找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

OV6630

型号:

OV6630

描述:

单片CMOS CIF彩色数码摄像机[ SINGLE-CHIP CMOS CIF COLOR DIGITAL CAMERA ]

品牌:

ETC[ ETC ]

页数:

29 页

PDF大小:

206 K

Advanced Information  
Preliminary  
OV6630/OV6130  
OV6630 SINGLE-CHIP CMOS CIF COLOR DIGITAL CAMERA  
OV6130 SINGLE-CHIP CMOS CIF B&W DIGITAL CAMERA  
Features  
101,376 pixels, 1/4” lens, CIF/QCIF format  
Progressive scan read out  
Frame exposure/line exposure option  
3.3-Volt operation, low power dissipation  
Data format - YCrCb 4:2:2, GRB 4:2:2, RGB Raw Data  
- < 20 mA active power  
8/16 bit video data: ITU-601, ITU-656, ZV port  
Wide dynamic range, anti-blooming, zero smearing  
Electronic exposure/gain/white balance control  
Image enhancement - brightness, contrast, gamma,  
saturation, sharpness, window, etc.  
- < 10 µA in power-save mode  
Gamma correction (0.45/0.55/1.00)  
I2C programmable (400 kb/s):  
- Color saturation, brightness, contrast, white balance,  
exposure time, gain  
Internal/external synchronization  
General Description  
smearing, and drastically reduce blooming. All needed camera  
functions including exposure control, gamma, gain, white  
balance, color matrix, windowing, and more, are programmable  
through an I2C interface. Both devices can be programmed to  
provide image output in 4-bit, 8-bit or 16-bit digital formats.  
The OV6630 (color) and OV6130 (black and white) CMOS Im-  
age sensors are single-chip video/imaging camera devices  
designed to provide a high level of functionality in a single,  
small-footprint package. Both devices incorporate a 352 x 288  
image array capable of operating up to 60 frames per second  
image capture. Proprietary sensor technology utilizes advanced  
algorithms to cancel Fixed Pattern Noise (FPN), eliminate  
Applications include: Video Conferencing, Video Phone, Video  
Mail, Still Image, and PC Multimedia.  
356x292  
(176x144)  
Array Element(CIF)  
(QCIF)  
9µm x 8.2µm  
3.1mm x 2.5mm  
Up to 60 FPS  
Pixel Size  
Image Area  
Max Frames/Sec  
Electronics  
AGND  
AVDD  
7
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
CHSYNC/BW  
V0/CBAR  
Y1  
8
PWDN  
9
Up to 500:1 (for selected  
FPS)  
VRCAP1  
VcCHG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Y2/G2X  
Y3/RGB  
Y4/CS1  
Y5/SHARP  
Y6/CS2  
Y7/CS0  
PCLK/PWDB  
DOVDD  
Exposure  
Scan Mode  
Gamma Correction  
Min. Illumination  
(3000K)  
Progressive  
0.45/0.55/1.0  
OV6630 - < 3lux @ f1.2  
OV6130 - < 0.5lux @ f1.2  
OV6630/  
OV6130  
IICB  
VTO  
ADVDD  
> 48 dB  
(AGC off, Gamma=1)  
S/N Ration  
ADGND  
VSYNC/CSYS  
FODD/CLK  
HREF/VSFRAM  
< 0.03% VPP  
FPN  
Dark Current  
Dynamic Range  
Power Supply  
< 0.2nA/cm2  
> 72 dB  
DOGND  
2.73.6VDC  
5VDC/3.3VDC (DIO)  
< 20mA active  
Power  
Requirements  
Package  
< 10µA Standby  
48 pin LCC  
Figure 1. OV6630/OV6130 Pin Assignments  
Note: Outputs UV0-UV7 are not available on the OV6130. The inputs associated  
with these respective pins are still functional.  
OmniVision Technologies, Inc. 930 Thompson Place Sunnyvale, CA 94086 U.S.A.  
Tel: (408) 733-3030 Fax: (408) 733-3061  
e-mail: info@ovt.com  
Version 1.0, March 4, 2000  
Website: http://www.ovt.com  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Table 1. Pin Description  
Pin No.  
01  
Name  
SVDD  
Pin Type  
VIN  
Function/Description  
Array power (+3.3VDC)  
02  
RESET  
Function  
Chip reset, active high  
(Default=0)  
03  
04  
AGCEN  
Function  
(Default=0)  
Automatic Gain Control (AGC) selection  
“0” – Disable AGC  
“1” – Enable AGC  
Note: This function is disabled when OV6630/OV6130 sensor is configured in I2C mode.  
Frame exposure control  
FREX  
Function  
(Default=0)  
“0” – Disable frame exposure control  
“1” – Enable frame exposure control  
05  
06  
07  
08  
09  
HVDD  
ASUB  
AGND  
AVDD  
PWDN  
VREF (4V)  
VIN  
VIN  
VIN  
Function  
(Default=0)  
Charge pump voltage. Connect to ground through 10µF capacitor.  
Analog substrate voltage.  
Analog ground  
Analog power supply (+3.3VDC)  
Power down mode selection.  
“0” – Normal mode.  
“1” – Power down mode.  
10  
11  
12  
VRCAP1  
VCCHG  
IICB  
VREF (1.5V)  
VREF (2.7V)  
Function  
Array reference. Connect to ground through 0.1µF capacitor.  
Internal voltage reference. Connect to ground through 1µF capacitor.  
I2C enable selection.  
(Default=0)  
“0” – Enable I2C  
“1” – Enable auto-control mode  
13  
14  
15  
16  
17  
18  
19  
VTO  
ADVDD  
ADGND  
VSYNC/CSYS  
FODD/CLK  
O
Luminance composite signal output (black/white in PAL standard).  
Analog power supply (+3.3VDC)  
Analog signal ground  
VIN  
VIN  
I/O  
I/O  
Vertical sync output. At power up, read as CSYS.  
Field ID FODD output or main clock output  
HREF output. At power up, read as VSFRAM  
Bit 7 of U video component output. At power up, sampled as B8.  
* Note: Output UV7 is not available on the OV6130 sensor.  
Bit 6 of U video component output. At power up, sampled as ABKEN.  
* Note: Output UV6 is not available on the OV6130 sensor.  
Bit 5 of U video component output. At power up, sampled as MIR.  
* Note: Output UV5 is not available on the OV6130 sensor.  
Bit 4 of U video component output.  
HREF/VSFRAM I/O  
*UV7/B8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
20  
21  
22  
23  
24  
25  
26  
*UV6/ABKEN  
*UV5/MIR  
*UV4  
* Note: Output UV4 is not available on the OV6130 sensor.  
Bit 3 of U video component output.  
*UV3  
* Note: Output UV3 is not available on the OV6130 sensor.  
Bit 2 of U video component output. At power up, sampled as QCIF.  
* Note: Output UV2 is not available on the OV6130 sensor.  
Bit 1 of U video component output. At power up, sampled as CC656.  
* Note: Output UV1 is not available on the OV6130 sensor.  
Bit 0 of U video component output. At power up, sampled as GAMMA.  
* Note: Output UV0 is not available on the OV6130 sensor.  
Crystal clock input  
Crystal clock output  
Digital power supply (+3.3VDC)  
Digital ground  
Digital interface output buffer ground  
Digital interface output buffer power supply (+3.3VDC or 5VDC)  
PCLK output. At power up sampled as PWDB.  
Bit 7 of Y video component output. At power up, sampled as CS0.  
Bit 6 of Y video component output. At power up, sampled as CS2.  
Bit 5 of Y video component output. At power up, sampled as SHAPR.  
Bit 4 of Y video component output. At power up, sampled as CS1.  
Bit 3 of Y video component output. At power up, sampled as RGB.  
*UV2/QCIF  
*UV1/CC656  
*UV0/GAMMA  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
XCLK1  
XCLK2  
DVDD  
DGND  
DOGND  
DOVDD  
PCLK/PWDB  
Y7/CS0  
Y6/CS2  
Y5/SHARP  
Y4/CS1  
I
O
VIN  
VIN  
VIN  
VIN  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y3/RGB  
March 4, 2000  
Version 1.0  
2
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
39  
40  
41  
42  
43  
44  
45  
46  
47  
Y2/G2X  
Y1  
I/O  
I/O  
I/O  
I/O  
VIN  
VIN  
I
I/O  
Function  
(Default=0)  
Bit 2 of Y video component output. At power up, sampled as G2X.  
Bit 1 of Y video component output.  
Bit 0 of Y video component output. At power up, sampled as CBAR.  
CHSYNC output. At power up, sampled as BW.  
Decoder ground.  
Y0/CBAR  
CHSYNC/BW  
DEGND  
DEVDD  
SCL  
Decoder power supply (+3.3VDC)  
I2C serial interface clock input.  
SDA  
MULT  
I2C serial interface data input and output.  
I2C slave selection  
“0” – Select single slave ID.  
“1” – Enable multiple (8) slaves.  
48  
SGND  
VIN  
Array ground  
1 Function Description  
(Note: References to color features do not apply to the OV6130 B&W Digital Image Sensor.)  
1.1 Overview  
Referring to Figure 2 below, the OV6630 sensor includes a 356 x 292  
The OV6630/OV6130 sensor is a ¼ inch CMOS imaging device. The  
resolution image array, an analog signal processor, dual 8-bit A/D  
converters, analog video multiplexer, digital data formatter, video  
port, I2C interface, registers, and digital controls that include timing  
block, exposure control, black level control, and white balance.  
sensor contains approximately 101,376 pixels. Its design is based on a  
field integration read-out system with line-by-line transfer and an  
electronic shutter with a synchronous pixel read out scheme. The  
