找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

IXDD404SI-16

型号:

IXDD404SI-16

描述:

4安培双低侧超快MOSFET驱动器[ 4 Amp Dual Low-Side Ultrafast MOSFET Driver ]

品牌:

IXYS[ IXYS CORPORATION ]

页数:

10 页

PDF大小:

668 K

PRELIMINARY DATA SHEET  
IXDD404PI / 404SI / 404SIA / 404SI-16  
4 Amp Dual Low-Side Ultrafast MOSFET Driver  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtected  
The IXDD404 is comprised of two 4 Amp CMOS high speed  
MOSFET drivers. Each output can source and sink 4 A of  
peak current while producing voltage rise and fall times of less  
than 15ns to drive the latest IXYS MOSFETS & IGBT's. The  
input of the driver is compatible with TTL or CMOS and is fully  
immune to latch up over the entire operating range. Designed  
with small internal delays, cross conduction/current shoot-  
throughisvirtuallyeliminatedintheIXDD404.Improvedspeed  
anddrivecapabilitiesarefurtherenhancedbyverylow,  
matched rise and fall times.  
• High Peak Output Current: 4A Peak  
• Wide Operating Range: 4.5V to 25V  
• Ability to Disable Output under Faults  
• High Capacitive Load  
Drive Capability: 1800pF in <15ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
Additionally,eachdriverintheIXDD404incorporatesaunique  
ability to disable the output under fault conditions. When a  
logical low is forced into the Enable input of a driver, both of it's  
final output stage MOSFETs (NMOS and PMOS) are turned  
off. As a result, the respective output of the IXDD404 enters a  
tristate mode and achieves a Soft Turn-Off of the MOSFET/  
IGBT when a short circuit is detected. This helps prevent  
damage that could occur to the MOSFET/IGBT if it were to be  
switchedoffabruptlyduetoadv/dtover-voltagetransient.  
• Two identical drivers in single chip  
Applications  
• DrivingMOSFETsandIGBTs  
• Limiting di/dt under Short Circuit  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
The IXDD404 is available in the standard 8 pin P-DIP (PI),  
SOP-8 (SI -with metal tab), SOP-8 (SIA -without metal tab) and  
SOP-16(SI-16)packages.  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
Figure 1 - Functional Diagram  
Vcc  
OUTA  
200k  
ENA  
INB  
ENB  
GND  
OUTB  
200k  
Copyright©IXYSCORPORATION2001  
First Release  
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
-40 C to 85  
Parameter  
Value  
Operating Temperature Range  
o
o
Supply Voltage  
All Other Pins  
Junction Temperature  
Storage Temperature  
Lead Temperature (10 sec)  
25 V  
C
-0.3 V to V  
+ 0.3 V  
Thermal Impedance (To Ambient)  
CC  
o
θ
θ
8 Pin PDIP (PI) (  
8 Pin SOIC (SI) (  
)
JA  
o
120 C/W  
150 C  
o
)
JA  
o
o
110 C/W  
-65 C to 150 C  
o
θ
8 Pin SOIC (SIA) (  
)
JA  
120 C/W  
o
300 C  
o
θ
16 Pin SOIC (SI-16) (  
)
JA  
110 C/W  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXDD404 configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
VIL  
VIN  
IIN  
Parameter  
Test Conditions  
Min  
3.5  
Typ  
Max  
Units  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
V
V
V
0.8  
VCC + 0.3  
10  
-5  
-10  
µ
A
0V VIN VCC  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
3
Output resistance  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
1.5  
1.5  
4
@ Output high  
ROL  
IPEAK  
IDC  
Output resistance  
@ Output Low  
3
A
A
Peak output current  
Continuous output  
current  
Enable voltage range  
High En Input Voltage  
Low En Input Voltage  
Rise time  
1
VEN  
VENH  
VENL  
tR  
tF  
tONDLY  
- 0.3  
2/3 Vcc  
Vcc + 0.3  
V
V
V
ns  
ns  
ns  
1/3 Vcc  
15  
CL=1800pF Vcc=18V  
CL=1800pF Vcc=18V  
CL=1800pF Vcc=18V  
11  
12  
33  
12  
14  
34  
Fall time  
17  
38  
On-time propagation  
delay  
tOFFDLY  
tENOH  
tDOLD  
Off-time propagation  
