找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

MYXX28HC256

型号:

MYXX28HC256

品牌:

MICROSS[ MICROSS COMPONENTS ]

页数:

23 页

PDF大小:

1295 K

256Kb EEPROM  
MYXX28HC256  
Features  
32K x 8 EEPROM - 5 Volt, Byte Alterable  
Access Time (ns): 70, 90, 120, 150  
Simple Byte and Page Write  
.Single 5V Supply  
Description  
No External High Voltages or VPP  
2
Control Circuits  
The MYXX28HC256 is a high performance CMOS 32K x 8 E PROM. It is  
.Self-Timed  
fabricated with a textured poly floating gate technology, providing a highly  
reliable 5 Volt only nonvolatile memory.  
No Erase Before Write  
No Complex Programming  
Algorithms  
The MYXX28HC256 supports a 128-byte page write operation, effectively  
providing a 24ms/byte write cycle and enabling the entire memory to  
be typically rewritten in less than 0.8 seconds. The MYXX28HC256 also  
features DATA Polling and Toggle Bit Polling, two methods of providing  
early end of write detection. The MYXX28HC256 also supports the  
JEDEC standard Software Data Protection feature for protecting against  
inadvertent writes during power-up and power-down.  
No Overerase Problem  
Low Power CMOS:  
.Active: 60mA  
.Standby: 500mA  
Software Data Protection  
.Protects Data Against System Level  
Inadvertent Writes  
High Speed Page Write Capability  
Highly Reliable Direct Write™ Cell  
.Endurance: 100,000 Write Cycles  
.Data Retention: 100 Years  
Early End of Write Detection  
.DATA Polling  
Endurance for the MYXX28HC256 is specified as a minimum 100,000  
write cycles per byte and an inherent data retention of 100 years.  
CerDIP or  
Flat Pack  
CerSOJ or  
CerLCC  
.Toggle Bit Polling  
I/O1  
12  
I/O2  
13  
I/O3  
15  
I/O5  
17  
I/O6  
18  
Options  
Markings  
A14  
1
28  
V
CC  
A
2
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
WE#  
70 ns access  
90 ns access  
120 ns access  
150 ns access  
-7  
-9  
12  
Timing  
4
3
2
1
32 31 30  
29  
I/O0  
A0  
VSS  
I/O4  
I/O7  
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
3
A
13  
11  
10  
14  
16  
19  
A
A
A
A
A
A
A
5
6
7
8
9
A
A
A
6
5
4
3
2
1
0
8
4
A
8
A
9
28  
27  
26  
25  
24  
23  
22  
21  
-12  
-15  
9
5
A1  
9
A2  
8
CE  
20  
A10  
21  
11  
6
A
11  
NC  
7
OE#  
MYX28C32K8  
OE#  
8
A
A3  
7
A4  
6
OE  
22  
A11  
23  
Ceramic flat pack  
CerDIP, 600 mil  
CerLCC  
F
Packages  
10  
10  
11  
12  
13  
A
10  
9
CE#  
CW  
ECA  
P
CE#  
10  
11  
12  
13  
14  
I/O  
7
I/O  
6
I/O  
5
I/0  
4
NC  
I/O  
7
I/O  
6
A5  
5
A12  
2
VCC  
28  
A9  
24  
A8  
25  
I/O  
0
I/O  
1
I/O  
2
I/O  
0
CerPGA  
14 15 16 17 18 19 20  
CerSOJ  
ECJ  
A6  
4
A7  
3
A14  
1
WE  
27  
A13  
26  
V
I/O  
3
SS  
Military (-55°C to +125°C)  
Industrial (-40°C to +85°C)  
XT  
IT  
Operating  
Temp.  
Figure 1 - Pin Configuration  
MYXX28HC256  
Revision 1.4 - 02/13  
1
256Kb EEPROM  
MYXX28HC256  
Table 1 - Pin Names  
Pin Descriptions  
Addresses (A0–A14)  
Parameter  
Symbol  
The Address inputs select an 8-bit memory location during a read  
or write operation.  
A -A  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
0
14  
I/O -I/0  
0
7
Chip Enable (CE#)  
WE#  
CE#  
OE#  
The Chip Enable input must be LOW to enable all read/write  
operations. When CE# is HIGH, power consumption is reduced.  
V
Output Enable (OE#)  
CC  
V
Ground  
The Output Enable input controls the data output buffers and is  
used to initiate read operations.  
SS  
NC  
No Connect  
Data In/Data Out (I/O0–I/O7)  
Data is written to or read from the MYXX28HC256 through the  
I/O pins.  
Figure 2 - Functional Diagram  
Write Enable (WE#)  
256K-BIT  
EEPROM  
ARRAY  
X BUFFERS  
LATCHES AND  
