找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QST108

型号:

QST108

描述:

电容式触摸感应装置8键与个别国家重点输出或I2C接口[ Capacitive touch sensor device 8 keys with individual key state outputs or I2C interface ]

品牌:

STMICROELECTRONICS[ ST ]

页数:

38 页

PDF大小:

636 K

QST108  
Capacitive touch sensor device  
8 keys with individual key state outputs or I2C interface  
Preliminary Data  
Features  
Patented charge-transfer design  
Up to 8 independent QTouch™ keys supported  
2
Individual key state outputs or I C interface  
LQFP32 (7 x 7 mm)  
Fully “debounced” results  
Patented AKS™ Adjacent Key Suppression  
Self-calibration and auto drift compensation  
Spread-spectrum bursts to reduce EMI  
Up to 5 general-purpose outputs  
Description  
The QST108 is the ideal solution for the design of  
capacitive touch sensing user interfaces.  
Applications  
Touch-sensitive controls are increasingly  
replacing electromechanical switches in home  
appliances, consumer and mobile electronics,  
and in computers and peripherals. Capacitive  
touch controls allow designers to create stylish,  
functional, and economical designs which are  
highly valued by consumers, often at lower cost  
than the electromechanical solutions they  
replace.  
This device specifically targets human interfaces  
and front panels for a wide range of applications  
such as PC peripherals, home entertainment  
systems, gaming devices, lighting and appliance  
controls, remote controls, etc.  
QST devices are designed to replace mechanical  
switching/control devices and the reduced  
number of moving parts in the end product  
provide the following advantages:  
The QST108 QTouch™ sensor IC is a pure digital  
solution based on Quantum's patented charge-  
transfer (QProx™) capacitive technology.  
Lower customer service costs  
Reduced manufacturing costs  
Increased product lifetime  
QTouch™ and QProx™ are trademarks of the  
Quantum Research Group.  
Table 1.  
Device summary  
Feature  
Operating supply voltage 2.4 to 5.5 V  
QST108KT6  
Individual key state  
Supported interfaces  
outputs or I2C Interface  
Operating temperature  
Package  
-40° to +85° C  
32-pin LQFP  
September 2007  
Rev 3  
1/38  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
QST108  
Contents  
1
2
3
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
QST touch sensing technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Spread-spectrum operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Faulty and unused keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Detection threshold levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Detection integrator filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Self-calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Fast positive recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Forced key recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Max On-Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.10 Drift compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.11 Adjacent key suppression (AKS™) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4
Device operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset and power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Burst operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stand-alone mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.4.1  
4.4.2  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.5  
I2C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
4.5.5  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General-purpose outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IRQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Communication packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Supported commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
CS sense capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/38  
QST108  
Contents  
5.2  
Sensitivity tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.2.1  
5.2.2  
5.2.3  
Increasing sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Decreasing sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Key balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.3  
5.4  
5.5  
5.6  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Crosstalk precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PCB layout and construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.2  
6.3  
6.4  
6.5  
6.6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Capacitive sensing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
KOUTn/OPTn/GPOn pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.6.1  
6.6.2  
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.7  
6.8  
RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
I2C control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3/38  
Device overview  
QST108  
1
Device overview  
The QST108 capacitive touch sensor IC is a pure digital solution based on Quantum's  
patented charge-transfer (QProx™) capacitive technology.  
This technology allows users to create simple touch panel sensing electrode interfaces for  
conventional or flexible printed circuit boards (PCB/FPCB). Sensing electrodes are part of  
the PCB layout (copper pattern or printed conductive ink) and may used in various shapes  
(circle, rectangular, etc.).  
By implementing the QProx™ charge-transfer algorithm, the QST108 detects finger  
presence (human touch) near electrodes behind a dielectric (glass, plastic, wood, etc.). Only  
one external sampling capacitor by channel is used in the measuring circuitry to control the  
detection.  
QST technology also incorporates advanced processing techniques such as drift  
compensation, auto-calibration, noise filtering, and Quantum's patented Adjacent Key  
Suppression (AKS) to ensure maximum usability and control integrity.  
4/38  
QST108  
Pin description  
2
Pin description  
Figure 1.  
32-pin package pinout  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
GPO4/KOUT4/OPT4  
SNS_SCK6  
SNSK_SCK5  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
GPO5/KOUT5/OPT5  
IRQ/KOUT6/OPT6  
I2C_SDA/KOUT71)  
I2C_SCL/KOUT81)  
RESET  
QST108KT6  
NC  
VDD_1  
9 10 11 12 13 14 15 16  
1. An external pull-up is required on these pins.  
Table 2.  
Pin  
Device pin description  
Pin name  
Type (1) Stand-alone mode function  
I2C mode function  
If unused  
General purpose output 4  
and I²C address bit 2  
option resistor  
Key 4 output / BCD output 4  
and MOD_0 option resistor  
Option  
resistor  
1
2
3
OPT4/KOUT4/GPO4 (2)  
OPT5/KOUT5/GPO5 (2)  
OPT6/KOUT6/IRQ (2)  
O
O
Open or  
Key 5 output and  
MOD_1 option resistor  
General purpose output 5 option  
resistor  
Open or  
Interrupt line (active low) option  
resistor  
Key 6 output and  
OM_0 option resistor  
O/OD  
4
5
KOUT7/I2C_SDA(3)  
KOUT8/I2C_SCL(3)  
TOD  
TOD  
Key 7 output  
Key 8 output  
I2C serial data  
I2C serial clock  
Open  
Open  
10nF  
6
RESET  
BD  
S
Reset (active low)  
capacitor to  
ground  
7
8
NC  
Not Connected  
Supply voltage  
VDD_1  
-
5/38  
Pin description  
QST108  
If unused  
Table 2.  
