides a bias supply for U1 from an auxiliary  
winding on the transformer. Bias supply recommended voltage level  
is 12 V. Filter capacitor C7 should be sized to ensure a low ripple  
voltage. Capacitor C5 serves as local decoupling for the BYPASS pin  
of U1 which is the supply pin for the internal controller. Current via  
R6 is typically limited to 1 mA. During start-up, C5 is charged to  
~5.25 V from an internal high-voltage current source internally fed  
from the DRAIN pin. This allows U1 to start switching. After start-up  
the operating supply current is provided from the bias supply via R6.  
The recommended value for the BYPASS pin capacitor C5 is 1 mF.  
The voltage rating for the capacitor should be greater than 7 V. The  
capacitor can be a ceramic or electrolytic type, but tolerance should  
be less than 50%. The capacitor must be physically located close to  
BYPASS and SOURCE pins for effective noise decoupling.  
An optional RCD surge clamp circuit (D5, R2 and C3) can be employed  
for differential surge voltage requirement of 3 kV. Capacitor C3 can  
also be increased to help meet a higher surge voltage requirement.  
Typical Line Surge  
Input Range  
90 to 264 VAC  
90 to 308 VAC  
Protection  
Requirement  
500 V Differential Surge /  
2.5 kV Ring Wave  
275 VAC MOV  
1 kV to 3 kV Differential  
Surge / 2.5 kV Ring Wave  
320 VAC MOV,  
RCD Clamp  
Output Rectification  
During the switching off-state the output from the transformer main  
winding is rectified by D7 and filtered by C8. An ultrafast 1 A, 600 V  
with 35 ns reverse recovery time (trr) diode was selected for efficiency.  
The value of the output capacitor C8 was selected to give peak-to-  
peak LED ripple current equal to 30% of the mean value. For designs  
where lower ripple is desirable the output capacitance value can be  
increased unlike traditional power supplies, low ESR capacitors are  
not required for the output stage of LED designs.  
Table 3. Recommended Surge Protection.  
LYTSwitch-5 Output Regulation  
In order to maintain very accurate output current regulation – within  
±3%, the FEEDBACK (FB) pin voltage (with an appropriately selected  
low-pass filter comprising R9 and C6) is compared to a preset  
average feedback voltage (VFB) of 300 mV. When the detected signal  
is above or below the preset average VFB threshold voltage, the  
onboard averaging-engine will adjust the frequency and/or on-time to  
maintain regulation.  
A small output pre-load resistor R11 discharges the output capacitor  
when the driver is turned off, giving a relatively quick and smooth  
decay of the LED light. Recommended pre-load power dissipation is  
≤0.5% of the output power.  
The bias winding voltage is proportional to the output voltage  
(controlled by the turns-ratio between the bias supply and output-  
main winding). This allows the output voltage to be monitored  
without the need for output-side feedback components. Resistor R5  
converts the bias voltage into a current which is fed into the OUTPUT  
COMPENSATION (OC) pin of U1. The OUTPUT COMPENSATION pin  
current is also used to detect output overvoltage which is set to 30%  
above the nominal output voltage. Once the current exceeds the  
ILOV+ threshold the IC will trigger a latch which disables switching  
which prevents the output from rising further. An AC recycle is  
needed to reset this protection mode once triggered.  
Key Design Considerations  
Device Selection  
The data sheet power table (Table 1) represents the maximum  
practical continuous output power that can be delivered in an open  
frame design with adequate heat sinking.  
Output Power Table  
Output Power1  
Product2  
In order to provide line input voltage information to U1 the rectified  
input AC voltage is fed into the LINE SENSE (L) pin of U1 as a current  
via R3 and R4 (4 MW total resistance). This sensed current is also  
used by U1 to detect input zero-crossing and set the input line  
overvoltage protection threshold. In a line overvoltage condition  
once this current exceeds the IOOV threshold, the IC will instanta-  
neously disable switching to protect the MOSFET from further voltage  
stress. The IC will start switching as soon the line voltage drops to  
safe levels indicated by the L pin current dropping by 5 mA.  
90-308 VAC  
LYT5225D  
9 W  
16 W  
25 W  
LYT5216D, LYT5226D  
LYT5218D, LYT5228D  
Table 4. Output Power Table.  
DER-515 is a 12 W driver. The LYT5226D IC was chosen for its higher  
voltage MOSFET rating of 725 V because the topology chosen was a  
buck-boost and the specification called for a maximum input voltage  
of 308 VAC. In other applications where surge and line voltage  
conditions allow, it may be possible to use the 650 V MOSFET option  
to reduce design cost without impacting reliability.  