color filter of the sensor consists of a primary color RG/GB array  
arranged in line-alternating fashion.  
VTO  
R
G
B
Y[7:0]  
MUX  
A/D  
Analog  
Processing  
UV[7:0]  
Y
MUX  
A/D  
Cb  
Cr  
Column Sense Amp  
Exposure  
Detect  
WB  
Detect  
(356x292)  
Image Array  
registers  
Video Timing  
Generator  
1/2  
Exposure  
Control  
WB  
Control  
I2C  
Interface  
Figure 2. OV6630/OV6130 CMOS Image Sensor Block Diagram  
March 4, 2000  
Version 1.0  
3
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
1.2 Analog Processor Circuits  
1.2.1  
Overview  
1.2.2  
Image Processing  
The image is captured by the 356 x 292 pixel image array and routed  
to the analog processing section where the majority of signal  
processing occurs. This block contains the circuitry that performs  
color separation, color correction, automatic gain control (AGC),  
gamma correction, color balance, black level calibration, “knee”  
smoothing, aperture correction, controls for picture luminance and  
chrominance, and anti-alias filtering. The analog video signals are  
based on the following formula:  
The algorithm used for the electronic exposure control is based on the  
brightness of the full image. The exposure is optimized for a “normal”  
scene that assumes the subject is well lit relative to the background. In  
situations where the image is not well lit, the automatic exposure  
control (AEC) white/black ratio may be adjusted to suit the needs of  
the application.  
Additional on-chip functions include  
AGC that provides a gain boost of up to 24dB  
Y = 0.59G + 0.31R + 0.11B  
U = R – Y  
V = B – Y  
White balance control that enables setting of proper color  
temperature and can be programmed for automatic or manual  
operation.  
Where R,G,B are the equivalent color components in each  
pixel.  
Separate saturation, brightness, contrast, and sharpness  
adjustments allow for further fine-tuning of the picture quality  
and characteristics.  
YCrCb format is also supported, based on the formula below:  
The OV6630 image sensor also provides control over the White  
Balance ratio for increasing/decreasing the image field Red/Blue  
component ratio. The sensor provides a default setting that may be  
sufficient for many applications.  
Y = 0.59G + 0.31R + 0.11B  
Cr = 0.713 (R – Y)  
Cb = 0.564 (B – Y)  
The YCrCb/RGB data signal from the analog processing section is  
fed to two on-chip 8-bit analog-to-digital (A/D) converters: one for  
the Y/RG channel and one shared by the CrCb/BG channels. The  
converted data stream is further conditioned in the digital formatter.  
The processed signal is delivered to the digital video port through the  
video multiplexer which routes the user-selected 16-, 8-, or 4-bit  
video data to the correct output pins.  
1.2.3  
Windowing  
The windowing feature of the OV6630/OV6130 image sensors allows  
user-definable window sizing as required by the application. Window  
size setting (in pixels) ranges from 2 x 2 to 356 x 292, and can be  
positioned anywhere inside the 356 x 292 boundary. Note that  
modifying window size and/or position does not change frame or data  
rate. The OV6630/OV6130 imager alters the assertion of the HREF  
signal to be consistent with the programmed horizontal and vertical  
region. The default output window is 352 x 288.  
The on-chip 8-bit A/D operates up to 9 MHz, and fully synchronous  
to the pixel rate. Actual conversion rate is related to the frame rate.  
A/D black-level calibration circuitry ensures:  
The black level of Y/RGB is normalized to a value of 16  
The peak white level is limited to 240  
CrCb black level is 128  
1.2.4  
Zoom Video Port (ZV)  
The OV6630/OV6130 image sensor includes a Zoom Video (ZV)  
function that supports standard ZV Port interface timing. Signals  
available include VSYNC, CHSYNC, PCLK and 16-bit data bus:  
Y[7:0] and UV[7:0]. The rising edge of PCLK clocks data into the ZV  
port. See Figure 3. Zoom Video Port Timing below.  
CrCb Peak/bottom is 240/16  
RGB raw data output range is 16/240  
(Note: Values 0 and 255 are reserved for sync flag)  
March 4, 2000  
Version 1.0  
4
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Even Field 1 (FODD=0)  
Odd Field 1 (FODD=1)  
VSYNC  
HREF  
t8  
t8  
t6  
t7  
t5  
t4  
PCLK  
t1  
t3  
t2  
Y[7:0]/UV[7:0]  
1
2
351  
352  
Valid Data  
Horizontal Timing  
VSYNC  
TVS  
1 Line  
TVE  
Y[7:0]/UV[7:0]  
TLINE  
Vertical Timing  
Figure 3. Zoom Video Port Timing  
Notes:  
1. Zoom Video Port format output signal includes:  
VSYNC: Vertical sync pulse.  
HREF: Horizontal valid data output window.  
PCLK: Pixel clock used to clock valid data and CHSYNC into Zoom V Port. Default frequency is 8.86MHz when use  
17.73MHz as system clock. Rising edge of PCLK is used to clock the 16 Bit data.  
Y[7:0]: 8 Bit luminance data bus.  
UV[7:0]: 8 Bit chrominance data bus.  
2. All timing parameters are provided in Table 13. Zoom Video Port AC Parameters.  
1.2.5  
QCIF Format  
1.2.6  
Video Output  
A QCIF mode is available for applications where higher resolution  
image capture is not required. Only half of the pixel rate is required  
when programmed in this mode. Default resolution is 176 x 144  
pixels and can be programmed for other resolutions. Refer to Table 7.  
QCIF Digital Output Format (YUV beginning of line) and Table 8.  
QCIF Digital Output Format (RGB raw data beginning of line) for  
further information.  
The video output port of the OV6630/OV6130 image sensors  
provides a number of output format/standard options to suit many  
different application requirements. Table 2. Digital Output Format,  
below, indicates the output formats available. These formats are user  
programmable through the I2C interface (See I2C Bus Protocol  
Format).  
March 4, 2000  
Version 1.0  
5
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
The OV6630/OV6130 imager supports both ITU-601 and ITU-656  
UV channel output sequence is B G B G  
output formats in the following configurations (See Table 3. 4:2:2 16-  
bit Format for further details):  
The video output appears in Y channel only and the UV channel is  
disabled in 8-bit RGB raw data. The output sequence is B G R G.  
- 16-bit, 4:2:2 format  
In RGB raw data ITU-656 modes, the OV6630/OV6130 imager  
asserts SAV (Start of Active Video) and EAV (End of Active Video)  
to indicate the beginning and the ending of HREF window. As a  
result, SAV and EAV change with the active pixel window. The 8-bit  
RGB raw data is also accessible without SAV and EAV information.  
(This mode complies with the 60/50 Hz ITU-601 timing  
standard. See Table 3. 4:2:2 16-bit Format below)  
- 8-bit data mode  
(In this mode, video information is output in Cb Y Cr Y  
order using the Y port only and running at twice the pixel  
rate during which the UV port is inactive. See Table 4. 4:2:2  
8-bit Format below)  
The OV6630/OV6130 imager offers flexibility in YUV output format.  
The device may be programmed as standard YUV 4:2:2. The device  
may also be configured to “swap” the U V sequence. When swapped,  
the UV channel output sequence in the 16-bit configuration becomes:  
- 4-bit nibble mode  
- V U V U···.  
(In the nibble mode, video output data appears at bits Y4-  
Y7. The clock rate for the output runs at twice the normal  
output speed when in B/W mode, and 4 times the normal  
output speed in when in color mode.)  
The 8-bit configuration becomes:  
- V Y U Y···.  
The third format available in the 8-bit configuration is the Y/UV  
sequence swap:  
- 704 x 288 format  
(When programmed in this mode, the pixel clock is doubled  
and the video output sequence is Y0Y0Y1Y1 ··· and  
U0U0V0V0 ···. See Figure 4. Pixel Data Bus (YUV Output)  
below.)  
- Y U Y V···.  
The single-chip camera can be configured for use as a black and white  
image device. The vertical resolution is higher than in color mode.  
Video data output is provided at the Y port and the UV port is tri-  
stated. The data (Y/RGB) rate is equivalent to 16-bit in color mode.  
The OV6630/OV6130 imager provides VSYNC, HREF, PCLK,  
FODD, and CHSYNC as standard output video timing signals.  
The MSB and LSB of Y/UV or RGB output can be reversed. Y7 is  