DECODER  
The Write Enable input controls the writing of data to the  
MYXX28HC256.  
A –A  
0
14  
ADDRESS  
INPUTS  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
I/O –I/O  
0
7
DATA INPUTS/OUTPUTS  
CE#  
CONTROL  
LOGIC AND  
TIMING  
OE#  
WE#  
V
CC  
V
SS  
MYXX28HC256  
Revision 1.4 - 02/13  
2
256Kb EEPROM  
MYXX28HC256  
Write Operation Status Bits  
Device Operation  
The MYXX28HC256 provides the user two write operation status  
bits. These can be used to optimize a system write cycle time. The  
status bits are mapped onto the I/O bus as shown in Figure 3.  
Read  
Read operations are initiated by both OE# and CE# LOW. The read  
operation is terminated by either CE# or OE# returning HIGH. This  
two line control architecture eliminates bus contention in a system  
environment. The data bus will be in a high impedance state when  
either OE# or CE# is HIGH.  
Figure 3 - Status Bit Assignment  
I/O DP TB  
5
4
3
2
1
0
Write  
RESERVED  
TOGGLE BIT  
Write operations are initiated when both CE# and WE# are LOW and  
OE# is HIGH. The MYXX28HC256 supports both a CE# and WE#  
controlled write cycle. That is, the address is latched by the falling  
edge of either CE# or WE#, whichever occurs last. Similarly, the  
data is latched internally by the rising edge of either CE# or WE#,  
whichever occurs first. A byte write operation, once initiated, will  
automatically continue to completion, typically within 3ms.  
DATA POLLING  
DATA Polling (I/O7)  
The MYXX28HC256 features DATA Polling as a method to indicate to  
the host system that the byte write or page write cycle has completed.  
DATA Polling allows a simple bit test operation to determine the  
status of the MYXX28HC256, eliminating additional interrupt inputs  
or external hardware. During the internal programming cycle, any  
attempt to read the last byte written will produce the complement of  
Page Write Operation  
The page write feature of the MYXX28HC256 allows the entire  
memory to be written in typically 0.8 seconds. Page write allows  
up to one hundred twenty-eight bytes of data to be consecutively  
written to the MYXX28HC256 prior to the commencement of the  
internal programming  
that data on I/O (i.e. write data = 0xxx xxxx, read data = 1xxx xxxx).  
7
Once the programming cycle is complete, I/O will reflect true data.  
7
Toggle Bit (I/O6)  
cycle. The host can fetch data from another device within the  
system during a page write operation (change the source address),  
but the page address (A7 through A14) for each subsequent valid  
write cycle to the part during this operation must be the same as the  
initial page address.  
The MYXX28HC256 also provides another method for determining  
when the internal write cycle is complete. During the internal  
programming cycle I/O will toggle from HIGH to LOW and LOW to  
6
HIGH on subsequent attempts to read the device. When the internal  
cycle is complete the toggling will cease and the device will be  
accessible for additional read and write operations.  
The page write mode can be initiated during any write operation.  
Following the initial byte write cycle, the host can write an additional  
one to one hundred twentyseven bytes in the same manner as the  
first byte was written. Each successive byte load cycle, started by  
the WE# HIGH to LOW transition, must begin within 100ms of the  
falling edge of the preceding WE#. If a subsequent WE# HIGH to  
LOW transition is not detected within 100ms, the internal automatic  
programming cycle will commence. There is no page write window  
limitation. Effectively the page write window is infinitely wide, so  