The primary switched current is sensed via R10 and filtered with C4.  
The signal is fed into the DRIVER CURRENT SENSE (DS) pin. A low ESR  
ceramic capacitor of at least 10 mF is recommended for capacitor C4.  
The internal frequency/on-time engine inside LYTSwitch-5 combines  
the OUTPUT COMPENSATION pin current, the LINE SENSE pin current  
and the DRIVER CURRENT SENSE pin current information to deduce  
the FB signal. This is compared to an internal VFB threshold to  
maintain accurate constant output current.  
Magnetics Design  
The core type selected was a low profile EFD15 with ferrite core  
material and a wide winding window that allowed better convection  
cooling for the winding.  
5
Rev. C 03/16  
www.power.com  
LYT5216-5228  
Thermal Check  
To ensure that discontinuous conduction mode (DCM) operation of  
LYTSwitch-5 is maintained over line input and inductance tolerance  
variations, and to ensure for accurate output current regulation, it is  
recommended that the LYTSwitch-5 PIXls spreadsheet located at  
PI Expert web lab (http://piexpertweblab.power.com/site/login)  
should be used for magnetics calculations.  
At maximum output power, for both minimum and maximum line  
voltage and maximum ambient temperature; verify that temperature  
specifications are not exceeded for the LYTSwitch-5, transformer,  
output diodes, output capacitors and clamp components.  
PCB Layout Considerations  
EMI Considerations  
The EMI filter components should be located close together to improve  
filter effectiveness. Place the EMI filter components C1 and L1 as far  
away as possible from any switching nodes on the circuit board  
especially U1 drain node, output diode (D7) and the transformer (T1).  
Total input capacitance affects PF and ATHD – increasing the value  
will degrade performance. With LYTSwitch-5, the combination of a  
low-side switching configuration and frequency jitter reduces EMI and  
enables the use of small and simple π (pi) filter. It also allows simple  
magnetic construction where the main winding can be wound  
continuously using the automated winding approach preferred for  
low-cost manufacturing. The recommended location of the EMI filter  
is after the bridge rectifier. This allows the use of regular film  
capacitors as opposed to more expensive safety rated X capacitors  
that would be required if the filter is placed before the bridge.  
Care should be taken in placing the components on the layout that  
are used for processing input signals for the feedback loop – any high  
frequency noise coupled to the signal pins of U1 may affect proper  
system operation. The critical components in DER-515 are R5, R9,  
C6, R4, R7 and R8. It is highly recommended that these components  
be placed very close to the pins of U1 (to minimize long traces which  
could serve as antenna) and far away as much as possible from any  
high voltage and high current nodes in the circuit board to avoid  
noise coupling.  
Surge Immunity Consideration  
This design assumed a differential surge requirement of 3 kV which  
can be met easily with LYTSwitch-5 line overvoltage protection and  
using a RCD surge clamp circuit (D5, R2 and C3) and MOV (RV1). For  
lower differential surge requirement such as 1 kV, capacitor C3 can  
be reduced to 1 mF.  
The bypass supply capacitor C5 should be placed directly across  
BYPASS pin and SOURCE pin of U1 for effective noise decoupling.  
As shown in Figure 6, minimize the loop areas of the following  
switching circuit elements to lessen the creation of EMI.  
Thermal and Lifetime Considerations  
Lighting applications present thermal challenges to the driver. In  
many cases the LED load dissipation determines the working ambient  
temperature experienced by the drive. Thermal evaluation should be  
performed with the driver inside the final enclosure. Temperature  
has a direct impact on driver and LED lifetime. For every 10 °C rise in  
temperature, component life is reduced by a factor of 2. Therefore it  
is important to verify and optimize the operating temperatures of all  
components.  
Loop area formed by the transformer output winding (T1), output  
rectifier diode (D7) and output capacitor (C8).  
Loop area formed by transformer bias winding (T1), rectifier diode  
(D6) and filter capacitor (C7).  
Loop area formed by input capacitor (C2), transformer (T1) main  
winding R10, C4 and internal MOSFET (U1).  
Lastly, unlike discrete MOSFET designs where heat sinking is through  
the drain tab and which generates significant EMI, the LYTSwitch-5  
devices employ low-side switching and the ground potential SOURCE  
pins are used for heat sinking. This allows the designer to maximize  
the copper area for good thermal management but without having  
the risk of increased EMI.  