MSB and Y0 is LSB in the default setting. Y7 becomes LSB and Y0  
becomes MSB in the reserve order configuration. Y2-Y6 are also  
reversed appropriately.  
The OV6630/OV6130 imager can also be programmed to provide  
RGB raw data in 16-bit, 8-bit, and 4-bit format. The output sequence  
is matched to the OV6630 color filter pattern (See Figure 5. Pixel  
Data Bus (RGB Output) below):  
Y channel output sequence is G R G R  
Table 2. Digital Output Format  
Resolution  
YUV 4:2:2  
Pixel Clock  
16-bit  
8-bit  
352 x 288  
704 x 288  
176 x 144  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
ITU-656  
Nibble  
16-bit  
8-bit  
RGB  
ITU-6561  
Nibble  
16-bit  
8-bit  
Y/UV swap2  
U/V swap  
YG  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
YUV3  
RGB4  
16-bit  
8-bit  
One Line  
16-bit  
8-bit  
Y
Y
MSB/LSB swap  
Y
Y
Note:  
(“Y” indicates mode/combination is supported by OV6630/OV6130)  
1. Output is 8-bit in RGB ITU-656 format. SAV and EAV are inserted at the beginning and ending of HREF, which  
synchronize the acquisition of VSYNC and HSYNC. 8-bit data bus configuration (without VSYNC and  
CHSYNC) can provide timing and data in this format.  
March 4, 2000  
Version 1.0  
6
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
2. Y/UV swap is valid in 8-bit only. Y channel output sequence is Y U Y V ···  
3. U/V swap means UV channel output sequence swap in YUV format, i.e., V U V U ··· for 16 bit and V Y U Y  
··· for 8-bit.  
4. U/V swap means neighbor row B R output sequence swap in RGB format. Refer to RGB raw data output format  
for further details.  
Table 3. 4:2:2 16-bit Format  
Data Bus  
Pixel Byte Sequence  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
UV7  
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
Y Frame  
0
1
2
3
4
5
UV Frame  
0
2
4
Table 4. 4:2:2 8-bit Format  
Data Bus  
Pixel Byte Sequence  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
U7  
U6  
U5  
U4  
U3  
U2  
U1  
U0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
V7  
V6  
V5  
V4  
V3  
V2  
V1  
V0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
U7  
U6  
U5  
U4  
U3  
U2  
U1  
U0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
V7  
V6  
V5  
V4  
V3  
V2  
V1  
V0  
Y Frame  
UV Frame  
0
1
2
3
0 1  
2 3  
March 4, 2000  
Version 1.0  
7
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
TCLK  
PCLK  
HREF  
THD  
TSU  
Y[7:0]  
10  
80  
Y
U
Y
V
10  
80  
UV[7:0]  
Repeat for all data bytes  
Pixel Data 16-bit Timing  
(PCLK rising edge latches data bus)  
TCLK  
PCLK  
THD  
TSU  
HREF  
Y[7:0]  
10  
80  
10  
U
Y
V
Y
80  
10  
Repeat for all data bytes  
Pixel Data 8-bit Timing  
(PCLK rising edge latches data bus)  
Note: TCLK is pixel clock period.. TCLK=112ns for 16-bit output and TCLK=56ns for 8-bit output if the system  
clock is 17.73MHz. TSU is the setup time of HREF. The maximum is 15ns. THD is the hold time of HREF.  
The maximum is 15ns.  
Figure 4. Pixel Data Bus (YUV Output)  
March 4, 2000  
Version 1.0  
8
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
TCLK  
PCLK  
HREF  
THD  
TSU  
Y[7:0]  
10  
10  
G
B
R
G
10  
10  
UV[7:0]  
Repeat for all data bytes  
Pixel Data 16-bit Timing  
(PCLK rising edge latches data bus)  
TCLK  
PCLK  
HREF  
Y[7:0]  
THD  
TSU  
10  
10  
10  
B
G
R
G
10  
10  
Repeat for all data bytes  
Pixel Data 8-bit Timing  
(PCLK rising edge latches data bus)  
Note: TCLK is pixel clock period.. TCLK=112ns for 16-bit output and TCLK=56ns for 8-bit output if the system  
clock is 17.73MHz. TSU is the setup time of HREF. The maximum is 15ns. THD is the hold time of HREF.  
The maximum is 15ns.  
Figure 5. Pixel Data Bus (RGB Output)  
March 4, 2000  
Version 1.0  
9
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
The default U/UV channel output port relation before MSB/LSB swap  
Table 5. Default Output Sequence  
MSB  
LSB  
Y0  
Y0  
Output port  
Y7  
Y7  
Y6  
Y6  
Y5  
Y5  
Y4  
Y4  
Y3  
Y3  
Y2  
Y2  
Y1  
Y1  
Internal output data  
The relation after MSB/LSB swap changes to  
Table 6. Swapped MSB/LSB Output Sequence  
MSB  
LSB  
Output port  
Internal output data  
Y7  
Y0  
Y6  
Y1  
Y5  
Y2  
Y4  
Y3  
Y3  
Y4  
Y2  
Y5  
Y1  
Y6  
Y0  
Y7  
Table 7. QCIF Digital Output Format (YUV beginning of line)  
Pixel #  
1
2
3
4
5
6
7
8
Y
UV  
Y0  
U0, V0  
Y1  
U1, V1  
Y2  
U2, V2  
Y3  
U3, V3  
Y4  
U4, V4  
Y5  
U5, V5  
Y6  
U6, V6  
Y7  
U7, V7  
- Y channel output Y2 Y3 Y6 Y7 Y10 Y11 ···  
- UV channel output U2 V3 U6 V7 U10 V11 ···  
- Half (176 pixels) data are outputted every line and only half line data (every other line, total 144 lines) in one frame.  
Table 8. QCIF Digital Output Format (RGB raw data beginning of line)  
Pixel #  
1
2
3
4
5
6
7
8
Line 1  
Line 2  
B0  
G0  
G1  
R1  
B2  
G2  
G3  
R3  
B4  
G4  
G5  
R5  
B6  
G6  
G7  
R7  
1. Default RGB two line output mode:  
- Every line outputs half data (176 pixels) and all lines (144  
lines) data in one frame will be output.  
3. QCIF Resolution Digital Output Format  
Y channel output G0 R1 G4 R5 G8 R9 ···  
UV channel output B0 G1 B4 G5 B8 G9 ···  
- Y channel output Y2 Y3 Y6 Y7 Y10 Y11 ···  
- UV channel output U2 V3 U6 V7 U10 V11···  
- Every line output data number is half (176 pixels) and only one  
half line data (every other line, total 144 lines) in one frame will  
be output.  
Every line output half data (176 pixels) and all lines (144  
lines) data in one frame will be output.  
2. YG two line output mode:  
- Y channel output G0 R1 G4 R5 G8 R9 ···  
- UV channel output B0 G1 B4 G5 B8 G9 ···  
Table 9. RGB Raw Data Format  
···  
R\C  
1
2
3
4
353  
354  
355  
356  
B1,1  
G2,1  
B3,1  
G4,1  
G1,2  
R2,2  
G3,2  
R4,2  
B1,3  
G2,3  
B3,3  
G4,3  
G1,4  
R2,4  
G3,4  
R4,4  
B1,353  
G2,353  
B3,353  
G4,353  
G1,354  
R2,354  
G3,354  
R4,354  
B1,355  
G2,355  
B3,355  
G4,355  
G1,356  
R2,356  
G3,356  
R4,356  
1
2
3
4
B289,1  
G290,1  
B291,1  
G292,1  
G289,2  
R290,2  
G291,2  
R292,2  
B289,3  
G290,3  
B291,3  
G292,3  
G289,4  
R290,4  
G291,4  
R292,4  
B289,353  
G290,353  
B291,353  
G292,353  
G289,354  
R290,354  
G291,354  
R292,354  
B289,355  
G290,355  
B291,355  
G292,355  
G289,356  
R290,356  
G291,356  
R292,356  
289  
290  
291  
292  
Notes:  
A. Y port output data sequence: G R G R G R ··· or G G G G ···; UV port output data sequence: B G B G B G ··· or B R B R ···; and  
the array color filter pattern is Bayer-Pattern.  
B. Output Modes  
1. 16-bit Format (Total 292 HREFs)  
March 4, 2000  
Version 1.0  
10  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Default mode:  
- 1st HREF Y channel output unstable data, UV output B11 G12 B13 G14 ···  
- 2nd HREF Y channel output G21 R22 G23 R24 ···, UV output B11 G12 B13 G14 ···  
- 3rd HREF Y channel output G21 R22 G23 R24 ···, UV output B31 G23 B33 G34 ···  
- Every line of data is output twice.  
YG mode:  
- 1st HREF Y and UV output unstable data.  
- 2nd HREF Y channel output G21 G12 G23 G14 ···, UV output B11 R22 B13 R24 ···  
- 3rd HREF Y is G21 G32 G23 G34 ···, UV channel is B31 R22 B33 R24 ···  
- Every line data output twice.  
One line mode:  
- 1st HREF Y channel output B11 G12 B13 G14 ···  
- 2nd HREF Y channel output G21 R22 G23 R24 ···  
- UV channel tri-state.  
2. 8-bit Format (Total 292 HREFs)  
- 1st HREF Y channel output unstable data.  
- 2nd HREF Y channel output B11 G21 R22 G12 ···  
- 3rd HREF Y channel output B31 G21 R22 G32 ···  
- PCLK timing is doubled and PCLK rising edge latch data bus. UV channel tri-state. Every line data output twice.  
3. 4-bit Nibble Mode Output Format  
- Uses higher 4 bits of Y port (Y[7:4]) as output port.  
- Supports YCrCb/RGB data, ITU-601/ITU-656 timing, Color/B&W.  
- Output sequence: High order 4 bits followed by lower order 4 bits  
Y0H Y0L Y1H Y1L ···  
U0H U0L V0H V0L ···  
For B/W or one-line RGB raw data, the output data clock speed is doubled. For color YUV, output clock is four times that of the 16-bit  
output data. In color mode, sensor must be set to 8-bit mode, and the nibble timing, clock divided by 2.  
Output sequence: U0H U0L Y0H Y0L V0H V0L Y1H Y1L ···  
It should be noted that FREX must remain high long enough to ensure  
the entire image array has been pre-charged.  