Pin  
Device pin description (continued)  
Pin name  
Type (1) Stand-alone mode function  
I2C mode function  
9
VSS_1  
S
Ground voltage  
-
-
-
-
-
10 VSS_2  
11 VSS_3  
12 VSS_4  
13 VDD_2  
S
Ground voltage  
S
Ground voltage  
S
Ground voltage  
S
Supply voltage  
14 SNS_SCK1  
15 SNSK_SCK1  
16 SNS_SCK2  
17 SNSK_SCK2  
18 SNS_SCK3  
19 SNSK_SCK3  
20 SNS_SCK4  
21 SNSK_SCK4  
22 SNS_SCK5  
23 SNSK_SCK5  
24 SNS_SCK6  
25 SNSK_SCK6  
26 SNS_SCK7  
27 SNSK_SCK7  
28 SNS_SCK8  
29 SNSK_SCK8  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
SNS  
Key 1 sense pin to Cs/Rs  
Key 1 sense pin to Cs/electrode  
Key 2 sense pin to Cs/Rs  
Key 2 sense pin to Cs/electrode  
Key 3 sense pin to Cs/Rs  
Key 3 sense pin to Cs/electrode  
Key 4 sense pin to Cs/Rs  
Key 4 sense pin to Cs/electrode  
Key 5 sense pin to Cs/Rs  
Key 5 sense pin to Cs/electrode  
Key 6 sense pin to Cs/Rs  
Key 6 sense pin to Cs/electrode  
Key 7 sense pin to Cs/Rs  
Key 7 sense pin to Cs/electrode  
Key 8 sense pin to Cs/Rs  
Key 8 sense pin to Cs/electrode  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Key 1 output / BCD output 1  
and MODE option resistor  
General purpose output 1 Option  
and MODE option resistor resistor  
30 OPT1/KOUT1/GPO1 (2)  
O
O
General purpose output 2  
Option  
Key 2 output / BCD output 2  
and AKS option resistor  
31 OPT2/KOUT2/GPO2 (2)  
and I2C address bit 0  
resistor  
option resistor  
General purpose output 3  
Option  
Key 3 output / BCD output 3  
and LP option resistor  
32 OPT3/KOUT3/GPO3 (2)  
O
and I2C address bit 1  
resistor  
option resistor  
1. S: supply pin, BD: bidirectional pin, SNS: capacitive sensing pin, O: Output push-pull, OD: Output open-drain and  
TOD: True open-drain.  
2. During the reset phase, these pins are floating and the state depends on the option resistor.  
3. An external pull-up is required on these pins.  
6/38  
QST108  
QST touch sensing technology  
3
QST touch sensing technology  
3.1  
Functional description  
QST devices employ bursts of charge-transfer cycles to acquire signals. Burst mode permits  
low power operation, dramatically reduces RF emissions, lowers susceptibility to RF fields,  
and yet permits excellent speed. These devices process all signals using a number of  
algorithms pioneered by Quantum. Signals are then digitally processed using algorithms  
specifically designed to provide reliable, trouble-free operation over the life of the product.  
The QST switches and charge measurement hardware functions are all internal to the  
device. An external C capacitor accumulates the charge from sense-plate C , which is  
S
X
then measured. Larger values of C cause the charge transferred into C to rise more  
X
S
rapidly, reducing available resolution. As a minimum resolution is required for proper  
operation, this can result in dramatically reduced gain. Larger values of C reduce the rise  
S
of differential voltage across it, increasing available resolution by permitting longer QT  
bursts. The value of C can thus be increased to allow larger values of C to be tolerated.  
S
X
The device is responsive to both C and C , and changes in either can result in substantial  
X
S
changes in sensor gain.  
Figure 2. QTouch™ measuring circuitry  
C
T
(~5 pF)  
SNSK_SCKn  
Sense capacitor  
(a few nF)  
C
S
SNS_SCKn  
C
x
(2 to 10 pF)  
Ai12569  
3.2  
Spread-spectrum operation  
The bursts operate over a spread of frequencies, so that external fields will have minimal  
effect on key operation and emissions are very weak. Spread-spectrum operation works  
with the Detection Integrator mechanism (DI) to dramatically reduce the probability of false  
detection due to noise.  
7/38  
QST touch sensing technology  
QST108  
3.3  
Faulty and unused keys  
Any sensing channel that does not have its sense capacitor (C ) fitted is assumed to be  
S
either faulty or unused. This channel takes no further part in operation unless a Master-  
commanded recalibration operation shows it to have an in-range burst count again.  
This is important for sensing channels that have an open or short circuit fault across C .  
S
Such channels would otherwise cause very long acquire bursts, and in consequence would  
slow the operation of the entire QST device.  
To optimize touch response time and device power consumption, if some keys are not used,  
we recommend to try suppressing the ones which belong to the same burst. Bursts which  
do not have any keys implemented will then not be processed.  
3.4  
3.5  
Detection threshold levels  
The key capacitance change induced by the presence of a finger is sensed by the variation  
in the number of charge transfer pulses to load the capacitor. The difference in the pulse  
count number is compared to a threshold in order to detect the key as pressed or not.  
Two different thresholds, one for detection and one for the end of detection, create an  
hysteresis in order to prevent erratic behavior.  
The default threshold levels and hysteresis values are described in Section 6.5: Capacitive  
sensing characteristics on page 30.  
Detection integrator filter  
Detect Integrator (DI) filter mechanism works together with spread spectrum operation to  
dramatically reduce the effects of noise on key states. The DI mechanism requires a  
specified number of measurements that qualify as detections (and these must occur in a  
row) or the detection will not be reported.  
In a similar manner, the end of a touch (loss of signal) also has to be confirmed over several  
measurements. This process acts as a type of “debounce” mechanism against noise.  
The default DI value for confirming start of touch and end of touch is described in  
Section 6.5: Capacitive sensing characteristics on page 30.  
3.6  
3.7  
Self-calibration  
On power-up, all keys are self-calibrated to provide reliable operation under almost any  
conditions. For calibration duration (t  
characteristics on page 30.  
), please refer to Section 6.5: Capacitive sensing  
CAL  
Fast positive recalibration  
The device autorecalibrates a key when its signal reflects a decrease in capacitance higher  
than a fixed threshold (PosRecalTh). In this case, the device recalibrates after approximately  
t
so as to recover normal operation quickly.  