Quick Design Checklist  
Maximum Drain Voltage  
Verify that the peak drain voltage stress (VDS) does not exceed  
maximum acceptable drain voltage under all operating conditions,  
including start-up and fault conditions.  
Design Tools  
Maximum Drain Current  
Up-to-date information on design tools can be found at the Power  
Integrations web site: www.power.com  
Measure the peak drain current under all operation conditions  
(including start-up and fault conditions). Look for transformer  
saturation (usually occurs at highest operating ambient tempera-  
tures). Verify that the peak current is less than the stated Absolute  
Maximum Rating in the data sheet.  
LYTSwitch-5 PIXls spreadsheet is located at PI Expert web lab:  
http://piexpertweblab.power.com/site/login.  
ꢖꢗꢘꢆꢗꢘ  
Cꢖꢙꢆꢁꢒꢓꢄꢘꢑꢖꢒ  
ꢆꢇꢈ Reꢉꢇꢉꢊꢋꢌ Rꢚ  
ꢂꢌꢎꢇꢈ Cꢕꢌꢌeꢈꢊ  
ꢓeꢈꢉe R10 ꢎꢈꢏ Cꢔ  
ꢃꢛꢆꢄꢓꢓ ꢆꢇꢈ  
Cꢎꢜꢎꢝꢇꢊꢋꢌ Cꢚ  
ꢃꢇꢎꢉ ꢂꢇꢋꢏe Reꢝꢊꢇꢞꢇeꢌ ꢂ6  
ꢎꢈꢏ ꢀꢇꢟꢊeꢌ Cꢠ  
Tꢊꢋ  
ꢀꢁꢂꢃꢁꢂ  
ꢄꢅꢃꢅꢆꢇꢂꢈꢉ  
ꢆꢑꢣꢠꢠꢍꢚꢣ1ꢤ031ꢚ  
ꢀꢁꢁꢂꢃꢄCꢅ ꢆꢇꢈ  
Reꢉꢇꢉꢊꢋꢌ Rꢍ ꢎꢈꢏ C6  
ꢐꢑꢒꢁ ꢓꢁꢒꢓꢁ ꢆꢇꢈ  
Reꢉꢇꢉꢊꢋꢌ Rꢔ  
ꢂRꢑꢡꢁR CꢗRRꢁꢒꢘ  
ꢓꢁꢒꢓꢁ ꢆꢇꢈ Reꢉꢇꢉꢊꢋꢌ Rꢠ  
ꢂꢄꢘꢄ ꢖꢗꢘꢆꢗꢘ ꢆꢇꢈ  
Reꢉꢇꢉꢊꢋꢌ Rꢢ  
ꢖꢕꢜꢕꢊ ꢂꢇꢋꢏe  
Reꢝꢊꢇꢞꢇeꢌ ꢂꢠ ꢎꢈꢏ  
ꢀꢇꢟꢊeꢌ Cꢢ  
Figure 6. DER-515 PCB Layout Example using SO-16B D Package. Shows the Location of Critical Components and Loop Areas on the PCB Layout.  
6
Rev. C 03/16  
www.power.com  
LYT5216-5228  
Absolute Maximum Ratings(1,3)  
DRAIN Pin Voltage: LYT521x............................-0.3 V to 650 V Notes:  
LYT522x ...........................-0.3 V to 725 V  
1. All voltages referenced to Source, TA = 25 °C.  
2. 1/16 in. from case for 5 seconds.  
3. The Absolute Maximum Ratings specified may be applied, one at a  
time without causing permanent damage to the product. Exposure  
to Absolute Maximum Ratings for extended periods of time may  
affect product reliability.  
DRAIN Pin Peak Current(4) LYT5225 ........................... 1.95 A (3.16 A)  
LYT5216 ............................. 3.25 A (4.0 A)  
LYT5226 ........................... 2.64 A (4.35 A)  
LYT5218 .............................5.06 A (6.3 A)  
LYT5228 ........................... 4.16 A (6.86 A)  
BP, DO, DS, OC, L DS, FB Pin Voltage..........................-0.3 V to 6.5 V  
Lead Temperature(2) .............................................................. 260 °C  
Storage Temperature...................................................-65 to 150 °C  
Operating Junction Temperature.................................. -40 to 150 °C  
4. The higher peak Drain current (in parentheses) is allowed while the  
Drain voltage is simultaneously less than 400 V for 725 V integrated  
MOSFET version, or less than 325 V for 650 V integrated MOSFET  
version.  