1.2.7  
Slave Mode Operation  
The OV6630/OV6130 can be programmed to operate in slave mode  
(COMI[6] = 1, default is master mode). HSYNC and VSYNC output  
signals are provided.  
When data is being output from OV6630/OV6130, care must be taken  
so as not to expose the image array to light. This may affect the  
integrity of the image data captured. A mechanical shutter synchro-  
nized with the frame exposure rate can be used to minimize this  
situation. The timing of frame exposure is shown in Figure 7. Frame  
Exposure Timing below.  
When used as a slave device, the external master must provide the  
following clocks to OV6630/OV6130 imager:  
1. System clock CLK to XCLK1 pin  
2. Horizontal sync, HSYNC, to CHSYNC pin, positive assertion  
3. Vertical frame sync, VSYNC, to VSYNC pin, positive assertion  
1.2.9  
Reset  
OV6630/OV6130 includes a RESET pin (pin 2) that forces a  
complete hardware reset when it is pulled high (VCC).  
OV6630/OV6130 clears all registers and resets to their default values  
when a hardware reset occurs. Reset can also be initiated through the  
I2C interface.  
In slave mode, the OV6630/OV6130 tri-states CHSYNC (pin 42) and  
VSYNC (pin 16) output pins, and used as input pins. To synchronize  
multiple devices, OV6630/OV6130 uses external system clock, CLK,  
to synchronize external horizontal sync, HSYNC, which is then used  
to synchronize external vertical frame sync, VSYNC. See Figure 6.  
Slave Mode External Sync Timing for timing considerations.  
1.2.10 Power Down Mode  
Two methods are available to place OV6630/OV6130 into power-  
down mode: hardware power down and I2C software power down.  
1.2.8  
Frame Exposure Mode  
OV6630/OV6130 supports frame. FREX (pin 4) is asserted by an  
external master device to set exposure time. The pixel array is quickly  
pre-charged when FREX is set to “1”. OV6630/OV6130 captures the  
image in the time period when FREX remains high. The video data  
stream is delivered to output port in a line-by-line manner after FREX  
switches to “0”.  
To initiate hardware power down, the PWDN pin (pin 9) must be tied  
to high (+3.3VDC). When this occurs, OV6630/OV6130 internal  
device clock is halted and all internal counters are reset. The current  
draw is less than 10µA in this standby mode.  
March 4, 2000  
Version 1.0  
11  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Executing a software power down through the I2C interface suspends  
internal circuit activity, but does not halt the device clock. The current  
requirements drop to less than 1mA in this mode.  
specified pins. Not all device functions are available for configuration  
through external pins. Power up pin programming occurs in 1024  
system clock cycles.  
1.2.11 Configure OV6630/OV6130  
A
more flexible and comprehensive method to configure  
OV6630/OV6130 is to use its on-chip I2C register programming  
capability. The I2C interface provides access to all of the device’s  
programmable internal registers. See I2C Bus Protocol Format for  
further details about using the I2C interface on the OV6630/OV6130  
camera device.  
Two methods are provided to configure OV6630/OV6130 for specific  
application requirements.  
At power up, OV6630/OV6130 reads the status of certain pins to  
determine what, if any, power up pin programming default settings  
are requested. Once the reading of the external pins status is  
completed, the device configures its internal registers according to the  
TCLK  
CLK  
THS  
HSYNC  
1 Line=472 TCLK  
VSYNC  
1 Frame=625 x 472 TCLK  
TVS  
Notes:  
THS > 6 TCLK (2), THS < TVS < 472 TCLK  
HSYNC period is (472 TCLK  
)
VSYNC period is (625 x 472 TCLK  
)
OV6630/OV6130 will be stable after 1 field (2nd VSYNC)  
Figure 6. Slave Mode External Sync Timing  
March 4, 2000  
Version 1.0  
12  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Mechanical Shutter Off  
FREX  
TSET  
TIN  
THS  
HSYNC  
Precharge begins at the rising edge of HSYNC  
Array Exposure Period TEX  
TPR  
ARRAY  
PRECHARGE  
Array Precharge Period TPR  
Invalid Data  
1 Frame (292 Lines) Valid Data  
DATA  
OUTPUT  
Black Data  
THD Head of Valid Data (8 Lines)  
Next Frame  
VSYNC  
HREF  
Note:  
TPR=292 x 4 x TCLK. TCLK is internal pixel period. TCLK=112ns if the system clock is 17.73MHz. TCLK will  
increase with the clock divider CLK[5:0].  
TEX is array exposure time which is decided by external master device.  
TIN is uncertain time due to the using of HSYNC rising edge to synchronize FREX. TIN < THS  
.
There are 8 lines data output before valid data after FREX=0. THD=4 THS. Valid data is output when  
HREF=1.  
TSET=TIN + TPR + TEX. TSET > TPR + TIN. The exposure time setting resolution is THS (one line) due to the  
uncertainty of TIN.  
Figure 7. Frame Exposure Timing  
March 4, 2000  
Version 1.0  
13  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
March 4, 2000  
Version 1.0  
14  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
2 Electrical Characteristics  
Table 10. DC Characteristics (0°C TA 85°C, Voltages referenced to GND)  
Symbol  
Supply  
VDD1  
Descriptions  
Max  
Typ  
Min  
Units  
V
Supply voltage  
3.6  
3.3  
2.7  
(DEVDD, ADVDD, AVDD, SVDD, DVDD)  
Supply voltage (DOVDD)  
VDD2  
IDD1  
5.5  
3.6  
40  
5
3.3  
4.5  
2.7  
V
Supply current  
mA  
(@50Hz frame rate and 3.3V digital I/O with 25pF plus 1TTL loading  
on 16-bit data bus)  
IDD2  
Supply current  
12  
5
mA  
(VDD=3V, @50Hz frame rate without digital I/O loading, 2 ports  
output, and without internal charge pump)  
Standby supply current  
IDD3  
Digital Inputs  
VIL  
VIH  
CIN  
10  
0.8  
10  
µA  
Input voltage LOW  
Input voltage HIGH  
Input capacitor  
V
V
PF  
2
Digital Outputs (standard loading 25pF, 1.2Kto 3V)  
VOH  
VOL  
Output voltage HIGH  
Output voltage LOW  
2.4  
V
V
0.6  
I2C Input (5Kpull up + 100pF)  
VIL  
VIH  
VIL  
VIH  
SDA and SCL (VDD2=5V)  
SDA and SCL (VDD2=5V)  
SDA and SCL (VDD2=3V)  
SDA and SCL (VDD2=3V)  
1.5  
VDD+0.5  
1
-0.5  
3.0  
-0.5  
2.5  
V
V
V
V
3.3  
0
3
VDD+0.5  
Table 11. AC Characteristics (TA=25°C, VDD=3V)  
Symbol  
Descriptions  
Max  
Typ  
Min  
Units  
RGB/YCrCb Output  
ISO  
VY  
Maximum sourcing current  
DC level at zero signal  
YPP 100% amplitude (without sync)  
Sync amplitude  
15  
1.2  
1
mA  
V
0.4  
ADC Parameters  
B
Analog bandwidth  
MHz  
ΦDIFF  
DLE  
ILE  
DC differential linearity error  
DC integral linearity error  
0.5  
1
LSB  
LSB  
Table 12. Timing Characteristics  
Symbol  
Oscillator and Clock Input  
fOSC  
tr, tf  
Descriptions  
Max  
Typ  
17.734  
50  
Min  
10  
Units  
Frequency (XCLK1, XCLK2)  
24  
5
55  
MHz  
ns  
%
Clock input rise/fall time  
Clock input duty cycle  
45  
I2C Timing (400Kbit/s)  
tBUF  
tHD:SAT  
tLOW  
tHIGH  
tHD:DAT  
Bus free time between STOP and START  
SCL change after START status  
SCL low period  
SCL high period  
Data hold time  
1.3  
0.6  
1.3  
0.6  
0
ms  
µs  
µs  
µs  
µs  
March 4, 2000  
Version 1.0  
15  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
tSU:DAT  
tSU:STP  
Data setup time  
Setup time for STOP status  
0.1  
0.6  
µs  
µs  
Digital Timing  
tPCLK  
PCLK cycle time  
16-bit operation  
8-bit operation  
112  
56  
ns  
tr, tf  
tPDD  
tPHD  
PCLK rise/fall time  
PCLK to data valid  
PCLK to HREF delay  
15  
15  
20  
ns  
ns  
ns  
10  
5
Table 13. Zoom Video Port AC Parameters  
Symbol  
Parameter  
Min  
4ns  
50ns  
4ns  
50ns  
106ns  
10ns  
20ns  
1µs  
Max  
8ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
PCLK fall time  
PCLK low time  
PCLK rise time  
PCLK high time  
PCLK period  
8ns  
Y/UV/HREF setup time  
Y/UV/HREF hold time  
VSYNC setup/hold time to HREF  
Notes:  
1. In Interlaced Mode, there are even/odd field different (t8). When In Progressive Scan Mode, only frame timing same as Even  
field(t8).  
2. After VSYNC falling edge, OV6630 will output black reference level, the line number is TVS, which is the line number be-  
tween the 1st HREF rising edge after VSYNC falling edge and 1st valid data CHSYNC rising edge. Then valid data, then  
black reference, line number is TVE, which is the line number between last valid data CHSYNC rising edge and 1st CHSYNC  