delay  
CL=1800pF Vcc=18V  
28  
30  
35  
30  
30  
25  
ns  
ns  
ns  
Enable to output high  
delay time  
Disable to output low  
Disable delay time  
Power supply voltage  
VCC  
ICC  
4.5  
18  
1
0
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
3
mA  
10  
10  
µ
µ
A
A
VIN = + VCC  
REN  
Enable Pull-up Resistor  
200  
k
2
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
Pin Configurations  
1
2
8
7
6
5
I
EN A  
IN A  
EN B  
X
D
D
4
0
4
OUT A  
SO8 (SI, SIA)  
8 PIN DIP (PI)  
SO16 (SI-16)  
3
GND  
IN B  
VCC  
4
OUT B  
Pin Description  
SYMBOL  
FUNCTION  
DESCRIPTION  
The Channel A enable pin. This pin, when driven low, disables the A  
Channel, forcing a high impedance state to the A Channel Output.  
A Channel Input signal-TTL or CMOS compatible.  
EN A  
IN A  
A Channel Enable  
A Channel Input  
The system ground pin. Internally connected to all circuitry, this pin provides  
ground reference for the entire chip. This pin should be connected to a low  
noise analog ground plane for optimum performance.  
GND  
Ground  
IN B  
B Channel Input  
B Channel Input signal-TTL or CMOS compatible.  
B Channel Driver output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
OUT B  
B Channel Output  
Positive power-supply voltage input. This pin provides power to the entire  
chip. The range for this voltage is from 4.5V to 25V.  
VCC  
OUT A  
EN B  
Supply Voltage  
A Channel Output  
B Channel Enable  
A Channel Driver output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
The Channel B enable pin. This pin, when driven low, disables the B  
Channel, forcing a high impedance state to the B Channel Output.  
Note 1: Operating the device beyond parameters with listed “absolute maximum ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when  
handling and assembling this component.  
Figure 2 - Characteristics Test Diagram  
IN  
V
3
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
Typical Performance Characteristics  
Fig. 3  
40  
Fig. 4  
60  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
CL=4700 pF  
1800 pF  
CL=4700 pF  
1800 pF  
200 pF  
200 pF  
0
8
0
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 5  
Rise And Fall Times vs. Temperature  
Fig. 6  
80  
Rise Time vs. Load Capacitance  
C =18V VCC=18V  
L
25  
70  
60  
50  
40  
30  
20  
10  
8V  
20  
15  
10  
5
10V  
12V  
tF  
18V  
tR  
16V  
14V  
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0k  
2k  
4k  
6k  
8k  
10k  
Temperature (°C)  
Load Capacitance (pF)  
Max / Min Input vs. Temperature  
V =18V C =1nF  
Fig. 8  
Fig. 7  
100  
Fall Time vs. Load Capacitance  
CC  
L
3.2  
8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
MinimumInput High  
MaximumInput Low  
10V  
12V  
18V  
16V  
14V  
1.6  
-60  
0
-40  
-20  
0
20  
40  
60  
80  
100  
0k  
2k  
4k  
6k  
8k  
10k  
Temperature (oC)  
Load Capacitance (pF)  
4
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
Fig. 9  
Supply Current vs. Load Capacitance  
Vcc=18V  
Supply Current vs. Frequency  
Vcc=18V  
Fig. 10  
100  
100  
CL= 1800 pF  
80  
60  
40  
20  
0
10  
1
1000 pF  
200 pF  
2 MHz  
1 MHz  
500 KHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0.01  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 11  
Fig. 12  
Supply Current vs. Frequency  
Vcc=12V  
Supply Current vs. Load Capacitance  
Vcc=12V  
100  
80  
60  
40  
20  
0
100  
CL= 1800 pF  
200 pF  
10  
1
1000 pF  
1 MHz  
2 MHz  
500 KHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0.01  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 13  
Supply Current vs. Load Capacitance  
Supply Current vs. Frequency  
Vcc=8V  
Fig. 14  
Vcc=8V  
100  
80  
60  
40  
20  
0