Thermal Resistance  
Thermal Resistance: SO-16B Package:  
Notes:  
(qJA)..................................................78 °C/W(2) 1. Measured per JESD 51-1, MIL-STD-883C-1012.1 and SEMI test  
(qJA) ....................................................68 °C/W(3)  
(qJC)(1) ...............................................43 °C/W  
method #G43-87.  
2. Soldered to 0.36 sq. inch (232 mm2) 2 oz. (610 g/m2) copper clad,  
with no external heat sink attached.  
3. Soldered to 1 sq. in. (645 mm2), 2 oz, (610 g/m2) copper clad.  
Conditions  
SOURCE = 0 V  
TJ = -40 °C to +125 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Control Functions  
Average  
TJ = 25 °C  
115.3  
124  
8
132.7  
kHz  
%
Maximum  
Output Frequency  
fMAX  
Peak-to-Peak Jitter  
Average  
TJ = 0 °C to 125 °C  
40  
8
kHz  
%
Minimum  
Output Frequency  
fMIN  
Peak-to-Peak Jitter  
Frequency Jitter  
Modulation Rate  
fM  
See Note A  
1.76  
kHz  
Maximum On-Time  
Minimum On-Time  
FEEDBACK Pin Voltage  
TON(MAX)  
TON(MIN)  
VFB  
TJ = 25 °C  
TJ = 25 °C  
TJ = 25 °C  
5.75  
0.95  
291  
6.25  
1.05  
300  
6.75  
1.15  
309  
ms  
ms  
mV  
FEEDBACK Pin Voltage  
Triggering Cycle  
Skipping  
VFB(SK)  
600  
mV  
FEEDBACK Pin  
Overvoltage Threshold  
VFB(OV)  
IFB  
2000  
-1.0  
mV  
Feedback Pull-Up Current  
-1.3  
-0.7  
mA  
7
Rev. C 03/16  
www.power.com  
LYT5216-5228  
Conditions  
SOURCE = 0 V  
TJ = -40 °C to +125 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Control Functions (cont.)  
VFB(ON) > VFB > VFB(SK)  
(MOSFET not switching)  
IS1  
0.8  
1.0  
mA  
mA  
mA  
LYT5225, LYT52x6  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
DRAIN Supply Current  
MOSFET Switching  
at fMAX  
IS2  
LYT5218  
LYT5228  
BYPASS Pin  
Charge Current  
ICH1  
VBP = 0 V, TJ = 25 °C  
-11.5  
-9.5  
-7.5  
BYPASS Pin  
Charge Current  
ICH2  
VBP  
VBP = 4 V, TJ = 25 °C  
-8.8  
4.75  
5.1  
-6.8  
5.00  
5.3  
-4.8  
5.25  
5.5  
mA  
V
BYPASS Pin Voltage  
BYPASS Pin  
Shunt Voltage  
VSHUNT  
IBP = 5 mA  
V
BYPASS Pin Power-Up  
Reset Threshold Voltage  
VBP(RESET)  
4.4  
4.6  
4.8  
V
Circuit Protection  
Current Limit  
di/dt = 974 mA/ms  
LYT5225  
LYT52x6  
LYT52x8  
1232  
1767  
2860  
130  
1325  
1900  
3075  
165  
1418  
2033  
3290  
TJ = 25 °C  
di/dt = 1403 mA/ms  
TJ = 25 °C  
ILIMIT  
mA  
di/dt = 2239 mA/ms  
TJ = 25 °C  
Leading Edge  
Blanking Time  
tLEB  
TILD  
TFB  
TJ = 25 °C  
ns  
ns  
°C  
°C  
TJ = 25 °C  
See Note A  
Current Limit Delay  
160  
Thermal Foldback  
Temperature  
See Note A  
See Note A  
138  
155  
142  
146  
Thermal Shutdown  
Temperature  
TSD  
160  
165  
Thermal Shutdown  
Hysteresis  
TSD(H)  
See Note A  
TJ = 25 °C  
75  
°C  
ns  
SOA Switch ON-Time  
TON(SOA)  
610  
690  
58  
Auto-Restart Current  
Threshold for Output  
Undervoltage  
IOUV  
TJ = 25 °C  
40  
52  
mA  
mA  
Threshold  
Hysteresis  
116  
120  
5
124  
Current Threshold for  
Input Voltage  
ILOV+  
TJ = 25 °C  
Latch-Off Current  
Threshold for Output  
Overvoltage  
IOOV  
TJ = 25 °C  
127  
134  
144  
mA  
LINE-SENSE Pin Voltage  
VL  
IL = 100 mA, TJ = 25 °C  
2.05  
2.25  
2.45  
V
8
Rev. C 03/16  
www.power.com  
LYT5216-5228  
Conditions  
SOURCE = 0 V  
TJ = -40 °C to +125 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Output  
OUTPUT  
COMPENSATION Pin  
IOC = 100 mA  
TJ = 25 °C  
VOC  
2.05  
2.25  
2.45  
V
TJ = 25 °C  
3.80  
5.70  
2.75  
4.25  
1.75  
2.70  
4.35  
6.55  
3.15  
4.90  
2.00  
3.10  
LYT5225  
ID = 200 mA  
TJ = 100 °C  
TJ = 25 °C  
LYT52x6  
ID = 300 mA  
ON-State  
Resistance  
W
RDS(ON)  
TJ = 100 °C  
TJ = 25 °C  
LYT52x8  
ID = 500 mA  
TJ = 100 °C  
VBP = 5.3 V, VFB > VFB(SK) , VDS = 580 V  
TJ = 125 °C  
OFF-State Leakage  
Breakdown Voltage  
IDSS  
200  
mA  
LYT521x  
650  
VBP = 5.3 V, VFB > VFB(SK)  
BVDSS  
V
TJ = 25 °C  
LYT522x  
725  
NOTES:  
