找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

0C585-002-XTD

型号:

0C585-002-XTD

描述:

S- FSK PLC调制解调器[ S-FSK PLC Modem ]

品牌:

AMI[ AMI SEMICONDUCTOR ]

页数:

11 页

PDF大小:

480 K

AMIS-30600 LIN Transceiver  
Data Sheet  
1. 0 Key Features  
LIN-Bus Transceiver  
LIN compliant to specification rev. 1.3 and rev. 2.0  
I2T high voltage technology  
Bus voltage ± 40V  
Transmission rate up to 20 kBaud  
SOIC-150-8 Package  
Protection  
Thermal shutdown  
Indefinite short circuit protection to supply and ground  
Load dump protection (45V)  
Power Saving  
Operating voltage = 4.75 to 5.25V  
Power down supply current < 50µA  
EMS Compatibility  
Integrated filter and hysteresis for receiver  
EMI Compatibility  
Integrated slope control for transmitter  
Slope control dependant from Vbat to enable maximum capacitive-load  
2. 0 General Description  
The single-wire transceiver AMIS-30600 is a monolithic integrated circuit in a SOIC-8 package. It works as an interface between  
the protocol controller and the physical bus.  
The AMIS-30600 is especially suitable to drive the bus line in LIN systems in automotive and industrial applications. Further it can  
be used in standard ISO9141 systems.  
In order to reduce the current consumption the AMIS-30600 offers a stand-by mode. A wake-up caused by a message on the bus  
pulls the INH-output high until the device is switched to normal operation mode.  
The transceiver is implemented in I2T100 technology enabling both high-voltage analog circuitry and digital functionality to co-exist  
on the same chip.  
The AMIS-30600 provides an ultra-safe solution to today’s automotive in-vehicle networking (IVN) requirements by providing  
unlimited short circuit protection in the event of a fault condition.  
3. 0 Ordering Information  
Table 1: Ordering Code  
Marketing Name  
Package  
Temp. Range  
AMIS30600AGA  
SOIC 150 8 150 4  
-40°C…125°C  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
1
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
4. 0 Block Diagram  
VCC  
VBB  
3
7
Thermal  
shutdown  
8
State  
INH  
EN  
&
Wake-up  
Control  
2
1
COMP  
RxD  
TxD  
6
Filter  
LIN  
VCC  
AMIS-30600  
4
Slope  
Control  
5
PC20050113.3  
GND  
Figure 1: Block Diagram  
5. 0 Typical Application  
5.1 Application Schematic  
Master Node  
Slave Node  
VBAT  
IN  
OUT  
IN  
OUT  
VBAT  
5V-reg  
5V-reg  
100 nF  
10 µF  
100 nF  
10 µF  
VBB INH  
VBB INH  
VCC  
VCC  
VCC  
VCC  
7
8
7
8
3
3
RxD  
TxD  
RxD  
TxD  
1
4
1
4
LIN  
LIN  
AMIS-  
LIN  
AMIS-  
6
LIN  
6
30600  
controller  
30600  
controller  
EN  
EN  
2
2
5
5
2
2
GND  
GND  
GND  
GND  
GND  
GND  
KL30  
LIN-BUS  
KL31  
PC20050113.5  
Figure 2: Application Diagram  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
2
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
5.2 Pin Description  
5.2.1 Pin Out (top view)  
1
2
3
4
8
7
6
5
INH  
VBB  
RxD  
EN  
LIN  
VCC  
TxD  
GND  
PC20041204.3  
Figure 3: Pin Configuration  
5.2.2 Pin Description  
Table 2: Pinout  
Pin Name Description  
1
2
3
4
5
6
7
8
RxD  
EN  
Receive data output; low in dominant state  
Enable input; transceiver in normal operation mode when high  
5V supply input  
VCC  
TxD  
GND  
LIN  
Transmit data input; low in dominant state; internal 40 Kpull-up  
Ground  
LIN bus output/input; low in dominant state; internal 30 Kpull-up  
Battery supply input  
VBB  
INH  
Inhibit output; to control a voltage regulator; becomes high when wake-up via LIN bus occurs  
5.3 Application Information  
Start Up  
Power Up  
Normal Mode  
Power-up  
EN  
INH  
High  
Vcc  
On  
High  
EN Æ High  
Stand-By Mode  
EN Æ High  
(Vcc Æ On)  
EN  
Low  