rising edge after VSYNC rising edge. The black reference output line number is dependent on vertical window setting.  
3. When in default setting, TVE = 14 × TLINE, which is changed with register VS[7:0]. VS[7:0] step equal to 1 line.  
4. When in default setting, TVE = 4 × TLINE for Odd Field, TVE = 3 × TLINE for Even Field, which is changed with register  
VE[7:0]. VE[7:0] step equal to 1 line.  
March 4, 2000  
Version 1.0  
16  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
+0.010  
0.060 -0.005  
0.440 ±0.005  
0.040 ±0.003  
0.040 ±0.007  
TYP  
31  
42  
43  
48  
30  
Bottom View  
0.020 ±0.008  
TYP  
19  
6
7
18  
R 0.0075  
4 CORNERS  
R 0.0075  
48 PLCS  
0.085 ±0.010  
0.003  
0.003  
+0.012  
0.560 SQ -0.005  
0.430 SQ ±0.005  
0.350 SQ ±0.005  
0.065 ±0.007  
0.030  
±0.002  
0.020 ±0.002  
42  
31  
0.002  
42  
31  
30  
43  
43  
30  
Side View  
48  
1
6
7
19  
6
19  
18  
7
0.006 MAX  
0.002 TYP  
18  
Top View  
March 4, 2000  
Version 1.0  
17  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Array Center  
(10.9 mil, 13.2 mil)  
(276.9 µm, 335.3µm)  
1
Package Center  
(0, 0)  
Table 14. Ordering Information  
Part Number  
Description  
Package  
48 pin LCC  
48 pin LCC  
OV6630 COLOR Image Sensor, CIF, Digital, I2C Bus Control  
OV6130 B/W Image Sensor, CIF, Digital, I2C Bus Control  
OmniVision Technologies, Inc. reserves the right to make changes without further notice to any product herein to improve reliability, function, or  
design. OmniVision Technologies, Inc. does not assume any liability arising out of the application or use of any product or circuit described herein;  
neither does it convey any license under its patent rights nor the rights of others. No part of this publication may be copied or reproduced, in any  
form, without the prior written consent of OmniVision Technologies, Inc.  
March 4, 2000  
Version 1.0  
18  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
3 I2C Bus  
that supports up to 400 KBps serial transfer rate using a 7-bit  
address/data transfer protocol.  
Many of the functions and configuration registers in the  
OV6630/OV6130 image sensors are available through the I2C  
interface. The I2C port is enabled by asserting the I2CB line (pin 12)  
through a 10Kresistor to VDD. When the I2C capability is enabled  
(I2CB = 1), the OV6630/OV6130 imager operates as a slave device  
1ST BYTE  
2ND BYTE  
3RD BYTE  
S
SLAVE ID (7BITS) RW  
A
SUB-ADDRESS (8BITS)  
A
DATA (8BITS)  
A
P
MSB  
START  
LSB=0  
ACK  
ACK STOP  
MASTER TRANSMIT, SLAVE RECEIVE (WRITE CYCLE)  
1ST BYTE  
2ND BYTE  
S
SLAVE ID (7BITS) RW  
A
SUB-ADDRESS (8BITS)  
A
P
MSB  
MASTER TRANSMIT, SLAVE RECEIVE (DUMMY WRITE CYCLE)  
START  
LSB=0  
ACK STOP  
1ST BYTE  
2ND BYTE  
3RD BYTE  
S
SLAVE ID (7BITS) RW  
A
DATA (8BITS)  
A
DATA (8BITS)  
1
P
MSB  
START  
LSB=1  
ACK  
STOP  
NO ACK IN  
LAST BYTE  
MASTER RECEIVE, SLAVE TRANSMIT (READ CYCLE)  
SLAVE ID - 110CCC0X  
CS2 (PIN 35)  
– SLAVE TRANSMIT  
– MASTER TRANSMIT  
S - START CONDITION  
A - ACKNOWLEDGE BIT  
P - STOP CONDITION  
CS1 (PIN 37)  
CS0 (PIN 34)  
– MASTER INITIATE  
X - RW BIT, 1:READ, 0:WRITE  
Figure 8. I2C Bus Protocol Format  
3.1 I2C Bus Protocol Format  
In I2C operation, the master must perform the following operations:  
- Generate the start/stop condition  
- Place the 7-bit slave address, the RW bit, and the 8-bit sub-  
address on SDA  
The receiver must pull down SDA during the acknowledge period.  
During the write cycle, OV6630/OV6130 returns acknowledge and,  
- Provide the serial clock on SCL  
March 4, 2000  
Version 1.0  
19  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
during read cycle, the master returns acknowledge except the read  
SCL is HIGH indicates a STOP condition. Only a master can generate  
START/STOP conditions.  
data is the last byte. The master does not perform acknowledge if the  
read data is the last byte, indicates that the slave can terminate the  
read cycle. Note that the restart feature is not supported here.  
Except for these two special conditions, the protocol that SDA remain  
stable during the HIGH period of the clock, SCL. Each bit is allowed  
to change state only when SCL is LOW (See Figure * and Figure 10  
below).  
Within each byte, MSB is always transferred first. Read/write control  
bit is the LSB of the first byte.  
Standard I2C communications require only two pins: SCL and SDA.  
SDA is configured as open drain for bi-directional purpose. A HIGH  
to LOW transition on the SDA while SCL is HIGH indicates a  
START condition. A LOW to HIGH transition on the SDA while  
The OV6630/OV6130 I2C supports multi-byte write and multi-byte  
read. The master must supply the sub-address. in the write cycle, but  
not in the read cycle.  
SDA  
DATA  
STABLE  
DATA CHANGE  
ALLOWED  
SCL  
Figure 9. Bit Transfer on the I2C Bus  
RW  
SDA  
SCL  
SLAVD ID  
SUB ADD  
DATA  
A
A
A
S
P
Figure 10. Data Transfer on the I2C Bus  
Therefore, OV6630/OV6130 takes the read sub-address from the  
previous write cycle. In multi-byte write or multi-byte read cycles, the  
sub-address is automatically increment after the first data byte so that  
continuous locations can be accessed in one bus cycle. A multi-byte  
cycle overwrites its original sub-address; therefore, if a read cycle  
immediately follows a multi-byte cycle, you must insert a single byte  
write cycle that provides a new sub-address.  
OV6630/OV6130 can be power up pin programmed to one-of-eight  
slave ID addresses through function pins CS[2:0] (pins 35, 37, 34,  
respectively).  
Table 15. Slave ID Addresses  
CS[2:0]  
WRITE ID (hex)  
READ ID (hex)  
000  
C0  
C1  
001  
C4  
C5  
010  
C8  
C9  
011  
CC  
CD  
100  
D0  
D1  
101  
D4  
D5  
110  
D8  
D9  
111  
DC  
DD  
configures OV6630/OV6130 for single ID slave address with address  
C0 for writes and address C1 for reads. MULT is internally defaulted  
to a low condition.  
OV6630/OV6130 supports both single chip and multiple chip  
configurations. By asserting MULT (pin 47) to high, the sensor can be  
programmed for up to 8 slave ID addresses. Asserting MULT low  
March 4, 2000  
Version 1.0  
20  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
In the write cycle, the second byte in I2C bus is the sub-address for  
3.2 Register Set  
selecting the individual on-chip registers, and the third byte is the data  
associated with this register. Writing to unimplemented sub-address is  
ignored. In the read cycle, the second byte is the data associated with  
the previous stored sub-address. Reading of unimplemented sub-  
address returns unknown.  
The table below provides a list and description of available I2C  
registers contained in the OV6630/OV6130 image sensor.  
March 4, 2000  
Version 1.0  
21  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
Table 16 I2C Registers  
Sub-  
Default  
(hex)  
Read/  
Write  
address  
(hex)  
00  
Register  
Descriptions  
GAIN  
00  
RW  
AGC gain control  
GC[7:6] – Unimplemented.  
GC[5:0] – The current gain setting.  
This register is updated automatically if AGC is enabled. The internal controller stores the  
optimal gain value in this register. The current value is stored in this register if AGC is not  
enabled.  
01  
02  
03  
BLUE  
RED  
SAT  
80  
80  
80  
RW  
RW  
RW  
Blue gain control  
BLU[7] – “0” decrease gain, “1” increase gain.  
BLU[6:0] – blue channel gain balance value.  
Note: This function is not available on the OV6130 image sensor.  
Red gain control  
RED[7] – “0” decrease gain, “1” increase gain.  
RED[6:0] – red channel balance value.  
Note: This function is not available on the OV6130 image sensor.  
Color saturation control  
SAT[7:3] – Saturation adjustment. “F8h” is highest and “00h” is lowest.  
SAT[2:0] – Unimplemented.  
Note: This function is not available on the OV6130 image sensor.  
Reserved  
Contrast control  
04  
05  
Rsvd 04  
CTR  
RW  
××  
48  
CTR[7] – selects gain at the dark area. “0” – gain=0.5 and “1” – gain=1.  
CTR[6:4] – reserved.  
CTR[3:0] – Contrast adjustment. “FFh” is highest and “00h” is lowest.  
06  
07  
BRT  
SHP  
80  
RW  
RW  
Brightness control  
BRT[7:0] – Brightness adjustment. “FFh” is highest and “00h” is lowest.  