A. Guaranteed by design.  
9
Rev. C 03/16  
www.power.com  
LYT5216-5228  
Typical Performance Curves  
ꢀ00  
1.ꢀ  
1
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
ꢄꢀꢃ ꢅ  
6ꢃ0 ꢅ  
ꢅꢆꢇꢁꢀꢀꢁ 1.0  
1ꢂꢁ  
ꢅꢆꢇꢁꢀꢀ6 1.ꢃꢁ  
ꢅꢆꢇꢁꢀꢀꢈ ꢀ.3ꢁ  
1ꢁ0  
0.ꢁ  
0.6  
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
1ꢀꢁ  
ꢅꢆꢇꢁꢀ16 1.0  
ꢅꢆꢇꢁꢀ1ꢈ 1.6ꢁ  
100  
ꢂꢁ  
ꢁ0  
ꢀꢁ  
0.ꢂ  
0.ꢀ  
0
ꢂꢀꢁ ꢄ  
6ꢁ0 ꢄ  
0
0
100 ꢀ00 300 ꢃ00 ꢁ00 600  
0
100 ꢀ00 300 ꢂ00 ꢃ00 600 ꢄ00 ꢁ00  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
Figure 7. Power vs. Drain Voltage.  
Figure 8 Maximum Allowable Drain Current vs. Drain Voltage.  
1.ꢀ  
1.6  
1.ꢁ  
1.ꢂ  
1
ꢀ.ꢀ  
1.ꢁ  
1.6  
1.ꢂ  
1.ꢀ  
1
0.ꢀ  
0.6  
0.ꢁ  
0.6  
ꢊꢋꢌꢍꢎꢏꢐ ꢑꢌꢋꢒꢓꢔꢕꢖ  
ꢃꢂꢄ ꢅ  
ꢂꢄ ꢆC  
ꢃꢂꢄ ꢅ  
1ꢂꢄ ꢆC  
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
ꢆꢇꢈꢃꢀ16 1.0  
ꢆꢇꢈꢃꢀ1ꢁ 1.6ꢃ  
6ꢃ0 ꢄ  
ꢀꢃ ꢅC  
6ꢃ0 ꢄ  
1ꢀꢃ ꢅC  
0.ꢁ  
ꢇꢈꢉꢄꢂꢂꢄ 1.0  
0.ꢂ  
0.ꢀ  
0
ꢇꢈꢉꢄꢂꢂ6 1.ꢁꢄ  
0.ꢂ  
ꢇꢈꢉꢄꢂꢂꢀ ꢂ.3ꢄ  
0
0
6
10 1ꢂ 1ꢁ 16 1ꢀ ꢂ0  
0
6
10 1ꢀ 1ꢂ 16 1ꢁ ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
Figure 9. Drain Current vs. Drain Voltage.  
Figure 10. Drain Current vs. Drain Voltage.  
10000  
1000  
100  
1
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
ꢅꢆꢇꢂꢀꢀꢂ 1.0  
ꢅꢆꢇꢂꢀꢀ6 1.ꢁꢂ  
ꢅꢆꢇꢂꢀꢀꢈ ꢀ.3ꢂ  
ꢃꢀꢂ ꢄ  
6ꢂ0 ꢄ  
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
ꢅꢆꢇꢂꢀ16 1.0  
ꢅꢆꢇꢂꢀ1ꢈ 1.6ꢂ  
0
100 ꢀ00 300 ꢁ00 ꢂ00 600  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
Figure 11. Drain Capacitance vs. DRAIN Pin Voltage.  