INH  
High  
Vcc  
On  
EN Æ Low  
Wake-up  
t > twake  
Sleep Mode  
EN  
INH  
Vcc  
Floating  
Low  
Off  
PC20050113.1  
Figure 4: State Diagram  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
3
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
For fail safe reasons the AMIS-30600 already has an internal pull up resistor of 30kimplemented. To achieve the required  
timings for the dominant to recessive transition of the bus signal an additional external termination resistor of 1kis required. It is  
recommended to place this resistor in the master node. To avoid reverse currents from the bus line into the battery supply line in  
case of an unpowered node, it is recommended to place a diode in series to the external pull up. For small systems (low bus  
capacitance) the EMC performance of the system is supported by an additional capacitor of at least 1nF in the master node (see  
Figure 2, Typical Application Diagram).  
The AMIS-30600 has a slope which depends of the supply Vbat. This implementation guarantees biggest slope-time under all load  
conditions. The rising slope has to be slower then the external RC-time-constant, otherwise the slope will be terminated by the RC-  
time-constant and no longer by the internal slope-control. This would effect the symmetry of the bus-signal and would limit the  
maximum allowed bus-speed.  
A capacitor of 10µF at the supply voltage input VB buffers the input voltage. In combination with the required reverse polarity diode  
this prevents the device from detecting power down conditions in case of negative transients on the supply line.  
In order to reduce the current consumption, the AMIS-30600 offers a sleep operation mode. This mode is selected by switching the  
enable input EN low (see Figure 4, State Diagram).  
In the sleep mode a voltage regulator can be controlled via the INH output in order to minimize the current consumption of the  
whole application. A wake-up caused by a message on the communication bus automatically enables the voltage regulator by  
switching the INH output high. In case the voltage regulator control input is not connected to INH output or the micro-controller is  
active respectively, the AMIS-30600 can be set in normal operation mode without a wake-up via the communication bus.  
6. 0 Electrical Characteristics  
6.1 Absolute Maximum Ratings  
Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.  
Table 4: Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Conditions  
Min.  
-0.3  
-0.3  
-40  
Max.  
+7  
Unit  
V
Supply voltage  
VBB  
Battery supply voltage  
+40  
V
VLIN  
DC voltage at pin LIN  
0 < VCC < 5.50V; note 1  
0 < VCC < 5.50V  
0 < VCC < 5.50V  
0 < VCC < 5.50V  
0 < VCC < 5.50V  
Note 2  
+40  
V
VINH  
DC voltage at pin INH  
-0.3  
-0.3  
-0.3  
-0.3  
-4  
VBB + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
+4  
V
VTxD  
DC voltage at pin TxD  
V
VRxD  
DC voltage at pin RxD  
V
VEN  
DC voltage at pin EN  
V
Vesd(LIN)  
Vesd  
Electrostatic discharge voltage at LIN pin  
Electrostatic discharge voltage at all other pins  
Transient voltage at pin LIN  
Transient voltage at pin VBB  
Ambient temperature  
kV  
kV  
V
Note 2  
-4  
+4  
Vtran(LIN)  
Vtran(VBB)  
Tamb  
Note 3  
-150  
-150  
-40  
+150  
Note 4  
+150  
V
+150  
°C  
Notes:  
1.  
2.  
3.  
80V version available, contact sales for details.  
Standardized human body model system ESD pulses in accordance to IEC 1000.4.2.  
Applied transient waveforms in accordance with “ISO 7637 parts 1 & 3” capacitive coupled test pulses 1 (-100V),  
2 (+100V), 3a (-150V), and 3b (+150V). See Figure 8.  
4.  