PosRecal  
8/38  
QST108  
QST touch sensing technology  
3.8  
Forced key recalibration  
A recalibration of the device may be issued at any time by sending to the QST device the  
2
appropriate I C command or by tying the RESET pin to ground.  
2
It is possible to recalibrate independently any individual key using an I C command.  
3.9  
Max On-Duration  
The device can time out and automatically recalibrate each key independently after a fixed  
duration of continuous touch detection. This prevents the keys from becoming ‘stuck on’ due  
to foreign objects or other sudden influences. This is known as the Max On-Duration feature.  
After recalibration, the key will continue to function normally, even if partially or fully  
obstructed. Max On-Duration works independently per channel: a timeout on one channel  
has no effect on another channel.  
Infinite timeout is useful in applications where a prolonged detection can occur and where  
the output must reflect the detection no matter how long. In infinite timeout mode, the  
designer should take care to ensure that drift in C , C , and V do not cause the device to  
S
X
DD  
remain “stuck on” inadvertently even when the touching object is removed from the sense  
field. Timeout durations are not accurate and can vary substantially depending on V and  
DD  
temperature values, and should not be relied upon for critical functions.  
3.10  
Drift compensation  
Signal drift can occur because of changes in C , C , and V over time. Depending on the  
X
S
DD  
C type and quality, the signal may vary substantially with temperature and veiling. If keys  
S
are subject to extremes of temperature or humidity, the signal can also drift. It is crucial that  
drift be compensated, otherwise false detections, non detections, and sensitivity shifts will  
follow.  
Drift compensation slowly corrects the reference level of each key while no detection is in  
effect. The rate of reference adjustment must be performed slowly or else legitimate  
detections can also be ignored. The device compensates drift on each channel  
independently using a maximum compensation rate to the reference level.  
Once a touch is sensed, the drift compensation mechanism ceases since the signal is  
legitimately high, and therefore should not cause the reference level to change.  
The signal drift compensation is “asymmetric”: the reference level compensates drift in one  
direction faster than it does in the other. Specifically, it compensates faster for decreasing  
signals than for increasing signals. Increasing signals should not be compensated for  
quickly, since an approaching finger could be compensated for partially or entirely while  
approaching the sense electrode. However, an obstruction over the sense pad, for which the  
sensor has already made full allowance, could suddenly be removed leaving the sensor with  
an artificially elevated reference level and thus become insensitive to touch. In this latter  
case, the sensor will compensate for the object's removal very quickly, usually in only a few  
seconds.  
Increasing C or decreasing C values will slow down drift compensation.  
S
X
9/38  
QST touch sensing technology  
QST108  
3.11  
Adjacent key suppression (AKS™)  
Adjacent key suppression (AKS™) is a Quantum-patented feature which prevents multiple  
keys from responding to a single touch. This can happen with closely spaced keys, or a  
scroll wheel that has buttons very near it.  
AKS operates by comparing signal strengths from keys within a group of keys to suppress  
touch detections from those that have a weaker signal change than the dominant one.  
The QST108 supports two AKS algorithms:  
Locking AKS  
Once a key is considered as “touched”, all other keys are locked in an untouched state.  
To unlock these keys, the touched key must return to an untouched state. Then, the key  
having the highest signal level is declared as the “touched” one.  
Unlocking AKS  
On each acquisition, the signal strengths from each key are compared and the key with  
the highest signal level is declared as the “touched” one.  
2
In I C mode, up to 8 AKS groups can be specified.  
10/38  
QST108  
Device operating modes  
4
Device operating modes  
4.1  
Mode selection  
The device options are configured by connecting pull-up or pull-down resistors on OPTn  
pins. The device operating mode is selected using option pin 1 (OPT1) while the device  
settings are configured using option pins OPT2 to OPT6 (Table 3). Option pins are sampled  
at power-up and after a reset.  
To fit most applications, the QST108 device offers two different operating modes:  
Stand-alone mode  
This mode allows the user to simply replace existing mechanical switches with a  
capacitive sensing solution. It is designed for maximum flexibility and can  
accommodate most popular sensing requirements via option resistors (AKS, Low  
power, Max On-Duration and output modes).  
In this mode, the 8 output pins reflect the status of the 8 sensing channels.  
2
I C mode  
2
In this mode, which is the most open one, the device is driven using the I C interface.  
To avoid polling, the QST device features an output interrupt pin (IRQ). The IRQ line  
reports all key changes to the Master device. The QST (Slave) device can drive up to  
five general-purpose outputs.  
Table 3.  
Operating modes  
Option resistor function  
OPT1: Mode selection  
OPT2  
OPT3  
OPT4  
OPT5  
OPT6  
Pin OPT1 is high at start-up Stand-alone mode  
Pin OPT1 is low at start-up I2C mode  
AKS  
LP  
MOD_0 MOD_1  
OM  
ADD0  
ADD1  
ADD2 Unused Unused  
4.2  
Reset and power-up  
At power-up, the device configures itself according to the pull-up or pull-down option  
resistors present on pins OPT1 to OPT6. The device start-up and configuration may take up  
to t  
.
Setup  
When the power is established, it is possible to force a new device configuration by applying  
a negative pulse on the RESET pin.  
The RESET pin is a bidirectional pin with an internal pull-up. The line is forced low when the  
device resets itself (through an I²C command, for example).  
A 10nF capacitor is recommended on the RESET pin to ensure reliable start-up and noise  
immunity.  
11/38  
Device operating modes  
QST108  
4.3  
Burst operation  
The device operates in “Burst” mode. Each key touch is acquired using a burst of charge-  
transfer sensing pulses whose count varies depending on the value of the sense capacitor  
C and the load capacitance C . Key touches are acquired using two successive bursts of  
S
X
pulses:  
Burst A: Keys 1, 2, 3, and 4  
Burst B: Keys 5, 6, 7, and 8  
Bursts always operate in an A-B sequence. If Keys 5 to 8 are not implemented, the QST  
device will not perform the Burst B to improve the response time and reduce the power  
consumption when in Low Power (LP) mode.  
In Low Power mode, the device sleeps in an ultra-low current state between bursts to  
conserve power.  