long as the host continues to access the device within the byte load  
cycle time of 100ms.  
MYXX28HC256  
Revision 1.4 - 02/13  
3
256Kb EEPROM  
MYXX28HC256  
DATA Polling I/O  
7
Figure 4 - Data Polling Bus Sequence  
LAST  
WRITE  
WE#  
CE#  
OE#  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
MYXX28HC256  
READY  
A –A  
An  
An  
An  
An  
An  
An  
An  
0
14  
Figure 5 - Data Polling Software Flow  
DATA Polling can effectively halve the time for writing to the  
MYXX28HC256. The timing diagram in Figure 4 illustrates the  
sequence of events on the bus. The software flow diagram in Figure  
5 illustrates one method of implementing the routine.  
WRITE DATA  
NO  
WRITES  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
NO  
7
COMPARE?  
YES  
MYXX28HC256  
READY  
MYXX28HC256  
Revision 1.4 - 02/13  
4
256Kb EEPROM  
MYXX28HC256  
The Toggle Bit I/O  
6
Figure 6 - Toggle Bit Bus Sequence  
LAST  
WRITE  
WE#  
CE#  
OE#  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
MYXX28HC256  
READY  
* I/O beginning and ending state of I/O will vary.  
6
6
Figure 7 - Toggle Bit Software Flow  
The Toggle Bit can eliminate the software housekeeping chore of  
saving and fetching the last address and data written to a device  
in order to implement DATA Polling. This can be especially helpful  
in an array comprised of multiple MYXX28HC256 memories that is  
frequently updated. The timing diagram in Figure 6 illustrates the  
sequence of events on the bus. The software flow diagram in Figure  
7 illustrates a method for polling the Toggle Bit.  
LAST WRITE  
YES  
LOAD ACCUM  
FROM ADDR n  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
MYXX28HC256  
READY  
MYXX28HC256  
Revision 1.4 - 02/13  
5
256Kb EEPROM  
MYXX28HC256  
can be automatically protected during power-up and power-down  
without the need for external circuits by employing the software  
data protection feature. The internal software data protection  
circuit is enabled after the first write operation utilizing the software  
algorithm. This circuit is nonvolatile and will remain set for the life of  
the device unless the reset command is issued.  
Hardware Data Protection  
The MYXX28HC256 provides two hardware features that protect  
nonvolatile data from inadvertent writes.  
Default V Sense - All write functions are inhibited when V is  
CC  
CC  
3.5V Typically.  
Once the software protection is enabled, the MYXX28HC256 is also  
protected from inadvertent and accidental writes in the powered-up  
state. That is, the software algorithm must be issued prior to writing  
additional data to the device.  
• Write Inhibit - Holding either OE# LOW, WE# HIGH, or CE# HIGH  
will prevent an inadvertent write cycle during power-up and  
power-down, maintaining data integrity.  
Software Data Protection  
Software Algorithm  
The MYXX28HC256 offers a software controlled data protection  
feature. The MYXX28HC256 is shipped from Micross with the  
software data protection NOT ENABLED; that is, the device will  
be in the standard operating mode. In this mode data should be  
protected during power-up/down operations through the use of  
external circuits. The host would then have open read and write  
Selecting the software data protection mode requires the host  
system to precede data write operations by a series of three write  
operations to three specific addresses. Refer to Figure 9 and 10  
for the sequence. The three-byte sequence opens the page write  
window enabling the host to write from one to one hundred twenty-  
eight bytes of data. Once the page load cycle has been completed,  