Sharpness control  
C6  
SHP[7:4] – Coring adjustment. Range: 0~80mV with step 5mV.  
SHP[3:0] – Strength adjustment. Range: 0~8× with step 0.5×.  
Reserved  
White balance background: Blue channel  
ABLU[7:6] – rsvd  
08-0B  
0C  
Rsvd 08-0B  
ABLU  
RW  
××  
20  
ABLU[5] – “0” decrease background blue component, “1” increase background blue  
component  
ABLU[4:0] - White balance blue ratio adjustment  
Note: This function is not available on the OV6130 image sensor.  
White balance background: Red channel  
0D  
ARED  
20  
RW  
ARED[7:6] – rsvd  
ARED[5] – “0” decrease background red component, “1” increase background red  
component  
ARED[4:0] - White balance red ratio adjustment  
Note: This function is not available on the OV6130 image sensor.  
Common control R  
COMR[7] – Analog signal 2x gain control bit. “1” - Additional 2x gain, “0” - normal.  
COMR[6:0] – Reserved.  
Common control S  
0E  
0F  
COMR  
COMS  
0D  
05  
RW  
RW  
COMS[7:6] – Reserved  
COMS[5:4] – select the lowest signal used in automatic black level expanding (or  
automatic brightness). “00” – lowest, “11” – highest and image is brighter.  
COMS[3:2] – select highest luminance level to be available in AWB control. “00” –  
March 4, 2000  
Version 1.0  
22  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
lowest, “11” – highest.  
COMS[1:0] – select lowest luminance level to be available in AWB control. “00” –  
lowest, “11” – highest.  
10  
11  
AEC  
9A  
00  
RW  
RW  
Automatic exposure control  
AEC[7:0] - Set exposure time  
TEX = 2 × TLINE × AEC[7:0]  
CLKRC  
Clock rate control  
CLKRC[7:6] – Sync output polarity selection  
“00” – HSYNC=Neg, CHSYNC=Neg, VSYNC=Pos  
“01” – HSYNC=Neg, CHSYNC=Neg, VSYNC=Neg  
“10” – HSYNC=Pos, CHSYNC=Neg, VSYNC=Pos  
“11” – HSYNC=Pos, CHSYNC=Pos, VSYNC=Pos  
CLKRC[5:0] – Clock pre-scaler  
CLK = (MAIN_CLOCK / ((CLKRC[5:0] + 1) × 2)) / n  
Where n=1 if register [3E], COMO<7> is set to “1” and n=2 otherwise.  
Common control A  
12  
COMA  
24  
RW  
COMA[7] – SRST, “1” initiates soft reset. All registers are set to default values and  
chip is reset to known state and resumes normal operation. This bit is automatically  
cleared after reset.  
COMA[6] – MIRR, “1” selects mirror image  
COMA[5] – AGCEN, “1” enables AGC,  
COMA[4] – Digital output format, “1” selects 8-bit: Y U Y V Y U Y V  
COMA[3] – Select video data output: “1” - select RGB, “0” - select YCrCb  
COMA[2] – Auto white balance “1” - Enable AWB, “0” - Disable AWB  
COMA[1] – Color bar test pattern: “1” - Enable color bar test pattern  
COMA[0] – reserved  
Note: COMA[3] is not programmable on the OV6130 image sensor.  
Common control B  
13  
COMB  
01  
RW  
COMB[7:6] – reserved  
COMB[5] - Select data format. “1” - select 8-bit format, Y/CrCb and RGB is  
multiplexed to 8-bit Y bus, UV bus is tri-stated, “0” - select 16-bit format  
COMB[4] – “1” - enable digital output in ITU-656 format  
COMB[3] – CHSYNC output. “1” - horizontal sync, “0” - composite sync  
COMB[2] – “1” – Tri-state Y and UV busses. “0” - enable both busses  
COMB[1] – “1” - Initiate single frame transfer.  
COMB[0] – “1” - Enable auto adjust mode.  
Note: COMB[5] is not programmable on the OV6130 image sensor.  
Common control C  
14  
15  
COMC  
COMD  
00  
01  
RW  
RW  
COMC[7:6] – reserved  
COMC[5] – QCIF digital output format selection. 1 - 176x144; 0 - 352x288.  
COMC[4] – Field/Frame vertical sync output in VSYNC port selection: 1 - frame sync,  
only ODD field vertical sync; 0 - field vertical sync, effect in Interlaced mode  
COMC[3] – HREF polarity selection: 0 - HREF positive effective, 1 - HREF negative.  
COMC[2] – gamma selection: 1 - RGB Gamma on ; 0 - RGB gamma is 1.  
COMC[1:0] – reserved  
Common Control D  
COMD[7:2] – reserved bit.  
COMD[1] – PCLK polarity selection. “0” - OV6630/OV6130 output data at PCLK  
falling edge and data bus will be stable at PCLK rising edge; “1” - rising edge output  
data and stable at PCLK falling edge. This bit is disable and should use PCLK rising  
edge latch data bus in ITU-656 format (COMB[4]=1).  
COMD[0] – U V digital output sequence exchange control. 1 - UV UV ··· for 16-bit,  
U Y V Y ··· for 8-bit; 0 - V U V U ··· for 16-bit and V Y U Y ··· for 8-bit.  
Note: COMD[0] is not programmable on the OV6130 image sensor.  
Field slot division  
16  
FSD  
03  
RW  
FSD[7:2] – Field interval selection. It has functional in EVEN and ODD mode defined  
March 4, 2000  
Version 1.0  
23  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
by FSD[1:0]. It is disabled in OFF and FRAME mode. The purpose of FSD[7:2] is to  
divide the video signal into programmed number of time slots, and allows HREF to  
be active only one field in every FSD[7:2] fields. It does not affect the video data or  
pixel rate. FSD[7:2] disables digital data output, there is only black reference level at  
the output. FSD[7:2]=1 outputs every field. FSD[7:2]=2 outputs one field and  
disables one field, etc.  
FSD[1:0] – field mode selection. Each frame consists of two fields: Odd and Even,  
FSD[1:0] define the assertion of HREF in relation to the two fields.  
“00” – OFF mode; HREF is not asserted in both fields, one exception is the single  
frame transfer operation (see the description for the register 13)  
“01” – ODD mode; HREF is asserted in odd field only.  
“10” – EVEN mode; HREF is asserted in even field only.  
“11” – FRAME mode; HREF is asserted in both odd field and even field. FSD[7:2]  
disabled.  
17  
18  
HREFST  
38  
RW  
RW  
Horizontal HREF start  
HS[7:0] – selects the starting point of HREF window, each LSB represents two pixels  
for CIF resolution mode, one pixels for QCIF resolution mode, this value is set based  
on an internal column counter, the default value corresponds to 352 horizontal  
window. Maximum window size is 356. See window description below. HS[7:0]  
programmable range is [38] - [EB], and should less than HE[7:0]. HS[7:0] should be  
programmable to value larger than or equal to [38]. Value larger than [EC] is invalid.  
See window description below.  
HREFEND  
EA  
Horizontal HREF end  
HE[7:0] – selects the ending point of HREF window, each LSB represents two pixels  
for full resolution and one pixels for QCIF resolution, this value is set based on an  
internal column counter, the default value corresponds to the last available pixel. The  
HE[7:0] programmable range is [39] - [EC]. HE[7:0] should be larger than HS[7:0]  
and less than or equal to [EC]. Value larger than [EC] is invalid. See window  
description below.  
19  
1A  
1B  
VSTRT  
VEND  
PSHFT  
03  
92  
00  
RW  
RW  
RW  
Vertical line start  
VS[7:0] – selects the starting row of vertical window, in full resolution mode, each LSB  
represents 1 scan line in one frame. See window description below. Min. is [03],  
max. is [93] and should less than VE[7:0].  
Vertical line end  
VE[7:0] – selects the ending row of vertical window, in full resolution mode, each LSB  
represents 1 scan line in one frame, see window description below. Min. is [04], max.  
is [94] and should larger than VS[7:0].  
Pixel shift  
PS[7:0] – to provide a way to fine tune the output timing of the pixel data relative to  
that of HREF, it physically shifts the video data output time late in unit of pixel clock  
as shown in the figure below. This function is different from changing the size of the  
window as defined by HS[7:0] and HE[7:0] in registers 17 and 18. Higher than  
default number delay the pixel output relative to HREF. The highest number is “FF”  
and the maximum shift number is delay 256 pixels.  
1C  
1D  
MIDH  
MIDL  
7F  
R
R
Manufacture ID byte: High  
MIDH[7:0] – read only, always returns “7F” as manufacturer’s ID no.  
Manufacture ID byte: Low  
A2  
MIDL[7:0] – read only, always returns “A2” as manufacturer’s ID no.  
Reserved  
Common control E  
1E-1F  
20  
Rsvd 1E-1F  
COME  
RW  
RW  
××  
00  
COME[7] – HREF pixel number selection. “1” - HREF include 704 PCLK, every data  
output twice.  
COME[6] – reserved.  
COME[5] – “1” First stage aperture correction enable. Correction strength will be  
decided by register [07]. “0” disable first stage aperture correction.  