4.4  
Stand-alone mode  
This mode allows the user to simply replace existing mechanical switch interface with a  
capacitive sensing solution. It is designed for maximum flexibility and can accommodate  
most popular sensing requirements via option resistors (see Figure 3).  
4.4.1  
Main features  
Pins KOUT1 to KOUT8 directly reflect the state of keys  
Selectable global adjacent key suppression (AKS™)  
Selectable sleep duration  
Selectable Max On-Duration values  
Selectable BCD mode  
12/38  
QST108  
Device operating modes  
Figure 3.  
Stand-alone mode typical schematic  
VDD  
2.4~5.5V  
Volt. Reg.  
VUNREG  
100nF  
100nF  
4.7µF  
4.7µF  
8
13  
VDD_1  
VDD_2  
Keep these parts close to IC  
RS8  
6
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
RESET  
To Host  
Key8  
Key7  
Key6  
Key5  
Key4  
Key3  
Key2  
SNSK_SCK8  
SNS_SCK8  
SNSK_SCK7  
SNS_SCK7  
SNSK_SCK6  
SNS_SCK6  
SNSK_SCK5  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
SNS_SCK2  
10kΩ  
10nF  
CS8  
CS7  
CS6  
CS5  
CS4  
CS3  
CS2  
RS7  
10kΩ  
VDD VDD  
47kΩ  
47kΩ  
RS6  
10kΩ  
5
4
3
KOUT8  
KOUT8  
KOUT7  
RS5  
10kΩ  
KOUT7  
OM/KOUT6  
KOUT6  
VDD  
VSS  
RS4  
10kΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
2
MOD_1/KOUT5  
MOD_0/KOUT4  
LP/KOUT3  
KOUT5  
VDD  
VSS  
RS3  
10kΩ  
1
KOUT4  
VDD  
VSS  
Binary-  
coded  
Output  
Mode  
RS2  
32  
31  
30  
KOUT3  
VDD  
VSS  
10kΩ  
AKS/KOUT2  
KOUT2  
VDD  
VSS  
RS1  
10kΩ  
15  
14  
Key1  
SNSK_SCK1  
SNS_SCK1  
CS1  
MODE/KOUT1  
KOUT1  
VDD  
VSS_1  
VSS_2  
VSS_3  
VSS_4  
12  
9
10  
11  
Ai12560  
13/38  
Device operating modes  
QST108  
4.4.2  
Option descriptions  
Adjacent key suppression (AKS™)  
The QST108 features an adjacent key suppression (AKS™) function.  
This function is enabled using the AKS option resistor (OPT2) in standard output mode as  
described in Table 4. In BCD output mode, the AKS function is always enabled, regardless  
of the option resistor configuration.  
Table 4.  
AKS truth table  
OPT2/AKS  
Description  
VSS  
VDD  
Disabled  
Global locking AKS on all available keys  
Low Power mode option  
This option resistor (OPT3) selects whether the device is always sensing the keys or if a low  
power consumption phase is introduced between bursts as described in Table 5.  
In Low Power mode, a very low consumption (sleep) phase of 100ms is inserted between  
the Group B burst and the Group A burst. This significantly reduces the overall consumption  
of the device. Sleep duration is not accurate and can vary substantially depending on V  
and temperature values.  
DD  
Note:  
In Low Power mode, the response time is increased.  
Table 5.  
Low power (LP) mode truth table  
OPT3/LP  
Description  
VSS  
VDD  
Free running mode  
100ms sleep duration  
Max On-Duration  
There are four recalibration timing options (“Max On-Duration”). The recalibration option  
resistors (OPT4 and OPT5) control how long it takes for a continuous detection to trigger a  
recalibration on a key as described in Table 6. When such an event occurs, only the “stuck”  
key is recalibrated.  
Table 6.  
Max On-Duration (MOD) truth table  
OPT4/MOD_0 OPT5/MOD_1  
Description  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
Infinite  
60s  
20s  
10s  
14/38  
QST108  
Device operating modes  
Output mode option  
The QST108 offers several outputs mode to fit any existing application.  
Table 7.  
OPT6/OM  
Output mode (OM) truth table  
Description  
VSS  
VDD  
Individual key state output mode: One output per sensing channel  
BCD output mode: Binary-coded touched key number (see Table 8)(1)  
1. In BCD mode, the AKS function is always active.  
Table 8.  
Binary code truth table  
KOUT4 KOUT3 KOUT2 KOUT1  
Description  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
All released  
Key 1 pressed  
Key 2 pressed  
Key 3 pressed  
Key 4 pressed  
Key 5 pressed  
Key 6 pressed  
Key 7 pressed  
Key 8 pressed  
Not used  
Other  
4.5  
I2C mode  
2
The I C mode offers the largest configurability and functionality of the QST108.  
4.5.1  
Main features  
Five general-purpose outputs  
Configuration of up to 8 AKS groups  
Additional low power modes  
Accessible internal capacitive sensing parameters  
Continuous range of Max On-Duration  
15/38  
Device operating modes  
Figure 4.  
QST108  
2
I C mode typical schematic  
VDD  
2.4~5.5V  
Volt. Reg.  
VUNREG  
100nF  
100nF  
4.7µF  
4.7µF  
8
13  
VDD  
VDD_1 VDD_2  
Keep these parts close to IC  
RS8  
29  
Key8  
SNSK_SCK8  
10kΩ  
RS7  
10kΩ  
RS6  
10kΩ  
RS5  
10kΩ  
RS4  
10kΩ  
RS3  
10kΩ  
RS2  
10kΩ  
RS1  
10kΩ  
CS8  
CS7  
CS6  
CS5  
CS4  
CS3  
CS2  
CS1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
SNS_SCK8  
SNSK_SCK7  
SNS_SCK7  
SNSK_SCK6  
SNS_SCK6  
SNSK_SCK5  
SNS_SCK5  
SNSK_SCK4  
SNS_SCK4  
SNSK_SCK3  
SNS_SCK3  
SNSK_SCK2  
SNS_SCK2  
SNSK_SCK1  
SNS_SCK1  
5
4
3
I2C_SCL  
I2C_SDA  
IRQ  
To  
Host  
MCU  
Key7  
Key6  
Key5  
Key4  
Key3  
Key2  
Key1  
6
RESET  
To Host  
GPO5  
10nF  
2
GPO5  
ADD2/GPO4  
ADD1/GPO3  
ADD0/GPO2  
MODE/GPO1  
1
GPO4  
VDD  
VSS  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
32  
31  
30  
GPO3  
VDD  
VSS  
GPO2  
VDD  
VSS  
GPO1  
VSS  
VSS_1 VSS_2 VSS_3 VSS_4  
9
10  
11  
12  
Ai12559  
4.5.2  
General-purpose outputs  
2
I C mode allows to drive up to 5 general purpose outputs. Theses output pins are  
configured in output push pull mode 0 by default. Their state can be changed using a  
2
specific I C command.  