the device will automatically be returned to the data protected state.  
access of the device once V was stable. The MYXX28HC256  
CC  
MYXX28HC256  
Revision 1.4 - 02/13  
6
256Kb EEPROM  
MYXX28HC256  
Software Data Protection  
Figure 8 - Timing Sequence - Byte or Page Write  
V
(V  
)
CC  
CC  
0V  
DATA  
ADDRESS  
AA  
5555  
55  
2AAA  
A0  
5555  
t
WRITE  
PROTECTED  
WC  
WRITES  
OK  
CE#  
t  
BYTE  
OR  
PAGE  
BLC MAX  
WE#  
Figure 9 - Write Sequence for Software Data Protection  
Regardless of whether the device has previously been protected or  
not, once the software data protection algorithm is used and data  
has been written, the MYXX28HC256 will automatically disable  
further writes unless another command is issued to cancel it. If  
no further commands are issued the MYXX28HC256 will be write  
protected during power-down and after any subsequent power-up.  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
Note: Once initiated, the sequence of write operations should not  
be interrupted.  
WRITE DATA A0  
TO ADDRESS  
5555  
BYTE/PAGE  
LOAD ENABLED  
WRITE DATA XX  
TO ANY  
ADDRESS  
OPTIONAL  
BYTE OR  
PAGE WRITE  
ALLOWED  
WRITE LAST  
BYTE TO  
LAST ADDRESS  
AFTER t  
RE-ENTERS DATA  
WC  
PROTECTED STATE  
MYXX28HC256  
Revision 1.4 - 02/13  
7
256Kb EEPROM  
MYXX28HC256  
Resetting Software Data Protection  
Figure 10 - Reset Software Data Protection Timing Sequence  
V
CC  
DATA  
ADDRESS  
STANDARD  
OPERATING  
MODE  
t
WC  
AA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
CE#  
WE#  
Figure 11 - Write Sequence for Resetting Software Data Protection  
In the event the user wants to deactivate the software data  
protection feature for testing or reprogramming in an EEPROM  
programmer, the following six step algorithm will reset the internal  
WRITE DATA AA  
TO ADDRESS  
5555  
protection circuit. After t , the MYXX28HC256 will be in standard  
WC  
WRITE DATA 55  
TO ADDRESS  
2AAA  
operating mode.  
Note: Once initiated, the sequence of write operations should not  
be interrupted.  
WRITE DATA 80  
TO ADDRESS  
5555  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 20  
TO ADDRESS  
5555  
AFTER t  
,
WC  
RE-ENTERS  
UNPROTECTED  
STATE  
MYXX28HC256  
Revision 1.4 - 02/13  
8
256Kb EEPROM  
MYXX28HC256  
System Considerations  
Because the MYXX28HC256 is frequently used in large memory  
arrays it is provided with a two line control architecture for both read  
and write operations. Proper usage can provide the lowest possible  
power dissipation and eliminate the possibility of contention where  
multiple I/O pins share the same bus.  
these spikes is dependent on the output capacitive loading of the  
l/Os. Therefore, the larger the array sharing a common bus, the  
larger the transient spikes. The voltage peaks associated with  
the current transients can be suppressed by the proper selection  
and placement of decoupling capacitors. As a minimum, it is  
recommended that a 0.1µF high frequency ceramic capacitor be  
To gain the most benefit it is recommended that CE# be decoded  
from the address bus and be used as the primary device selection  
input. Both OE# and WE# would then be common among all devices  
in the array. For a read operation this assures that all deselected  
devices are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
used between V and V at each device. Depending on the size of  
CC  
SS  
the array, the value of the capacitor may have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic bulk  
capacitor be placed between V and V for each eight devices  
CC  
SS  
employed in the array. This bulk capacitor is employed to overcome  