COME[4] – “1” Second stage aperture correction enable. Correction strength and  
threshold value will be decided by COMF[7] ~ COMF[4].  
COME[3] – AWB smart mode enable. 1 – do not count pixels that their luminance level  
are not in the range defined in register [0F]. 0 - count all pixels to get AWB result.  
Valid only when COMB[0]=1 and COMA[2]=1  
March 4, 2000  
Version 1.0  
24  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
COME[2] – reserved.  
COME[1] – AWB fast/slow mode selection. “1” - AWB is always fast mode, that is  
register [01] and [02] is changed every field. “0” AWB is slow mode, [01] and [02]  
change every 16/ 64 field decided by COMK[1]. When AWB enable, COMA[2]=1,  
AWB is working as fast mode until it reaches stable, than as slow mode.  
COME[0] – Digital output driver capability increase selection: “1” Double digital  
output driver current; “0” low output driver current status.  
Note: COME[3] (AWB smart mode), COME[2] (AWB stop), and COME[1] (AWB  
fast/slow) are not programmable on the OV6130 image sensor.  
Y channel offset adjustment  
21  
22  
YOFF  
UOFF  
80  
80  
RW  
RW  
YOFF[7] – Offset adjustment direction 0 - Add Y[6:0]; 1 -Subtract Y[6:0].  
YOFF[6:0] –Y channel digital output offset adjustment. Range: +127 ~ -127. If  
COMG[2]=0, this register will be updated by internal circuit. Write a value to this  
register through I2C has no effect. COMG[2]=1, Y channel offset adjustment will use  
the stored value which can be changed through I2C. This register has no effect to A/D  
output data if COMF[1]=0. If output RGB raw data, this register will adjust R/G/B  
data.  
U Channel offset adjustment  
UOFF[7] – Offset adjustment direction: 0 - Add U[6:0]; 1 - Subtract U[6:0].  
UOFF[6:0] – U channel digital output offset adjustment. Range: +128 ~ -128. If  
COMG[2]=0, this register will be updated by internal circuit. Write a value to this  
register through I2C has no effect. COMG[2]=1, U channel offset adjustment will use  
the stored value which can be changed through I2C. This register has no effect to A/D  
output data if COMF[1]=1. If output RGB raw data, this register will adjust R/G/B  
data.  
Note: This function is not available on the OV6130 image sensor.  
Oscillator circuit control  
CLKC[7:6] – Select different crystal circuit power level (“11” = minimum).  
CLKC[5:0] – reserved  
Automatic exposure control: Bright pixel ratio adjustment  
23  
24  
CLKC  
AEW  
04  
33  
RW  
RW  
AEW[7:0] – Used as calculate bright pixel ratio. OV6630/OV6130 AEC algorithm is  
count whole field bright pixel (its luminance level is higher than a fixed level) and  
black pixel (its luminance level is lower than a fixed level) number. When  
bright/black pixel ratio is same as the ratio defined by register [25] and [26], image  
stable. This register is used to define bright pixel ratio, default is 25%, each LSB  
represent step: 0.5% Change range is: [01] ~ [CA]; Increase AEW[7:0] will increase  
bright pixel ratio. For same light condition, the image brightness will increase if  
AEW[7:0] increase.  
Note: AEW[7:0] must combine with register [26] AEB[7:0]. The relation must be as  
follows: AEW[7:0] + AEB[7:0] > [CA].  
25  
AEB  
97  
RW  
Automatic Exposure Control: Black pixel ratio adjustment  
AEB[7:0] – used as calculate black pixel ratio. OV6630 AEC algorithm is count whole  
field/ frame bright pixel (its luminance level is higher than a fixed level) and black  
pixel (its luminance level is lower than a fixed level) number. When bright/black  
pixel ratio is same as the ratio defined by register [25] and [26], image stable. This  
register is used to define black pixel ratio, default is 80%, each LSB represent step:  
0.5%; Change range is: [01] ~ [CA]; Increase AEB[7:0] will increase black pixel  
ratio. For same light condition, the image brightness will decrease if AEB[7:0]  
increase.  
Note: AEB[7:0] must e combined with register [25] AEW[7:0]. The relation must be as fol-  
lows: AEW[7:0] + AEB[7:0] > [CA].  
26  
COMF  
B0  
RW  
Common control F  
COMF[7:4] – reserved.  
COMF[3] – UV offset difference. “1” use separate offsets for U and V; “0” use one  
offset for both U and V.  
COMF[2] – Digital data MSB/LSB swap. “1” LSBbit7, MSBbit0; “0” normal.  
March 4, 2000  
Version 1.0  
25  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
COMF[1] – “1” digital offset adjustment enable. “0” disable.  
COMF[0] – “1” Output first 4 line black level before valid data output. HREF number  
will increase 4 relatively. “0” no black level output.  
27  
COMG  
A0  
RW  
Common control G  
COMG[7:6] – reserved  
COMG[5] - Select CKOUT pin output V flag. “1” - CKOUT output V flag signal.  
CKOUT=1 if UV channel output V or Red. CKOUT=0 if UV channel output U or  
BLUE. “0” - CKOUT output buffered XCLK2  
COMG[4:3] – reserved.  
COMG[2] – “1” digital offset adjustment manually mode enable. Digital data will be  
add/subtract a value defined by register [21] and [22], the contents are programmed  
through I2C. “0” - digital data will be added/subtract a value defined by register [21]  
and [22], which are updated by internal circuit.  
COMG[1] – Digital output full range selection. OV6630/OV6130 default output data  
range is [10] - [F0]. The output range changes to [01] - [FE] with signal overshoot  
and undershoot level if COMG[1]=1.  
COMG[0] – reserved.  
28  
COMH  
01  
RW  
Common control H  
COMH[7] – “1” selects one-line RGB raw data output format, “0” selects normal two-  
line RGB raw data output.  
COMH[6] – “1” enable black/white mode. The vertical resolution will be higher than  
color mode when the imager works as BW mode. OV6630/OV6130 can’t work at 8-  
bit output in this mode. OV6630/OV6130 outputs data from Y port. UV port will be  
tri-state. COMB[5] and COMB[4] will be set to “0”. “0” normal color mode.  
COMH[5] – reserved.  
COMH[4] – Freeze AEC/AGC value, effective only at COMB[0]=1. “1” - register [00]  
and [10] will not be updated and hold latest value. “0” - AEC/AGC normal working  
status.  
COMH[3] – AGC disable. “1” - when COMB[0]=1 and COMA[5]=1, internal circuit  
will not update register [00], register [00] will kept latest updated value before  
COMH[3]=1. “0” - when COMB0=1 and COMA[5]=1, register [00] will be updated  
by internal algorithm.  
COMH[2] – RGB raw data output YG format: “1” - Y channel G, UV channel B R; “0”  
- Y channel: G R G R ···, UV channel B G B G ···  
COMH[1] – Gain control bit. “1” channel gain increases 6dB. “0” no change to the  
channel gain.  
COMH[0] – reserved.  
Note: COMH[2] (RGB Raw Data) is not programmable on the OV6130 image sensor.  
Common control I  
29  
COMI  
00  
RW  
COMI[7] – AEC disable. “1” If COMB[0]=1, AEC stop and register [10] value will be  
held at last AEC value and not be updated by internal circuit. “0” - if COMB[0]=1,  
register [10] value will be updated by internal circuit  
COMI[6] – Slave mode selection. “1” slave mode, use external SYNC and VSYNC;  
“0” master mode.  
COMI[5:4] – reserved  
COMI[3] – Central 1/4 image area rather whole image used to calculate AEC/AGC. “0”  
use whole image area to calculate AEC/AGC.  
COMI[2] – reserved  
COMI[1:0] – Version flag. For version A, value is [00], these two bits are read only.  
2A  
FRARH  
84  
RW  
Frame rate adjust high  
FRARH[7] – Frame Rate adjustment enable bit. “1” Enable.  
FRARH[6] – reserved  
FRARH[5] – Highest 1bit of frame rate adjust control byte. See explanation below.  
FRARH[4] – reserved  
FRARH[3] – Y channel brightness adjustment enable. When COMF[2]=1 active.  
FRARH[2] – reserved  
FRARH[1] – “1” When in Frame exposure mode, only One frame data output.  
FRARH[0] – reserved  
2B  
FRARL  
5E  
RW  
Frame rate adjust low  
FRARL[7:0] – Lowest 8 bit of frame rate adjust control byte. Frame rate adjustment  
March 4, 2000  
Version 1.0  
26  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
resolution is 0.21%. Control byte is 10 bit. Every LSB equal decrease frame rate  
0.21%. Range is 0.21% - 109%. IF frame rate adjustment enable, COME[7] must set  
to “0”.  
2C  
2D  
Rsvd 2C  
COMJ  
88  
03  
RW  
RW  
Reserved  
Common control J  
COMJ[7:5] – reserved  
COMJ[4] – Enable auto black expanding mode.  