Applied transient waveforms in accordance with “ISO 7637 parts 1 & 3” direct coupled test pulses 1 (-100V), 2 (+75V),  
3a (-150V), 3b (+150V), and 5 (+80V). See Figure 8.  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
4
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
6.2 Operating Range  
Table 5: Operating Range  
Symbol  
VCC  
Parameter  
Min.  
4.75  
7.3  
Typ.  
Max.  
+5.25  
+18  
Unit  
V
Supply voltage  
VBB  
Battery supply voltage  
V
Tjunc  
Maximum junction temperature  
Thermal shutdown temperature  
Thermal resistance junction to ambient  
-40  
+150  
+190  
°C  
Tjsd  
+150  
+170  
185  
°C  
Rthj-a  
°C/W  
6.3 DC Electrical Characteristics  
VCC = 4.75 to 5.25V; VBB = 7.3 to 18V; VEN > VEN,on ; Tamb = -40 to +125°C; RL = 500unless specified otherwise. All voltages with  
respect to ground; positive current flowing into pin; unless otherwise specified.  
Table 6: DC Characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Supply (pin VCC and pin VBB)  
Dominant; VTxD =0V  
Recessive; VTxD =VCC  
Dominant; VTxD =0V  
Recessive; VTxD =VCC  
400  
250  
1
700  
500  
1.5  
µA  
µA  
mA  
µA  
µA  
µA  
ICC  
5V supply current  
IBB  
IBB  
ICC  
Battery supply current  
100  
200  
Battery supply current  
5V supply current  
Sleep mode; VINH = 0V  
Sleep mode; VINH = 0V  
35  
55  
1
0.25  
Transmitter Data Input (pin TxD)  
VIH  
High-level input voltage  
Output recessive  
Output dominant  
0.7 x VCC  
-
-
VCC  
0.3 x VCC  
60  
V
V
VIL  
Low-level input voltage  
Pull-up resistor to Vcc  
0
RTxD,pu  
24  
kΩ  
Receiver Data Output (pin RxD)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IRXD = -10mA  
IRXD = 5mA  
0.8 x VCC  
0
VCC  
V
V
0.2 x VCC  
Enable Input (pin EN)  
VEN,on  
VEN,off  
REN,pd  
High-level input voltage  
Normal mode  
0.7 x VCC  
-
-
VCC  
0.3 x VCC  
15  
V
V
Low-level input voltage  
Low power mode  
0
6
Pull-down resistor to GND  
10  
kΩ  
Inhibit Output (pin INH)  
VINH,d High-level voltage drop: VINH,d = VBB - VINH  
IINH,lk Leakage current  
Bus Line (pin LIN)  
IINH = - 0.15mA  
0.5  
-
1.0  
5.0  
V
Sleep mode; VINH = 0V  
-5.0  
µA  
Vbus,rec  
Vbus,dom  
Ibus,sc  
Recessive bus voltage at pin LIN  
VTxD =VCC  
0.9 x VBB  
0
-
-
VBB  
V
VTxD = 0V  
VTxD = 0V; Ibus = 40mA  
0.15 x VBB  
1.4  
V
V
Dominant output voltage at pin LIN  
Bus short circuit current  
Vbus,short = 18V  
40  
85  
130  
mA  
VCC=VBB=0V; Vbus=8V  
VCC=VBB=0V; Vbus=20V  
-400  
-200  
5
Ibus,lk  
Bus leakage current  
µA  
20  
47  
Rbus  
Bus pull-up resistance  
VTxD = 0V  
20  
30  
kΩ  
V
Vbus,rd  
Vbus,dr  
Vq  
Receiver threshold: recessive to dominant  
Receiver threshold: dominant to recessive  
Receiver hysteresis  
0.4 x VBB  
0.4 x VBB  
0.05 x VBB  
0.4 x VBB  
0.48 x VBB  
0.52 x VBB  
0.04 x VBB  
0.6 x VBB  
0.6 x VBB  
V
Vbus,hys=Vbus,rec-Vbus,dom  
0.175 x VBB  
0.6 x VBB  
V
VWAKE  
Wake-up threshold voltage  
V
AMI Semiconductor – Rev. 2.0, Apr. 2005  
5
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
6.4 AC Electrical Characteristics  
VCC = 4.75 to 5.25V; VBB = 7.3 to 18V; VEN > VEN,on ; Tamb = -40 to +125°C; RL = 500unless specified otherwise.  
Load for slope definitions (typical loads) = [L1] 1nF 1k/ [L2] 6.8nF 600/ [L3] 10nF 500.  
Table 7: AC Characteristics According to LIN V1.3  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Dynamic Transceiver Characteristics According to LIN v1.3  
t _slope_F  
Slope time falling edge  
Slope time rising edge  
Slope time symmetry  
See Figure 6  
4
4
-
-
-
24  
24  
+8  
µs  
µs  
µs  
t _slope_R  
See Figure 6  
t _slope _Sym  
t _slope_F - t _slope_R  
-8  
Propagation delay Bus dominant  
to RxD = low; note 1  
Propagation delay Bus recessive  