the voltage droop caused by the inductive effects of the PC  
board traces.  
Because the MYXX28HC256 has two power modes, standby and  
active, proper decoupling of the memory array is of prime concern.  
Enabling CE# will cause transient current spikes. The magnitude of  
MYXX28HC256  
Revision 1.4 - 02/13  
9
256Kb EEPROM  
MYXX28HC256  
Table 2 - Absolute Maximum Ratings*  
*Note  
Stresses above those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. This is a stress rating  
only and the functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Temperature under bias  
-10°C to +85°C  
-65°C to +135°C  
-65°C to +150°C  
-1V to +7V  
10mA  
Storage temperature  
Voltage on any pin with respect to V  
DC output current  
SS  
Lead temperature (soldering, 10 sec.)  
Supply voltage  
300°C  
5V ±10%  
Table 3 - Recommended Operating Conditions  
Temperature  
Min.  
Max.  
Commerical  
Industrial  
Military  
0°C  
-40°C  
-55°C  
+70°C  
+85°C  
+125°C  
Table 4 - DC Operating Characteristics  
Over the recommended operating conditions unless otherwise specified.  
Limits  
Symbol  
Parameter  
Units  
Test Conditions  
1
Min.  
Typ.  
Max.  
CE# = OE# = VIL; WE# = VIH  
All I/O’s = Open; Address Inputs = .4V/2.4V Levels @ f = 10MHz  
ICC  
ISB1  
ISB2  
ILI  
VCC Active Current (TTL Inputs)  
VCC Standby Current (TTL Inputs)  
VCC Standby Current (CMOS Inputs)  
Input Leakage Current  
30  
60  
mA  
1
2
500  
10  
CE# = VIH; OE# = VIL; All I/O’s = Open; Other Inputs = VIH  
CE# = VCC - 0.3V; OE# = GND; All I/O’s = Open; Other Inputs = VCC - 0.3V  
VIN = VSS to VCC; CE# = VIH  
200  
µA  
ILO  
Output Leakage Current  
Input LOW Voltage  
10  
VOUT = VSS to VCC; CE# = VIH  
2
VIL  
-1  
2
0.8  
2
VIH  
Input HIGH Voltage  
VCC +1  
0.4  
V
VOL  
VOH  
Output LOW Voltage  
IOL = 6mA  
Output HIGH Voltage  
2.4  
IOH = -4mA  
1. Typical values are for TA = 25°C and nominal supply voltage.  
2. VIL min. and VIH max. are for reference only and are not tested.  
MYXX28HC256  
Revision 1.4 - 02/13  
10  
256Kb EEPROM  
MYXX28HC256  
Table 5 - Power-Up Timing  
Symbol  
Parameter  
Max.  
100  
5
Units  
µs  
1
t
Power-Up to Read  
Power-Up to Write  
PUR  
1
t
ms  
PUW  
1. This parameter is periodically sampled and not 100% tested.  
Table 6 - Capacitance  
T = +25°C; f = 1MHz; V = 5V  
A
CC  
Symbol  
Test  
Max.  
10  
Units  
Conditions  
C
I/O  
Input/Output Capacitance  
Input Capacitance  
V
= OV  
I/O  
pF  
C
6
V = OV  
IN  
IN  
Table 7 - Endurance and Data Retention  
Parameter  
Endurance  
Min.  
Max.  
Units  
Cycles  
Years  
100,000  
100  
Data Retention  
Table 8 - AC Conditions of Test  
Input Pulse Levels  
Table 9 - Mode Selection  
CE#  
L
OE#  
L
WE#  
Mode  
Read  
I/O  
Power  
0V to 3V  
5ns  
H
L
D
OUT  
Active  
H
Write  
D
IN  
Input Rise and Fall Times  
H
X
X
X
H
Standby & Write Inhibit  
High Z Standby  
L
Input and Output Timing Levels  
1.5V  
X
Write Inhibit  
X
MYXX28HC256  
Revision 1.4 - 02/13  
11  
256Kb EEPROM  
MYXX28HC256  
Figure 12 - Equivalent AC Load Circuit  
Figure 13 - Symbol Table  
WAVEFORM  
INPUTS  
OUTPUTS  
5V  
Must be  
steady  
Will be  
steady  
1.92K  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
OUTPUT  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
1.37KΩ  
30pF  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
MYXX28HC256  
Revision 1.4 - 02/13  
12  
256Kb EEPROM  
MYXX28HC256  
AC Characteristics  
Over the recommended operating conditions unless otherwise specified.  
Table 10 - Read Cycle Limits  
MYXX28HC256-70 MYXX28HC256-90 MYXX28HC256-12 MYXX28HC256-15  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max  