100  
10  
1
CL= 1800 pF  
200 pF  
1000 pF  
500 KHz  
1 MHz  
2 MHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0.01  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
Load Capacitance (pF)  
Frequency (kHz)  
5
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
Fig. 15  
Fig. 16  
Propagation Delay vs. Input Voltage  
CL=1800pF VCC=15V  
Propagation Delay vs. Supply Voltage  
CL=1800pF V =5V@1kHz  
IN  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
tONDLY  
tONDLY  
tOFFDLY  
tOFFDLY  
0
0
2
6
8
10  
12  
4Input Voltage (V)  
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Fig. 18  
0.26  
Quiescent Supply Current vs. Temperature  
VCC=18V V =5V@1kHz C =1000pF  
Fig. 17  
Propagation Delay Times vs. Temperature  
CL=1800pF VCC=18V  
IN  
L
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.24  
tONDLY  
0.22  
0.20  
tOFFDLY  
0.18  
0.16  
0.14  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (oC)  
Temperature (°C)  
Fig. 19  
Fig. 20  
P Channel Output Current Vs. Temperature  
N Channel Output Current Vs. Temperature  
VCC=18V, C =1000pF  
VCC=18V, C =1000pF  
L
L
6
5
4
3
6
5
4
3
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (oC)  
Temperature (oC)  
6
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
High State Output Resistance  
vs. Supply Voltage  
Fig. 22  
Fig. 21  
Enable Threshold vs. Supply Voltage  
5
14  
12  
10  
8
4
3
2
1
6
4
2
0
8
0
10  
15  
20  
25  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Supply Voltage (V)  
Supply Voltage (V)  
Low-State Output Resistance  
Vs. Supply Voltage  
Fig. 23  
Fig. 24  
V vs. P Channel Output Current  
cc  
3.0  
0
-2  
-4  
-6  
2.0  
1.0  
0.0  
-8  
8
8
10  
15  
20  
25  
10  
15  
20  
25  
30  
Supply Voltage (V)  
Vcc  
Figure 26 - Typical Application Short Circuit di/dt Limit  
Fig. 25  
VCC vs. N Channel Output Current  
8
6
4
2
0
8
10  
15  
20  
25  
30  
Vcc  
7
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
Ashortcircuitinahigh-powerMOSFETsuchastheIXFN100N20,  
(20A, 1000V), as shown in Figure 26, can cause the current  
through the module to flow in excess of 60A for 10µs or more  
prior to self-destruction due to thermal runaway. For this  
reason, some protection circuitry is needed to turn off the  
MOSFET module. However, if the module is switched off too  
fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
caused by the inductance of the wire connecting the source  
resistor to ground. (Those glitches might cause false triggering  
of the comparator).  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
andthelowpowerMOSFETgate. PleasenotethatCMOS4000-  
series devices operate with a VCC range from 3 to 15 VDC, (with  
18 VDC being the maximum allowable limit).  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the IXFN100N20 gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
the IXFN100N20.  
TheIXDD404hastheuniquecapabilitytosoftlyswitchoffthe  
high-power MOSFET module, significantly reducing these  
Ldi/dttransients.  
Thus, the IXDD404 helps to prevent device destruction from  
both dangers; over-current, and avalanche breakdown due to  
di/dt induced over-voltage transients.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD404 again. This Reset can  
be generated by connecting a One Shot circuit between the  
IXDD408 Input signal and the SRFF restart input. The One Shot  
will create a pulse on the rise of the IXDD404 input, and this  
pulse will reset the SRFF outputs to normal operation.  
The IXDD404 is designed to not only provide ±4A per output  
under normal conditions, but also to allow it's outputs to go into  
a high impedance state. This permits the IXDD404 output to  