16/38  
QST108  
Device operating modes  
4.5.3  
IRQ pin  
2
The IRQ pin is an open drain output with an internal pull-up. This pin (available in I C mode  
only) can be used to inform the Master device about any change in the key status. The IRQ  
line is pulled low every time the state of any of the enabled keys changes. This includes any  
change in the touch state of the key or faulty key. The reported changes may then be  
accessed by the Master device by using the GET_KEY_STATE command.  
To improve communication response time, this signal suspends Low Power mode until the  
Master device has issued a communication with the QST device.  
4.5.4  
Communication packet  
The communication between the Master device and the QST108 (Slave) consists of two  
2
standard I C frames.  
The first frame is sent by the Master device using the QST108 device address with the write  
bit set. The data bytes consist of the command byte which is eventually followed by the  
parameters and a checksum byte.  
The second one is sent by the Master device using the QST108 device address with the  
write bit reset. The QST108 complete the frame with data according to the command  
previously sent by the Master device. The device finishes the frame by sending a checksum  
byte for communication integrity verification.  
The QST108 slave address is programmable using the option resistors mapped on pins  
OPT2 to OPT4 (see Table 9).  
If the read frame is omitted, the command may not be taken into account.  
To initiate the communicate with the QST108, the Master device must send the  
GET_DEVICE_INFO command in order to unlock access to all the other commands.  
Table 9.  
I²C address versus option resistor  
Option configuration  
I2C Address  
ADD1  
OPT4  
OPT3  
OPT2  
ADD[6:3]  
ADD2  
ADD0  
Hex value  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0101  
17/38  
Device operating modes  
Figure 5.  
QST108  
Optional LED schematic  
VUNREG  
R
GPOn  
C (10 nF)  
Ai12570  
4.5.5  
Supported commands  
Table 10 lists the supported I²C commands and available arguments.  
2
Note:  
For more information on the supported commands and I C protocol, please refer to the QST  
standard communication protocol reference manual.  
Table 10. Supported commands  
I2C commands  
Description  
RESET_DEVICE  
Write  
Read  
0xFD  
Restarts the device (options Read and Calibration) after  
reading the ErrCode (see Table 11).  
ErrCode  
GET_DEVICE_INFO  
Write  
0x85  
Returns the QST108 device version and ASCII-coded device  
name. This command must be sent first to enable the  
communication flow.  
0x15 MainVers SubVers  
NbSCkey NbMCkey  
MainVers: Device main version  
SubVer: Device sub-version  
NbSCkey: 0x08 single-channel keys  
NbMCkey: 0x00 multi-channel keys  
Q S T 1 0 8: ASCII-coded device name  
Read  
‘Q’ ’S’ ‘T’ ‘1’ ‘0’ ‘8’  
Checksum  
GET_PROTOCOL_VERSION  
Write  
0x80  
Returns the QST108 protocol version.  
MainVers: Protocol main version  
SubVer: Protocol sub-version  
MainVers SubVer  
I2CSpeed Checksum  
Read  
I2CSpeed: 0x01 (400 kHz maximum)  
CALIBRATE_KEY (All keys)  
Write  
Read  
0x98  
Forces the recalibration of all keys.  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
18/38  
QST108  
Device operating modes  
Table 10. Supported commands (continued)  
I2C commands  
Description  
CALIBRATE_KEY (Single key)  
Write  
Read  
0x9B KeyID Checksum Forces the recalibration of a single key.  
KeyId: Binary-coded key number (see Table 14)  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
GET_KEY_STATE  
Write  
0xC1  
Returns the state of all keys.  
AllKeyState: Touched/untouched state for all 8 keys. Refer to  
Table 13: AllKeyState.  
KeyError: Refer to Table 12: KeyError byte description  
0x03 AllKeyState  
KeyError Checksum  
Read  
GET_DEBUG_INFO  
Write  
0xF4 Checksum  
Returns the debug info of all keys.  
KeyDbgState: Current Key Debug state (see Table 18)  
RefMSB: Reference Count MSB  
RefLSB: Reference Count LSB  
BCMSB: Burst Count MSB  
0x0D KeyDbgState1  
RefMSB1 RefLSB1  
BCMSB1 BCLSB1 ...  
RefMSB8 RefLSB8  
BCMSB8 BCLSB8  
Checksum  
Read  
BCLSB: Burst Count LSB  
SET_KEY_ACTIVATION  
0x97 KeyActivation  
Checksum  
Enables or disables a single key.  
Write  
Read  
KeyActivation: Byte containing the key number selection and  
requested state.  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
SET_MAX_ON_DURATION  
0x8A MaxOnDuration  
Checksum  
Sets the maximum detected ON time before triggering an  
automatic recalibration.  
Write  
MaxOnDuration: Time, in second (0 for infinite)  
ErrCode: Standard Error code (see Table 11)  
Read  
ErrCode  
SET_LOW_POWER_MODE  
0x92 LowPowerMode  
Checksum  
Selects standard or Low Power mode.  
Write  
LowPowerMode: Configure Low Power mode (see Table 15)  
ErrCode: Standard Error code (see Table 11)  
Read  
ErrCode  
SET_GPIO_STATE  
0x9E GPOState  
Checksum  
Controls the state of the general-purpose outputs.  