t
Read Cycle Time  
Chip Enable Access Time  
Address Access Time  
70  
90  
120  
150  
RC  
t
CE  
AA  
OE  
70  
35  
90  
40  
120  
50  
150  
50  
t
t
Output Enable Access Time  
CE# LOW to Output Active  
OE# LOW to Output Active  
CE# HIGH to High Z Output  
OE# HIGH to High Z Output  
Output Hold from Address Change  
1
t
ns  
LZ  
0
0
0
0
0
0
0
0
1
t
OLZ  
1
t
HZ  
35  
40  
50  
50  
1
t
OHZ  
t
OH  
1. tLZ min., tHZ, tOLZ min. and tOHZ are periodically sampled and not 100% tested, tHZ and tOHZ are measured, with CL = 5pF, from the point when CE#, OE# return  
HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
Figure 14 - Read Cycle  
t
RC  
ADDRESS  
t
CE  
CE#  
t
OE  
OE#  
V
IH  
WE#  
t
t
OHZ  
OLZ  
t
t
t
LZ  
OH  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
t
AA  
MYXX28HC256  
Revision 1.4 - 02/13  
13  
256Kb EEPROM  
MYXX28HC256  
Table 11 - Write Cycle Limits  
1
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
2
t
Write Cycle Time  
Address Setup Time  
Address Hold Time  
Write Setup Time  
3
5
ms  
WC  
t
0
50  
0
AS  
AH  
CS  
CH  
t
t
t
Write Hold Time  
0
t
CE# Pulse Width  
50  
0
ns  
CW  
t
OE# HIGH Setup Time  
OE# HIGH Hold Time  
WE# Pulse Width  
OES  
OEH  
t
0
t
50  
50  
WP  
3
t
WE# High Recovery (page write only)  
Data Valid  
WPH  
t
1
µs  
DV  
DS  
DH  
t
Data Setup  
50  
0
ns  
t
Data Hold  
3
t
Delay to next Write after polling is true  
Byte Load Cycle  
10  
DW  
µs  
t
0.15  
100  
BLC  
1. Typical values are for TA = 25°C and nominal supply voltage.  
2. tWC is the minimum cycle time to be allowed from the system perspective unless polling techniques are used.  
It is the maximum time the device requires to automatically complete the internal write operation.  
3. tWPH and tDW are periodically sampled and not 100% tested.  
Figure 15 - WE# Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
t
CS  
CH  
CE#  
OE#  
t
t
OEH  
OES  
t
WP  
WE#  
DATA IN  
DATA OUT  
DATA VALID  
DS  
t
t
DH  
HIGH Z  
MYXX28HC256  
Revision 1.4 - 02/13  
14  
256Kb EEPROM  
MYXX28HC256  
Figure 16 - CE# Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
CW  
CE#  
t
t
OEH  
OES  
OE#  
t
t
CH  
CS  
WE#  
DATA IN  
DATA VALID  
t
t
DH  
DS  
HIGH Z  
DATA OUT  
Figure 17 - Page Write Cycle  
OE#1  
CE#  
t
t
WP  
BLC  
WE#  
t
WPH  
ADDRESS2  
I/O  
LAST BYTE  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
BYTE n+2  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
14  
7
writes to an unknown address could occur.  
1. Between successive byte writes within a page write operation, OE# can be strobed LOW: e.g. this can be done with CE# and WE# HIGH to fetch data from another memory  
device within the system for the next write; or with WE# HIGH and CE# LOW effectively performing a polling operation.  
2. The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform to either the CE# or WE# controlled write  
cycle timing.  
MYXX28HC256  
Revision 1.4 - 02/13  
15  
256Kb EEPROM  
MYXX28HC256  
1
Figure 18 - DATA Polling Diagram  
A
A
A
N
ADDRESS  
CE#  
N
N
WE#  
t
t
OES  
OEH  
OE#  
t
DW  
=X  
D
=X  
D
=X  
D
OUT  
I/O  
7
IN  
OUT  
t
WC  
1
Figure 19 - Toggle Bit Timing Diagram  
CE#  
WE#  
t
t
OES  
OEH  
OE#  
t
DW  
HIGH Z  
I/O  
*
6
*
t
WC  
*I/O beginning and ending state will vary, depending upon actual t  
WC  
.
6
1. Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
MYXX28HC256  
Revision 1.4 - 02/13  
16  
256Kb EEPROM  
MYXX28HC256  
Packaging Information  
Figure 20 - 28-Lead Hermetic Dual In-line Package Type CW  
1.460 (37.08)  
1.400 (35.56)  
0.550 (13.97)  
0.510 (12.95)  
PIN 1 INDEX  
PIN 1  