10  
Rev. C 03/16  
www.power.com  
LYT5216-5228  
ꢀꢁ-16ꢂ  
ꢋꢌꢋ1ꢠ ꢎꢋꢌꢍ8ꢏ  
ꢋꢌꢋ1ꢒ ꢎꢋꢌꢒꢒꢏ  
ꢋꢌꢋ5ꢋ ꢎ1ꢌ2ꢡꢏ  
1ꢍꢢ  
ꢋꢌꢋ1ꢋ ꢎꢋꢌ25ꢏ ꢜ ꢣ ꢔ ꢂ  
8 Lꢃꢄꢞ Tꢆꢤꢚ  
ꢋꢌꢋꢍꢍ ꢎ1ꢌ1ꢋꢏ ꢐꢃꢑꢌ  
16  
ꢋꢌꢋꢋ5 ꢎꢋꢌ1ꢒꢏ ꢣ  
2ꢢ  
ꢋꢌꢋꢋꢍ ꢎꢋꢌ1ꢋꢏ ꢣ ꢂ  
ꢋꢌꢋ1ꢋ ꢎꢋꢌ25ꢏ  
ꢋꢌ15ꢒ ꢎꢒꢌꢠꢋꢏ  
ꢋꢌ2ꢒꢠ ꢎ6ꢌꢋꢡꢏ  
2
ꢕꢄꢖꢈꢃ ꢉꢊꢄꢇꢃ  
ꢀꢃꢄꢅꢆꢇꢈ ꢉꢊꢄꢇꢃ  
ꢋꢌꢋꢋ5 ꢎꢋꢌ1ꢒꢏ ꢣ  
6 Lꢃꢄꢞ Tꢆꢤꢚ  
8
1
8
ꢉꢆꢇ ꢗ1 ꢘꢌꢓꢌ  
ꢙLꢄꢚꢃꢛ ꢜꢄꢛꢝꢃꢞꢟ  
ꢋꢌꢋꢒ2 ꢎꢋꢌ81ꢏ  
ꢋꢌꢋ22 ꢎꢋꢌ56ꢏ  
ꢋꢌ1ꢒ5 ꢎꢒꢌꢍꢒꢏ  
ꢐꢃꢑꢌ  
2
ꢋꢌꢒꢠꢋ ꢎꢠꢌꢠ1ꢏ  
ꢋꢌꢋꢋꢍ ꢎꢋꢌ1ꢋꢏ ꢣ ꢔ 2ꢢ  
DETAIL A  
TOP VIEW  
ꢋꢌꢍeꢎꢏ  
1. ꢇꢐꢑeꢒꢎꢐꢌꢒꢐꢒꢓ ꢔꢒꢕ ꢍꢌꢖeꢗꢔꢒꢘꢐꢒꢓ ꢙeꢗ  
ꢊꢈꢚꢛ ꢜ1ꢄ.ꢅꢚꢂ1ꢝꢝꢄ.  
ꢋꢌꢋ66 ꢎ1ꢌ6ꢠꢏ  
ꢋꢌꢋ5ꢡ ꢎ1ꢌꢍ6ꢏ  
ꢋꢌꢋ5ꢍ ꢎ1ꢌꢒ8ꢏ ꢐꢃꢑꢌ  
ꢓꢃꢅꢄꢆꢊ ꢔ  
ꢞ. ꢇꢐꢑeꢒꢎꢐꢌꢒꢎ ꢒꢌꢍeꢕ ꢔꢗe ꢕeꢍeꢗꢑꢐꢒeꢕ ꢔꢍ ꢍꢟe  
ꢌꢠꢍeꢗꢑꢌꢎꢍ eꢡꢍꢗeꢑeꢎ ꢌꢢ ꢍꢟe ꢙꢖꢔꢎꢍꢐꢘ ꢣꢌꢕꢤ eꢡꢘꢖꢠꢎꢐve  
ꢌꢢ ꢑꢌꢖꢕ ꢢꢖꢔꢎꢟꢥ ꢍꢐe ꢣꢔꢗ ꢣꢠꢗꢗꢎꢥ ꢓꢔꢍe ꢣꢠꢗꢗꢎꢥ ꢔꢒꢕ  
ꢐꢒꢍeꢗꢂꢖeꢔꢕ ꢢꢖꢔꢎꢟꢥ ꢣꢠꢍ ꢐꢒꢘꢖꢠꢕꢐꢒꢓ ꢔꢒꢤ ꢑꢐꢎꢑꢔꢍꢘꢟ  
ꢣeꢍꢦeeꢒ ꢍꢟe ꢍꢌꢙ ꢔꢒꢕ ꢣꢌꢍꢍꢌꢑ ꢌꢢ ꢍꢟe ꢙꢖꢔꢎꢍꢐꢘ ꢣꢌꢕꢤ.  