COMJ[3] – “1” update white balance update only if AGC/AEC is stable. “0” update  
white balance independent with AEC/AGC.  
COMJ[2] – Band filter enable. After adjust frame rate to match indoor light frequency,  
this bit enable a different exposure algorithm to cut light band induced by fluorescent  
light.  
COMJ[1] – reserved  
COMJ[0] –U and V offset separate mode. “1” U and V use separate offsets. “0” U and  
V use same offset defined by register [2E].  
2E  
VCOFF  
80  
RW  
V channel offset adjustment  
VCOFF[7] – Offset adjustment direction: “0” = Add V[6:0]; “1” = Subtract V[6:0].  
VCOFF[6:0] – V channel digital output offset adjustment. Range: +128 ~ -128. If  
COMG[2]=0, this register will be updated by internal circuit. Write to this register  
through I2C has no effect. If COMG[2] =1, V channel offset adjustment will use the  
stored value which can be changed through I2C. If COMF[1] =1, this register has no  
effect to digital output data. If output RGB raw data, this register will adjust R/G/B  
data.  
Note: This function is not available on the OV6130 image sensor.  
2F – 32  
33  
Rsvd 2F–32  
CPP  
RW  
Reserved  
Color processing parameter control  
××  
00  
CPP[7:6] – reserved  
CPP[5] – Luminance gamma on/off. “1” - luminance gamma on; “0” - luminance  
gamma is 1.  
CPP[4:0] – reserved  
34  
BIAS  
A2  
RW  
Bias adjustment  
BIAS[7:6] – A/D reference level adjustment. “00” - 110% internal full signal range;  
“01” - 120%, “10” - 130%, “11” - 140%.  
BIAS[5:0] – reserved  
35-37  
38  
Rsvd 35-37  
COMK  
80  
81  
RW  
RW  
Reserved  
Common control K  
COMK[7] – HREF edge latched by PCLK falling edge. “0” HREF edge is 10 ns after  
PCLK rising edge.  
COMK[6] – Output port drive current additional 2x control bit.  
COMK[5] – reserved.  
COMK[4] – ZV port Vertical timing selection. “1” VSYNC output ZV port vertical  
sync signal. “0” = normal TV vertical sync signal.  
COMK[3] – Quick stable mode when camera mode change. After relative control bit  
set, the first VS will be the stable image with suitable AEC/AWB setting. “0” - slow  
mode, after mode change need more field/frame to get stable AEC/AWB setting  
image.  
COMK[2] – reserved  
COMK[1] – AWB stable time selection when in slow mode. “1” - 4 times less time  
needed to get stable AWB setting when in slow AWB mode.  
COMK[0] – reserved.  
Note: COMK[1] (AWB stable Time) is not programmable on the OV6130 image sensor.  
Common control L  
39  
COML  
00  
RW  
COML[7] – reserved  
COML[6] – PCLK output timing selection. “1” - PCLK valid only when HREF is high;  
“0” - PCLK is free running.  
COML[5] – reserved.  
COML[4] – “1” select CHSYNC output from HREF port. “0” normal  
COML[3] – “1” select HREF output from CHSYNC port. “0” normal  
March 4, 2000  
Version 1.0  
27  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
COML[2] – Tristate all control signal output (FODD, CHSYNC, HREF, PCLK)  
COML[1] – Highest 1 bit of horizontal sync starting position, combined with register  
[3A]  
COML[0] – Highest 1 bit of horizontal sync ending position, combined with register  
[3B]  
3A  
3B  
3C  
HSST  
HSEND  
COMM  
0F  
3C  
21  
RW  
RW  
RW  
Horizontal sync start position  
HSST[7:0] – lower 8 bit of horizontal sync starting position, combined with register bit  
of COML[1], total 9 bit control. range: [00] -- [FF]. HSEND[8:0] must be less than  
HSST[8:0]  
Horizontal sync end position  
HEND[7:0] – lower 8 bit of horizontal sync ending position, combined with register bit  
of COML[0], total 9 bit control. range: [00] - [FF]. HSEND[8:0] must be larger than  
HSST[8:0]  
Common control M  
COMM[7:5] – reserved.  
COMM[4] – AEC/AGC change mode selection  
COMM[3] – AEC/AGC change mode selection  
COMM[2] – AEC/AGC change fastest mode  
COMM[1] – AEC/AGC change fast mode  
COMM[0] – AEC/AGC change slowest mode  
Common Control N  
3D  
COMN  
08  
RW  
COMN[7] – Enable one frame drop when AEC change to keep data valid when  
Banding filter mode enable.  
COMN[6:4] – reserved  
COMN[3] – Enable 50 Hz PAL video timing, VTO analog signal can be displayed on  
TV  
COMN[2] – reserved  
COMN[1] – Tri-state Y and UV digital video ports in power down mode.  
COMN[0] – reserved  
3E  
3F  
COMO  
COMP  
80  
02  
RW  
RW  
Common control O  
COMO[7] – Input main clock divided by 2 or 4 selection. “1” -- 2; “0” -- 4  
COMO[6:5] – reserved  
COMO[4] – Select 4-bit nibble mode output  
COMO[3] – reserved  
COMO[2] – Enable Minimum exposure time is 4 line. Default is 1 line  
COMO[1:0] – reserved  
Common control P  
COMP[7] – reserved  
COMP[6] – Output main clock output from FODD port  
COMP[5] – reserved  
COMP[4] – Soft chip power down enable, can be waked up by disable this bit  
COMP[3:2] – reserved  
COMP[1] – ITU-656 output control  
COMP[0] – Reset internal timing circuit without reset AEC/AGC/AWB value  
Reserved  
40-4C  
4D  
Rsvd 40-4C  
YMXA  
RW  
××  
02  
YUV matrix control (Main)  
YMXA[7:5] – reserved  
YMXA[4:3] – YUV/YCrCB selection:  
“00” U = u, V = v  
“01” U = 0.938u, V = 0.838v  
“10” U = 0.563u, V = 0.714v  
“11” U = 0.5u, V = 0.877v  
YMXA[2:0] – Reserved  
Note: This function is not available on the OV6130 image sensor.  
AEC/AGC reference level  
4E  
ARL  
A0  
RW  
ARL[7:5] – Voltage reference selection (Higher voltage = brighter final stable image)  
“000” = Lowest reference level  
“111” = Highest reference level  
ARL[4:0] – Reserved  
March 4, 2000  
Version 1.0  
28  
SINGLE IC CMOS COLOR AND B/W DIGITAL CAMERAS  
YUV matrix control (Secondary)  
4F  
YMXB  
00  
RW  
YMXB[7:6] – Y channel delay selection: 0 ~ 3tp  
YMXB[5] – reserved.  
YMXB[4] – UV 2tp delay selection  
YMXB[3] – reserved.  
YMXB[2] – Enable UV average mode.  
YMXB[1:0] – Color killer control. “00” no color kill, “11” strongest.  
Note: This function is not available on the OV6130 image sensor.  
50-53  
54  
Rsvd 50-53  
COMQ  
RW  
Reserved  
Common control Q  
××  
09  
COMQ[7] – reserved.  
COMQ[6] – Central 1/4 image area rather whole image used to calculate AWB. “0”  
uses whole image area to calculate AWB.  
COMQ[5] – reserved.  
COMQ[4] - Select smart AWB. AWB algorithm will not count pixels with strong color.  
COMQ[3] – Enable AWB using manual input AWB registers when AWB is switched  
from manual to automatic control.  
COMQ[2] – reserved.  
COMQ[1:0] – Select the maximum AGC.  
“00” maximum gain=6dB, step 1/16  
“01” maximum gain=12dB, step 1/16  
“10” maximum gain=6dB, step 1/16  
“11” maximum gain=18dB, step 1/8  
55-56  
57  
Rsvd 55-56  
DBL  
RW  
RW  
Reserved  
Internal charge pump control  
××  
81  
DBL[7] – “0” disables internal charge pump. “1” enables internal charge pump.  
DBL[6:4] – selects the driving capability of internal charge pump. “000” is the smallest  
and “111” is the strongest.  
DBL[3] – “1” no VSYNC in the field that is dropped.  
DBL[2:0] – reserved.  
58  
59  
Rsvd 58  
OFC  
F5  
00  
RW  
RW  
Reserved  
Dark current compensation  
OFC[7] – reserved  
OFC[6] – sign bit of the offset. “0” positive offset and “1” negative offset.  
OFC[5:0] – add an offset before AGC to compensate the dark current.  
Smart color control  
5A  
SC  
28  
RW  
SC[7] – reserved  
SC[6] – select smart color. “1” indicates the color saturation will decrease with the  
increase of AGC.  
SC[5] – select the minimum color saturation in smart color option. “0” the minimum  
saturation is 40% of normal value. “1” the minimum saturation is 50% of normal  
value.  
SC[4:0] – reserved.  
5B  
5C  
SAWB  
00  
13  
RW  
RW  
Smart AWB control  
SAWB[7:4] – reserved  
SAWB[3:2] – Lowest chrominance level to be available for AWB control.  
SAWB[1:0] – highest chrominance level to be available for AWB control.  
Reserved.  
Rsvd 5C  
March 4, 2000  
Version 1.0  
29  
厂商 型号 描述 页数 下载

ETC

OV6120 单片CMOS CIF彩色数码摄像机[ SINGLE-CHIP CMOS CIF COLOR DIGITAL CAMERA ] 31 页

ETC

OV6130 单片CMOS CIF彩色数码摄像机[ SINGLE-CHIP CMOS CIF COLOR DIGITAL CAMERA ] 29 页

ETC

OV6620 单片CMOS CIF彩色数码摄像机[ SINGLE-CHIP CMOS CIF COLOR DIGITAL CAMERA ] 31 页

OMNIVISION

OV6680 在3G手机视频会议摄像机最佳的低光灵敏度和像素表现[ optimal low-light sensitivity and pixel performance for video conferencing cameras in 3G mobile phones ] 2 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.165120s