GPOState: State of general-purpose outputs  
ErrCode: Standard Error code (see Table 11)  
Write  
Read  
ErrCode  
19/38  
Device operating modes  
Table 10. Supported commands (continued)  
QST108  
I2C commands  
Description  
SET_SCKEY_PARAMETERS  
0x01 0X04 KeyID DeTh Sets the Detection, End Of Detection and Positive  
Write  
Read  
EofDeTh PosRecalTh  
Checksum  
Recalibration Thresholds for a single key.  
KeyID: 0x00 (settings applied to all keys)  
DeTh: Detection Threshold  
EofDeTh: End of Detection Threshold  
PosRecalTh: Positive Recalibration Threshold  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
SET_KEY_GROUP  
0x00 0x09  
AKSGrpMode Key1Grp  
Defines the AKS groups for each key.  
Key2Grp Key3Grp  
Key4Grp Key5Grp  
Key6Grp Key7Grp  
Key8Grp CheckSum  
AKSGrpMode: AKS mode selection of each group (see  
Table 16)  
KeynGrp: AKS group selection for key n (see Table 17)  
ErrCode: Standard Error code (see Table 11)  
Write  
Read  
ErrCode  
SET_SYSTEM_INTEGRATORS  
0x03 0x04 KeyID DI EDI Sets the detection, End Of Detection and Positive Recalibration  
Write  
Read  
PosRecaI CheckSum  
Integrators for all keys.  
KeyID: 0x00 (settings applied to all keys)  
DI: Detection Integrator  
EDI: End of Detection Integrator  
PosRecaI: Positive Recalibration Integrator  
ErrCode: Standard Error code (see Table 11)  
ErrCode  
GET_KEY_ERROR  
Write  
0xC4  
Returns the error information on each key.  
0x11 KeyError1  
KeyError2 ... KeyError8  
CheckSum  
KeyErrorN: KeyError byte description (see Table 12)  
Read  
Error codes  
2
Table 11 lists the I C error codes.  
Table 11. ErrCode  
ErrCode  
Description  
0x01  
0x83  
0x85  
0xA1  
0xA3  
0xE0  
No Error  
Command not Supported  
Parameter not Supported  
Parity Error  
Checksum Error  
Initialization process  
20/38  
QST108  
Device operating modes  
KeyError byte description  
Table 12. KeyError byte description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key State  
0
0
0
0
Key error codes  
Key state (Bit 7)  
When set to ‘1’, the corresponding key is touched. This bit is always cleared for the  
Get_Key_State command.  
Key error codes (Bits 2:0)  
Key error code describes the errors in the system on all keys.  
Bit 0: When set to ‘1’, calibration in progress  
Bit 1: When set to ‘1’, maximum count reached  
Bit 2: When set to ‘1’, minimum count not reached  
All key state description  
Table 13. AllKeyState  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key 8 State Key 7 State Key 6 State Key 5 State Key 4 State Key 3 State Key 2 State Key 1 State  
Key n state  
When set to ‘1’, the corresponding key is touched.  
Key activation description  
Table 14. KeyActivation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Key  
Activation  
0
0
0
Key ID (binary coded)  
Key activation (Bit 7)  
0: Key enabled  
1: Key disabled  
Key identifier (Bits 3:0)  
0000: All keys  
0001: Key 1  
0010: Key 2  
0011: Key 3  
0100: Key 4  
0101: Key 5  
0110: Key 6  
0111: Key 7  
1000: Key 8  
21/38  
Device operating modes  
QST108  
Low power mode description  
Table 15. SetLowPower  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Free Run  
in Detect  
0
Sleep Duration Factor  
Free Run in Detect (Bit 6)  
1: Low power mode is suspended when detection is on-going.  
0: Low power mode is authorized.  
Sleep Duration Factor (Bits 5 to 0)  
This value is between 1 and 62, in hexadecimal format. The Sleep duration is ‘Sleep  
Duration Factor’ x 20 milliseconds.  
0x00: Low power mode is disabled.  
0x3F: Sleep is entered immediately with an infinite duration (deep sleep).  
2
Note:  
1
2
When the device is in sleep, any I C bus activity will wake up the device. If many ‘sleeping’  
devices share the same bus, then any bus activity will wake up all of them.  
The command sent to wake up the device is always lost (not acknowledged). The Master  
device will have to repeat this command.  
AKS group mode description  
Table 16. AKSGrpnMode  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AKSGrp8 AKSGrp7 AKSGrp6 AKSGrp5 AKSGrp4 AKSGrp3 AKSGrp2 AKSGrp1  
Mode  
Mode  
Mode  
Mode  
Mode  
Mode  
Mode  
Mode  
AKSGrpnMode  
Defines the type of AKS for the Group n:  
0: Locking AKS  
1: Unlocking AKS  
AKS group selection description  
Table 17. KeynGrp  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Grp8  
Grp7  
Grp6  
Grp5  
Grp4  
Grp3  
Grp2  
Grp1  
Grpx  
The selected key is a member of AKS Group x.  
22/38  
QST108  
Device operating modes  
Key debug state description  
Table 18. KeyDbgState  
Value  
Description  
0x01  
0x02  
0x04  
0x08  
0x11  
0x14  
0x18  
0x24  
On-going calibration  
Key released  
Key touched  
Key in error  
Key in pre-calibration  
Key in pre-detect  
Key in pre-error  
Key in post-detect  
23/38  
Design guidelines  
QST108  
5
Design guidelines  
5.1  
CS sense capacitor  
The C sense capacitors accumulate the charge from the key electrodes and determine  
S
sensitivity. Higher values of C make the corresponding sensing channel more sensitive.  
S
The values of C can differ for each channel, permitting differences in sensitivity from key to  
S
key or to balance unequal sensitivities. Unequal sensitivities can occur due to key size and  
placement differences and stray wiring capacitances. More stray capacitance on a sense  
trace will desensitize the corresponding key. Increasing the C for that key will compensate  
S
for the loss of sensitivity.  
The C capacitors can be virtually any plastic film or low- to medium-K ceramic capacitor.  