to RxD = high; note 1  
T_rec_F  
See Figure 5, 6  
See Figure 5, 6  
2
6
µs  
T_rec_R  
tWAKE  
2
6
µs  
µs  
Wake-up delay time  
30  
100  
200  
Notes:  
1.  
Not measured on ATE.  
VCC = 4.75 to 5.25V; VBB = 7.3 to 18V; VEN > VEN,on ; Tamb = -40 to +125°C; RL = 500unless specified otherwise.  
Load for slope definitions (typical loads) = [L1] 1nF 1k/ [L2] 6.8nF 600/ [L3] 10nF 500.  
Table 8: AC Characteristics According to LIN V2.0  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Dynamic Receiver Characteristics according to LIN v2.0  
Propagation delay bus dominant  
to RxD = low; note 1  
trx_pdr  
See Figure 7  
6
µs  
Propagation delay Bus recessive  
to RxD = high; note 1  
trx_pdf  
See Figure 7  
6
µs  
µs  
trx_sym  
Symmetry of receiver propagation delay  
trx_pdr - trx_pdf  
-2  
-
+2  
Dynamic Transmitter Characteristics according to LIN v2.0  
THRec(max)= 0.744 x Vbat  
;
Duty cycle 1 = tBus_rec(min)/(2 x tBit);  
See Figure 7  
D1  
THDom(max)= 0.581 x Vbat  
Vbat = 7.0V ... 18V; tBit= 50µs  
THRec(max)= 0.744 x Vbat  
THDom(max)= 0.581 x Vbat  
bat = 7.0V; tBit= 50µs;  
;
0.396  
0.366  
0.5  
0.5  
0.5  
;
Duty cycle 1 = tBus_rec(min)/(2 x tBit);  
See Figure 7  
;
D1  
V
tamb = -40°C  
THRec(min)= 0.284 x Vbat  
THDom(min)= 0.422 x Vbat  
Vbat = 7.6V ... 18V; tBit= 50µs;  
;
Duty cycle 2 = tBus_rec(max)/(2 x tBit);  
See Figure 7  
D2  
;
0.581  
Notes:  
1.  
Not measured on ATE.  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
6
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
Vbat  
VBB  
100 nF  
7
RL  
+5 V  
3
100 nF  
AMIS-  
30600  
LIN  
6
CL  
Load  
L1  
RL  
4
1
TxD  
RxD  
CL  
1 kΩ  
1 nF  
INH  
3
L2  
L3  
600 6.8 nF  
5
2
10 nF  
500 Ω  
20 pF  
GND  
EN  
PC20041207.1  
Figure 5: Test Circuit for Timing Characteristics  
LIN  
50%  
t
T_rec_F  
T_rec_R  
RxD  
LIN  
50%  
50%  
t
PC20041206.1  
60%  
40%  
60%  
PC20041204.1  
40%  
t
T_slope_F  
T_slope_R  
PC20041206.2  
Figure 6: Timing Diagram for AC Characteristics According to LIN 1.3  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
www.amis.com  
AMIS-30600 LIN Transceiver  
Data Sheet  
TxD  
tBIT  
tBIT  
50%  
t
tBUS_dom(max)  
tBUS_rec(min)  
LIN  
THRec(max)  
THDom(max)  
Thresholds  
receiver 1  
THRec(min)  
THDom(min)  
Thresholds  
receiver 2  
t
t
tBUS_dom(min)  
tBUS_rec(max)  
RxD  
( receiver 2)  
50%  
trx_pdr  
trx_pdf  
PC20041206.3  
Figure 7: Timing Diagram for AC Characteristics According to LIN 2.0  
+13.5 V  
+5.25 V  
VBB  
100 nF  
100 nF  
7
VCC  
3
Transient  
Generator  
1 kΩ  
AMIS-  
30600  
LIN  
INH  
6
TxD  
EN  
4
1 nF  
1 nF  
2
3
1
5
RxD  
GND  
20 pF  
PC20050113.2  
Figure 8: Test Circuit for Transient Measurements  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
www.amis.com  
8
AMIS-30600 LIN Transceiver  
Data Sheet  
7. 0 Package Outline  
SOIC-8: Plastic small outline; 8 leads; body width 150 mil; JEDEC: MS-012. AMIS reference: SOIC150 8 150 G  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
www.amis.com  
9
AMIS-30600 LIN Transceiver  
Data Sheet  
8. 0 Soldering  
8.1 Introduction to Soldering Surface Mount Packages  
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in the AMIS  
“Data Handbook IC26; Integrated Circuit Packages” (document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface  
mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.  
8.2 Re-flow Soldering  
Re-flow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-  
circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for  
reflowing; for example, infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.  
Typical re-flow peak temperatures range from 215 to 250°C. The top-surface temperature of the packages should preferably be  