0.085 (2.16)  
0.040 (1.02)  
1.300 (33.02)  
REF.  
0.160 (4.06)  
0.125 (3.17)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.150 (3.81)  
0.125 (3.17)  
0.110 (2.79)  
0.090 (2.29)  
0.062 (1.57)  
0.050 (1.27)  
0.020 (0.51)  
0.016 (0.41)  
0.610 (15.49)  
0.590 (14.99)  
0°  
15°  
TYP. 0.010 (0.25)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
MYXX28HC256  
Revision 1.4 - 02/13  
17  
256Kb EEPROM  
MYXX28HC256  
Packaging Information (continued)  
Figure 21 - 32-Pad Ceramic Leadless Chip Carrier Package Type ECA  
0.150 (3.81) BSC  
0.015 (0.38)  
0.003 (0.08)  
0.020 (0.51) x 45° REF.  
0.095 (2.41)  
0.075 (1.91)  
PIN 1  
0.022 (0.56)  
0.006 (0.15)  
0.055 (1.39)  
0.045 (1.14)  
0.200 (5.08)  
BSC  
TYP. (4) PLCS.  
0.028 (0.71)  
0.022 (0.56)  
(32) PLCS.  
0.040 (1.02) x 45° REF.  
TYP. (3) PLCS.  
0.050 (1.27) BSC  
0.458 (11.63)  
0.442 (11.22)  
0.088 (2.24)  
0.050 (1.27)  
0.458 (11.63)  
––  
0.300 (7.62)  
BSC  
0.120 (3.05)  
0.060 (1.52)  
0.560 (14.22)  
0.540 (13.71)  
0.558 (14.17)  
––  
0.400 (10.16)  
BSC  
3926 FHD F14  
3926 Fhd F14  
32 1  
PIN 1 INDEX CORDER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: 1% NTL 0.005 (0.127)  
MYXX28HC256  
Revision 1.4 - 02/13  
18  
256Kb EEPROM  
MYXX28HC256  
Packaging Information (continued)  
Figure 22 - 28-Lead Ceramic Pin Grid Array Package Type P  
12  
11  
9
13  
10  
8
15  
14  
17  
16  
20  
22  
24  
27  
18  
19  
21  
23  
25  
26  
A
A
0.008  
7
6
0.050  
5
2
28  
1
NOTE: LEADS 4,12,18 & 26  
4
3
0.080  
0.070  
TYP. 0.100  
ALL LEADS  
4 CORNERS  
0.080  
0.070  
0.100  
0.080  
0.072  
0.061  
PIN 1 INDEX  
0.020  
0.016  
0.660 (16.76)  
0.640 (16.26)  
A
A
0.185 (4.70)  
0.175 (4.44)  
0.561 (14.25)  
0.541 (13.75)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
MYXX28HC256  
Revision 1.4 - 02/13  
19  
256Kb EEPROM  
MYXX28HC256  
Packaging Information (continued)  
Figure 23 - 28-Lead Ceramic Flat Pack Type F  
0.019 (0.48)  
0.015 (0.38)  
PIN 1 INDEX  
1
28  
0.050 (1.27) BSC  
0.740 (18.80)  
MAX.  
0.045 (1.14) MAX.  
0.440 (11.18)  
0.130 (3.30)  
0.090 (2.29)  
MAX.  
0.006 (0.15)  
0.003 (0.08)  
0.370 (9.40)  
0.250 (6.35)  
0.045 (1.14)  
0.025 (0.66)  
TYP. 0.300 2 PLCS.  
0.180 (4.57)  
MIN.  
0.030 (0.76)  
MIN.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
MYXX28HC256  
Revision 1.4 - 02/13  
20  
256Kb EEPROM  
MYXX28HC256  
Packaging Information (continued)  
Figure 24 - 32-Lead Ceramic SOJ Type ECJ  
32  
1
MYXX28HC256  
Revision 1.4 - 02/13  
21  
256Kb EEPROM  
MYXX28HC256  
Ordering Information  
Table 12 - Device Numbering  
Device Number  
Package Type  
Speed  
Temperature  
-7 = 70ns  
-9 = 90ns  
MYXX28HC256CW  
CerDIP  
IT/XT  
-12 = 120ns  
-15 = 150ns  
-7 = 70ns  
-9 = 90ns  
MYXX28HC256ECA-  
MYXX28HC256F-  
MYXX28HC256P-  
MYXX28HC256ECJ  
CerLCC  
CerFP  
IT/XT  
IT/XT  
IT/XT  
IT/XT  
-12 = 120ns  
-15 = 150ns  
-7 = 70ns  
-9 = 90ns  
-12 = 120ns  
-15 = 150ns  
-7 = 70ns  
-9 = 90ns  
CerPGA  
CerSOJ  
-12 = 120ns  
-15 = 150ns  
-7 = 70ns  
-9 = 90ns  
-12 = 120ns  
-15 = 150ns  
IT = Industrial Temperature Range -40°C to +85°C  
XT = Extended Temperature Range -55°C to +125°C  
MYXX28HC256  
Revision 1.4 - 02/13  
22  
256Kb EEPROM  
MYXX28HC256  
Document Title  
32K x 8 EEPROM - 5 Volt, Byte Alterable  
Revision History  
Revision #  
1.3  
History  
Release Date  
Status  
Initial Release  
November 2012  
February 2013  
Preliminary  
Released  
1.4  
Added ceramic SOJ package drawing and option  
Changed status to “Released”  
Corrected part number  
Corrected figure designations  
MYXX28HC256  
Revision 1.4 - 02/13  
23  
厂商 型号 描述 页数 下载