ꢚꢔꢡꢐꢑꢠꢑ ꢑꢌꢖꢕ ꢙꢗꢌꢍꢗꢠꢎꢐꢌꢒ ꢐꢎ 0.ꢞꢅ ꢑꢑ ꢙeꢗ ꢎꢐꢕe.  
ꢀꢃꢄꢅꢆꢇꢈ  
ꢉꢊꢄꢇꢃ  
ꢋꢌꢋ1ꢋ ꢎꢋꢌ25ꢏ  
ꢋꢌꢋꢋꢍ ꢎꢋꢌ1ꢋꢏ  
3. ꢇꢐꢑeꢒꢎꢐꢌꢒꢎ ꢒꢌꢍeꢕ ꢔꢗe ꢐꢒꢘꢖꢠꢎꢐve ꢌꢢ ꢙꢖꢔꢍꢐꢒꢓ  
ꢍꢟꢐꢘꢧꢒeꢎꢎ.  
ꢋꢌꢋ1ꢋ ꢎꢋꢌ25ꢏ  
ꢋꢌꢋꢋꢍ ꢎꢋꢌ1ꢋꢏ  
ꢋꢌꢋꢋꢍ ꢎꢋꢌ1ꢋꢏ ꢣ  
1ꢍ Lꢃꢄꢞꢚ  
ꢄ. ꢇꢌeꢎ ꢒꢌꢍ ꢐꢒꢘꢖꢠꢕe ꢐꢒꢍeꢗꢂꢖeꢔꢕ ꢢꢖꢔꢎꢟ ꢌꢗ ꢙꢗꢌꢍꢗꢠꢎꢐꢌꢒꢎ.  
ꢅ. ꢇꢐꢑeꢒꢎꢐꢌꢒꢎ ꢐꢒ ꢁꢒꢘꢟeꢎ ꢨꢑꢑꢩ.  
END VIEW  
6. ꢇꢔꢍꢠꢑꢎ ꢊ ꢔꢒꢕ ꢉ ꢍꢌ ꢣe ꢕeꢍeꢗꢑꢐꢒeꢕ ꢐꢒ ꢇꢔꢍꢠꢑ ꢪ.  
ꢃ. ꢫꢛꢇꢛC ꢗeꢢeꢗeꢒꢘeꢏ ꢚꢈ 01ꢞ.  
SIDE VIEW  
ꢀꢁꢂꢃꢄꢃ3ꢂ061ꢅ1ꢅ  
ꢀꢆꢇꢂꢈꢆꢂ16ꢉ Rev ꢊ  
11  
Rev. C 03/16  
www.power.com  
LYT5216-5228  
ꢃꢄꢅꢆꢄꢇꢈ ꢉꢄꢊꢆꢋꢌꢇ  
ꢀꢁ-16ꢂ  
1ꢀꢁꢀ  
ꢂꢃꢄꢀꢅꢅꢆꢇ  
ꢈꢁꢉ16ꢊꢋ  
C
ꢋ. ꢉꢏꢐeꢑ ꢌꢒꢓeꢔꢑꢕꢓꢖꢏꢒꢗ Reꢔꢖꢗꢓeꢑeꢘ ꢄꢑꢕꢘeꢙꢕꢑꢚ  
ꢛ. ꢋꢗꢗeꢙꢜꢝꢞ ꢇꢕꢓe Cꢏꢘe ꢟꢝꢕꢗꢓ ꢓꢐꢏ ꢘꢖꢔꢖꢓꢗ ꢏꢠ ꢞeꢕꢑ ꢠꢏꢝꢝꢏꢐeꢘ ꢜꢞ ꢅꢍꢘꢖꢔꢖꢓ ꢐꢏꢑꢚ ꢐeeꢚꢡ  
C. ꢉꢑꢏꢘꢢꢣꢓ ꢌꢘeꢒꢓꢖꢠꢖꢣꢕꢓꢖꢏꢒ ꢟꢉꢕꢑꢓ ꢤ/ꢉꢕꢣꢚꢕꢔe ꢄꢞꢥeꢡ  
ꢇ. ꢂꢏꢓ ꢌꢘeꢒꢓꢖꢠꢖꢣꢕꢓꢖꢏꢒ Cꢏꢘe  
ꢉꢌꢍꢊꢆ00ꢍ111ꢎ1ꢀ  
12  
Rev. C 03/16  
www.power.com  
LYT5216-5228  
MSL Table  
Part Number  
LYT5225D  
LYT5216D  
LYT5226D  
LYT5218D  
LYT5228D  
MSL Rating  
3
3
3
3
3
ESD and Latch-Up Table  
Test  
Conditions  
JESD78D  
Results  
Latch-up at 125 °C  
Human Body Model ESD  
Machine Model ESD  
> ±100 mA or > 2.5 kV (max) on all pins  
> ±2000 V on all pins  
JESD22-A114F  
JESD22-A115A  
> ±200 V on all pins  
Part Ordering Information  
• LYTSwitch-5 Product Family  
• Series Number  
• MOSFET VDS Rating  
1
2
650 V  
725 V  
• Device Size  
• Package Identifier  
D
SO-16B  
• Tape & Reel and Other Options  
Blank  
Tube of 50 pcs.  