S
The normal C range is 1nF to 50nF depending on the sensitivity required: larger values of  
S
C require better quality to ensure reliable sensing. In certain circumstances the normal C  
range may be exceeded. Acceptable capacitor types for most uses include PPS film,  
S
S
polypropylene film, and NP0 and X5R / X7R ceramics. Lower grades than X5R or X7R are  
not recommended.  
5.2  
Sensitivity tuning  
Sensitivity can be altered to suit various applications and situations on a channel-by-  
channel basis. The easiest and most direct way to impact sensitivity is to alter the value of  
each C : more C yields higher sensitivity. Each channel has its own C value and can  
S
S
S
therefore be independently adjusted.  
5.2.1  
5.2.2  
Increasing sensitivity  
Sensitivity can also be increased by using larger electrode areas, reducing panel thickness,  
or using a panel material with a higher dielectric constant.  
Decreasing sensitivity  
In some cases the circuit may be too sensitive. Gain can be lowered further by a number of  
strategies:  
making the electrode smaller  
making the electrode into a sparse mesh using a high space-to-conductor ratio  
decreasing the C capacitors  
S
5.2.3  
Key balance  
A number of factors can cause sensitivity imbalances. Notably, SNS wiring to electrodes can  
have differing stray amounts of capacitance to ground. Increasing load capacitance will  
cause a decrease in gain. Key size differences, and proximity to other metal surfaces can  
also impact gain.  
The keys may thus require “balancing” to achieve similar sensitivity levels. This can be best  
accomplished by trimming the values of the C capacitors to achieve equilibrium. The R  
S
S
resistors have no effect on sensitivity and should not be altered. Load capacitances to  
ground can also be added to overly sensitive channels to reduce their gain.  
These should be in the order of a few picofarads.  
24/38  
QST108  
Design guidelines  
5.3  
Power supply  
If the power supply fluctuates slowly with temperature, the QST device compensates  
automatically for these changes with only minor changes in sensitivity. However, if the  
supply voltage drifts or shifts quickly, the drift compensation mechanism is not able to keep  
up, causing sensitivity anomalies or false detections.  
The power supply should be locally regulated, using a three-terminal regulator. If the supply  
is shared with another electronic system, care should be taken to ensure that the supply is  
free of digital spikes, sags and surges which can cause adverse effects. It is not  
recommended to include a series inductor in the power supply to the QST device.  
For proper operation, a 0.1 µF or greater bypass capacitor must be used between V and  
DD  
V
V
. The bypass capacitor should be routed with very short tracks to the device’s V and  
pins.  
SS  
SS  
DD  
The PCB should, if possible, include a copper pour under and around the device, but not  
extensively under the SNS lines.  
5.4  
5.5  
ESD protection  
In normal environmental conditions, only one series resistor is required for ESD  
suppression. A 10 kOhm R resistor in series with the sense trace is sufficient in most  
cases. The dielectric panel (glass or plastic) usually provides a high degree of isolation to  
prevent ESD discharge from reaching the circuit. R should be placed close to the chip. If  
S
S
the C load is high, R can prevent total charge and transfer and as a result gain can  
X
S
deteriorate. If a reduction in R increases gain noticeably, the lower value should be used.  
Conversely, increasing the R can result in added ESD and EMC benefits, provided that the  
increase does not decrease sensitivity.  
S
S
Crosstalk precautions  
Adjacent sense traces might require intervening ground traces in order to reduce capacitive  
cross bleed if high sensitivity is required or high values of delta-C are anticipated (for  
X
example, from direct human touch to an electrode connection). In normal touch applications  
behind plastic panels, this is rarely a problem regardless of how the electrodes are wired.  
Higher values of R will make crosstalk problems worse; try to keep R to 22 kOhm or less  
S
S
if possible. In general try to keep the QST device close to the electrodes and reduce the  
adjacency of the sense wiring to ground planes and other signal traces; this will reduce the  
C load, reduce interference effects, and increase signal gain. The one and only valid  
x
reason to run ground near SNS traces is to provide crosstalk isolation between traces, and  
then only on an as-needed basis.  
5.6  
PCB layout and construction  
The PCB traces, wiring, and any components associated with or in contact with either SNS  
pin will become touch sensitive and should be treated with caution to limit the touch area to  
the desired location.  
Multiple touch electrodes connected to any sensing channel can be used, for example, to  
create control surfaces on both sides of an object.  
25/38  
Design guidelines  
QST108  
It is important to limit the amount of stray capacitance on the SNS terminals, for example by  
minimizing trace lengths and widths to allow for higher gain without requiring higher values  
of C . Under heavy delta-C loading of one key, cross coupling to another key’s trace can  
S
X
cause the other key to trigger. Therefore, electrode traces from adjacent keys should not be  
run close to each other over long runs in order to minimize cross-coupling if large values of  
delta-C are expected, for example when an electrode is directly touched. This is not a  
X
problem when the electrodes are working through a plastic panel with normal touch  
sensitivity.  
For additional information on PCB layout and construction, please contact your local ST  
Sales Office for a list of available application notes.  
26/38  
QST108  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
6.1.1  
Minimum and Maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max. (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
6.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V (for the 4.5V ≤  
A
DD  
V
5.5 V voltage range) and V = 3.3 V (for the 3.0 V V 3.6 V voltage range).  
DD  
DD DD  
They are given only as design guidelines and are not tested.  
6.1.3  
6.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 6.  
Figure 6.  
Pin loading conditions  
Output pin  
C
L
27/38  
Electrical characteristics  
QST108  
6.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 7.  
Figure 7. Pin input voltage  
Input pin  
V
IN  
6.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 19. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
65 to +150  
°C  
Table 20. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD VSS Supply voltage  
7.0  
VSS0.3 to VDD+0.3  
2000  
VIN  
Input voltage on any pin (1)(2)  
V
VESD(HBM) Electrostatic discharge voltage (Human Body Model)  
VESD(CDM) Electrostatic discharge voltage (Charge Device Model)  
500  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up  
or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os).  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be  
respected.  