kept below 230°C.  
8.3 Wave Soldering  
Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high  
component density, as solder bridging and non-wetting can present major problems. To overcome these problems the double-  
wave soldering method was specifically developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth  
laminar wave.  
For packages with leads on two sides and a pitch (e):  
o
Larger than or equal to 1.27mm, the footprint longitudinal axis is preferred to be parallel to the transport direction  
of the printed-circuit board;  
o
Smaller than 1.27mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-  
circuit board. The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45º angle to the transport direction of the printed-  
circuit board. The footprint must incorporate solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by  
screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time is four seconds at 250°C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
8.4 Manual Soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24V or less) soldering iron applied to  
the flat part of the lead. Contact time must be limited to 10 seconds at up to 300°C.  
When using a dedicated tool, all other leads can be soldered in one operation within two to five seconds between 270 and 320°C.  
Table 9: Soldering Process  
Soldering Method  
Package  
Wave  
Reflow(1)  
Suitable  
Suitable  
Suitable  
BGA, SQFP  
Not suitable  
Not suitable (2)  
Suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS  
PLCC (3) , SO, SOJ  
LQFP, QFP, TQFP  
Not recommended (3)(4) Suitable  
Not recommended (5) Suitable  
SSOP, TSSOP, VSO  
Notes:  
1.  
All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size  
of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For  
details, refer to the drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.”  
These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and  
as solder may stick to the heatsink (on top version).  
If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder  
thieves downstream and at the side corners.  
Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8mm; it is definitely not suitable for packages with a  
pitch (e) equal to or smaller than 0.65mm.  
Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65mm; it is definitely not suitable for packages with a  
pitch (e) equal to or smaller than 0.5mm.  
2.  
3.  
4.  
5.  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
www.amis.com  
10  
AMIS-30600 LIN Transceiver  
Data Sheet  
9. 0 Company or Product Inquiries  
For more information about AMI Semiconductor, our technology and our product, visit our website at: http://www.amis.com  
North America  
Tel: +1.208.233.4690  
Fax: +1.208.234.6795  
Europe  
Tel: +32 (0) 55.33.22.11  
Fax: +32 (0) 55.31.81.12  
Devices sold by AMIS are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMIS makes no warranty, express,  
statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMIS  
makes no warranty of merchantability or fitness for any purposes. AMIS reserves the right to discontinue production and change specifications and prices at any  
time and without notice. AMI Semiconductor's products are intended for use in commercial applications. Applications requiring extended temperature range,  
unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not  
recommended without additional processing by AMIS for such applications. Copyright ©2005 AMI Semiconductor, Inc.  
AMI Semiconductor – Rev. 2.0, Apr. 2005  
www.amis.com  
11  
厂商 型号 描述 页数 下载

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.158159s