LYT 52  
2
5
D- TL  
TL  
Tape & Reel, 2500 pcs min/mult.  
13  
Rev. C 03/16  
www.power.com  
Revision Notes  
Date  
B
B
Code A Release.  
11/15  
Made text corrections to LYTSwitch-5 Output Regulation section and PCB Layout Considerations section. Corrections  
made to Figures 5 and 6.  
12/03/15  
B
C
Updated Figures 1a and 1b. Modified text in 1st paragraph of Input Filter section on page 4.  
12/11/15  
03/16  
Corrected IS2, TLEB, TFB, TSD, IOOV parameters. Added IOUV and VL parameters.  
For the latest updates, visit our website: www.power.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations  
does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY  
HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
Patent Information  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one  
or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of  
Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set  
forth at http://www.power.com/ip.htm.  
Life Support Policy  
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose  
failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or  
death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS,  
HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power  
Integrations, Inc. Other trademarks are property of their respective companies. ©2016, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
World Headquarters  
5245 Hellyer Avenue  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@power.com  
Germany  
Lindwurmstrasse 114  
80337 Munich  
Japan  
Kosei Dai-3 Bldg.  
2-12-11, Shin-Yokohama,  
Kohoku-ku  
Yokohama-shi, Kanagawa  
222-0033 Japan  
Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
e-mail: japansales@power.com  
Taiwan  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei 11493, Taiwan R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@power.com  
Germany  
Phone: +49-895-527-39110  
Fax: +49-895-527-39200  
e-mail: eurosales@power.com  
India  
#1, 14th Main Road  
Vasanthanagar  
Bangalore-560052 India  
Phone: +91-80-4113-8020  
Fax: +91-80-4113-8023  
e-mail: indiasales@power.com  
UK  
China (Shanghai)  
Rm 2410, Charity Plaza, No. 88  
North Caoxi Road  
Shanghai, PRC 200030  
Phone: +86-21-6354-6323  
Fax: +86-21-6354-6325  
e-mail: chinasales@power.com  
Cambridge Semiconductor,  
a Power Integrations company  
Westbrook Centre, Block 5, 2nd Floor  
Korea  
RM 602, 6FL  
Korea City Air Terminal B/D, 159-6 Milton Road  
Samsung-Dong, Kangnam-Gu,  
Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
Fax: +82-2-2016-6630  
e-mail: koreasales@power.com  
Cambridge CB4 1YG  
Phone: +44 (0) 1223-446483  
e-mail: eurosales@power.com  
Italy  
China (Shenzhen)  
17/F, Hivac Building, No. 2, Keji Nan 20099 Sesto San Giovanni (MI)  
Via Milanese 20, 3rd. Fl.  
8th Road, Nanshan District,  
Shenzhen, China, 518057  
Phone: +86-755-8672-8689  
Fax: +86-755-8672-8690  
e-mail: chinasales@power.com  
Italy  
Singapore  
51 Newton Road  
Phone: +39-024-550-8701  
Fax: +39-028-928-6009  
e-mail: eurosales@power.com  
#19-01/05 Goldhill Plaza  
Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@power.com  
厂商 型号 描述 页数 下载

POWERINT

LYT0002 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0004 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0005 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0006 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT1402D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1402D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1403D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1403D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1404D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1404D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.197528s