MICROSS

MYX28C32K8ECA-12IT [ EEPROM, 32KX8, 120ns, Parallel, CMOS, CQCC32, LCC-32 ] 22 页

MICROSS

MYX4DDR264M72PBG-3ET [ DDR DRAM, 64MX72, 0.45ns, CMOS, PBGA208, BGA-208 ] 31 页

MICROSS

MYXJ11200-17CAB [ Power Field-Effect Transistor ] 4 页

MICROSS

MYXN25Q256A13ESF [ SPI-compatible serial bus interface ] 31 页

MICROSS

MYXN25Q256A13ESFDG-XT [ SPI-compatible serial bus interface ] 31 页

MICROSS

MYXX28HC256CW [ No External High Voltages or VPP ] 23 页

MICROSS

MYXX28HC256CW-12IT [ EEPROM, 32KX8, 120ns, Parallel, CMOS, CDIP28, DIP-28 ] 23 页

MICROSS

MYXX28HC256CW-15IT [ EEPROM, 32KX8, 150ns, Parallel, CMOS, CDIP28, DIP-28 ] 23 页

MICROSS

MYXX28HC256CW-7XT [ EEPROM, 32KX8, 70ns, Parallel, CMOS, CDIP28, DIP-28 ] 23 页

MICROSS

MYXX28HC256ECA [ No External High Voltages or VPP ] 23 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.186216s