control a separate weak pull-down circuit during detected  
overcurrent shutdown conditions to limit and separately con-  
trol dVGS/dt gate turnoff. This circuit is shown in Figure 27.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a low  
input into the Enable pin disabling the IXDD404 output. The  
SRFF also turns on the low power MOSFET, (2N7000).  
Referring to Figure 27, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the IXFD100N20. A low pass filter should be added to the  
input of the comparator to eliminate any glitches in voltage  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD404, preventing its destruction.  
Figure 27 - Application Test Diagram  
+
VB  
Ld  
10uH  
-
Rd  
0.1ohm  
IXDD404  
VCC  
Rg  
VCCA  
High_Power  
OUT  
IXFN100N20  
Rs  
IN  
1ohm  
Rsh  
EN  
1600ohm  
+
-
+
-
VCC  
VIN  
DGND  
SUB  
Low_Power  
2N7002/PLP  
Ls  
20nH  
R+  
10kohm  
One ShotCircuit  
0
Rcomp  
5kohm  
Comp  
LM339  
+
V+  
NAND  
NOT2  
C+  
100pF  
NOT1  
CD4011A  
CD4049A  
V-  
-
CD4049A  
Ccomp  
1pF  
Ros  
+
R
1Mohm  
REF -  
Cos  
1pF  
Q
NOT3  
NOR1  
S
CD4049A  
CD4001A  
EN  
NOR2  
CD4001A  
SR Flip-Flop  
8
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
TTL to High Voltage CMOS Level Translation  
The enable (EN) input to the IXDD404 is a high voltage  
CMOS logic level input where the EN input threshold is ½  
V , and may not be compatible with 5V CMOS or TTL input  
leCvCels. The IXDD404 EN input was intentionally designed  
for enhanced noise immunity with the high voltage CMOS  
logic levels. In a typical gate driver application, VCC =15V  
and the EN input threshold at 7.5V, a 5V CMOS logical high  
input applied to this typical IXDD404 application’s EN input  
will be misinterpreted as a logical low, and may cause  
undesirable or unexpected results. The note below is for  
optional adaptation of TTL or 5V CMOS levels.  
Supply Bypassing and Grounding Practices,  
Output Lead inductance  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDD404, it is very important to keep certain design  
criteria in mind, in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
Say,forexample,weareusingtheIXDD404tochargea2500pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=2500pF &  
t=25ns we can determine that to charge 2500pF to 25 volts in  
25nswilltakeaconstantcurrentof2.5A. (Inreality, thecharging  
current won’t be constant, and will peak somewhere around  
4A).  
The circuit in Figure 28 alleviates this potential logic level  
misinterpretation by translating a TTL or 5V CMOS logic  
input to high voltage CMOS logic levels needed by the  
IXDD404 EN input. From the figure, VCC is the gate driver  
power supply, typically set between 8V to 20V, and VDD is the  
logic power supply, typically between 3.3V to 5.5V.  
Resistors R1 and R2 form a voltage divider network so that  
the Q1 base is positioned at the midpoint of the expected  
TTL logic transition levels.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDD404  
must be able to draw this 2.5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is a magnitude  
larger than the load capacitance. Usually, this would be  
achievedbyplacingtwodifferenttypesofbypassingcapacitors,  
with complementary impedance curves, very close to the driver  
itself. (These capacitors should be carefully selected, low  
inductance, low resistance, high-pulse current-service  
capacitors). Lead lengths may radiate at high frequency due  
to inductance, so care should be taken to keep the lengths of  
the leads between these bypass capacitors and the IXDD404  
to an absolute minimum.  
A TTL or 5V CMOS logic low, V  
=~<0.8V, input applied  
to the Q1 emitter will drive it on.TTTLLhOiWs causes the level  
translator output, the Q1 collector output to settle to  
V
+ V  
=<~2V, which is sufficiently low to be correctlyCESATQ1  
inteTrTpLrLeOWted as a high voltage CMOS logic low (<1/3VCC=5V  
for VCC =15V given in the IXDD404 data sheet.)  
A TTL high, VTTLHIGH=>~2.4V, or a 5V CMOS high,  
V5VCMOSHIGH=~>3.5V, applied to the EN input of the circuit in  
Figure 28 will cause Q1 to be biased off. This results in Q1  
collector being pulled up by R3 to V =15V, and provides a  
high voltage CMOS logic high outpuCt.C The high voltage  
CMOS logical EN output applied to the IXDD404 EN input  
will enable it, allowing the gate driver to fully function as a  
±4 Amp output driver.  
GROUNDING  
In order for the design to turn the load off properly, the IXDD404  
must be able to drain this 2.5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDD404  
and it’s load. Path #2 is between the IXDD404 and it’s power  
supply. Path #3 is between the IXDD404 and whatever logic  
is driving it. All three of these paths should be as low in  
resistance and inductance as possible, and thus as short as  
practical. In addition, every effort should be made to keep these  
three ground paths distinctly separate. Otherwise, (for  
instance), the returning ground current from the load may  
develop a voltage that would have a detrimental effect on the  
logic line driving the IXDD404.  
The total component cost of the circuit in Figure 28 is less  
than $0.10 if purchased in quantities >1K pieces. It is  
recommended that the physical placement of the level  
translator circuit be placed close to the source of the TTL or  
CMOS logic circuits to maximize noise rejection.  
Figure 28 - TTL to High Voltage CMOS Level Translator  
CC  
(FromGate Driver  
Power Supply)  
OUTPUTLEADINDUCTANCE  
R3  
10K  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and it’s  
load as short and wide as possible. If the driver must be placed  
farther than 2” from the load, then the output leads should be  
treated as transmission lines. In this case, a twisted-pair  
should be considered, and the return line of each twisted pair  
should be placed as close as possible tothe ground pin of the  
driver, and connect directly to the ground terminal of the  
load.  
High Voltage  
V
DD  
EN  
CMOS  
3.3K  
(FromLogic  
R1  
Output  
Power Supply)  
Q1  
(To IXDD404  
EN Input)  
2N3904  
3.3K R2  
or TTL  
Input)  
9
PRELIMINARY DATA SHEET  
IXDD404PI/404SI/404SIA/404SI-16  
Ordering Information  
P a r t N u m b e r  
IX D D 4 0 4 P I  
P a c k a g e T y p e  
8 -P in P D IP  
T e m p . R a n g e  
-4 0 ° C to + 8 5 ° C  
-4 0 ° C to + 8 5 ° C  
-4 0 ° C to + 8 5 ° C  
-4 0 ° C to + 8 5 ° C  
IX D D 4 0 4 S I  
8 -P in S O IC  
8 -P in S O IC  
1 6 -P in S O IC  
IX D D 4 0 4 S IA  
IX D D 4 0 4 S I-1 6  
NOTE: Mounting or solder tabs on all  
packages are connected to ground  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108, Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
Doc #9200-0226 R4  
10  
厂商 型号 描述 页数 下载

IXYS

IXD1201P341PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P412PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P422PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P442PR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P571DR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P571MR-G [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201P592MR [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201T222DR [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201T312MR [ Fixed Positive Standard Regulator ] 22 页

IXYS

IXD1201T312MR-G [ Fixed Positive Standard Regulator ] 22 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.254638s