28/38  
QST108  
Electrical characteristics  
Table 21. Current characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by RESET pin  
Output current sunk by output pin  
75  
150  
20  
40  
25  
5
IIO  
mA  
Output current source by output pin  
Injected current on RESET pin  
(2)  
IINJ(PIN)  
(3)  
Injected current output pin  
5
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly ensured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be  
respected.  
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
6.3  
6.4  
Operating conditions  
Table 22. Operating conditions  
Symbol  
Feature  
Value  
Unit  
VDD  
TA  
Operating supply voltage  
Operating temperature  
2.4 to 5.5  
V
C
-40° to +85°  
Supply current characteristics  
Table 23. Supply current characteristics  
Symbol  
Parameter  
Conditions  
VDD = 2.4 V  
DD = 3.3 V  
Min.  
Typ. (1) Max.  
Unit  
1.61  
2.15  
3.15  
286  
340  
497  
Average suppy current  
Free Run mode  
IDD (FR)  
V
mA  
VDD = 5 V  
VDD = 2.4 V  
VDD = 3.3 V  
VDD = 5 V  
IDD  
(Sleep  
100ms)  
Average suppy current  
100ms Sleep mode  
µA  
1. The results are based on CS = 2.7nF and CX = 12.5pF  
29/38  
Electrical characteristics  
QST108  
6.5  
Capacitive sensing characteristics  
Table 24. External sensing components  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CS  
CX  
CT  
RS  
Sense capacitor  
100  
100  
nF  
pF  
Equivalent electrode capacitor  
Equivalent touch capacitor  
Serial resistance  
5
pF  
10  
22  
kOhm  
Table 25. Capacitive sensing parameters  
Symbol  
Parameter  
Calibration duration  
Min.  
Typ.  
Max.  
Unit  
tCAL  
tSetup  
TBD  
ms  
ms  
Setup duration  
TBD  
2
DI  
Default detection integrator  
Counts  
Counts  
Counts  
Counts  
Counts  
Counts  
s
DeTh  
Default detection threshold  
– 10  
2
EDI  
Default end of detection integrator  
Default end of detection threshold  
Default positive recalibration integrator  
Default positive recalibration threshold  
Positive recalibration delay  
EofDeTh  
PosRecal  
PosRecalTh  
tPosRecal  
– 8  
2
6
TBD  
Infinite  
TBD  
TBD  
TBD  
TBD  
MaxOnDuration Default max on-duration delay  
s
PosDiffDrift  
NegDiffDrift  
Positive differential drift compensation rate  
Negative differential drift compensation rate  
ms/level  
ms/level  
ms/level  
ms/level  
PosComDrift Positive common drift compensation rate  
NegComDrift Negative common drift compensation rate  
BurstCount  
Burst length  
20  
2000 Counts  
30/38  
QST108  
Electrical characteristics  
6.6  
KOUTn/OPTn/GPOn pin characteristics  
6.6.1  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 26. General characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
Input low level voltage (1)  
VSS 0.3  
0.3x VDD  
V
VDD  
0.3  
+
VIH  
Input high level voltage (1)  
0.7x VDD  
VHys  
IL  
Schmitt trigger voltage hysteresis(2)  
Input leakage current  
400  
mV  
μA  
pF  
VSS VIN VDD  
1
CIO  
I/O pin capacitance  
5
CL = 50 pF  
tf(IO)out Output high to low level fall time (2) Between 10%  
and 90%  
25  
25  
ns  
tr(IO)out Output low to high level rise time (2)  
1. Not tested in production, guaranteed by characterization.  
2. Data based on validation/design results.  
6.6.2  
Output pin characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 27. Output pin current  
Symbol  
Parameter  
Conditions  
IIO  
Min.  
Max.  
Unit  
=
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time (see  
Figure 13)  
1.3  
(1)  
+20mA  
VOL  
IIO = +8mA  
0.75  
Output high level voltage for an I/O pin when  
4 pins are sourced at same time (see  
Figure 18)  
IIO = -5mA VDD1.5  
IO = -2mA VDD0.8  
(2)  
VOH  
I
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +8mA  
IO = -2mA VDD0.8  
0.5  
0.6  
V
Output high level voltage for an I/O pin when  
4 pins are sourced at same time (Figure 16)  
(2)(3)  
VOH  
I
Output low level voltage for a high sink I/O  
pin when 4 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +8mA  
Output high level voltage for an I/O pin when  
4 pins are sourced at same time  
(2)(3)  
VOH  
IIO = -2mA VDD0.9  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 21 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 21 and the  
sum of IIO (output and RESET pins) must not exceed IVDD..  
3. Not tested in production, based on characterization results.  
31/38  
Electrical characteristics  
QST108  
Figure 8.  
Typical VOL at VDD = 2.4 V  
Figure 9.  
Typical VOL vs VDD at Iload = 2 mA  
VOLvs VDD @Iload=2 mA HS Pins  
VOL vs Iload @ VDD = 2.4 V HS pins  
120  
110  
100  
90  
-40°C  
25°C  
1200  
-40°C  
25°C  
85°C  
1000  
800  
600  
400  
200  
0
125°C  
85°C  
125°C  
80  
70  
60  
50  
40  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
VDD [V]  
0
2
4
6
8
10  
12  
14  
16  
Iload [mA]  
Figure 10.  
Typical VOL at VDD = 3 V  
Figure 11.  
Typical VOL vs VDD at Iload = 8 mA  
VOL vs VDD@Iload = 8 mAHS Pins  
VOLvs Iload @ VDD = 3 V HS pins  
540  
490  
440  
390  
340  
290  
240  
190  
140  
-40°C  
25°C  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-40°C  
25°C  
85°C  
85°C  
125°C  
125°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
VDD [V]  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Iload [mA]  
Figure 12.  
Typical VOL at VDD = 5 V  
Figure 13.  
Typical VOL vs VDD at Iload = 12 mA  
VOL vs VDD @Iload = 12 mA HS Pins  
VOL vs Iload @ VDD = 5 V HS pins  
1040  
940  
840  
740  
640  
540  
440  
340  
240  
140  
-40°C  
25°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
85°C  
125°C  
85°C  
125°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
VDD [V]  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Iload [mA]  
32/38  
QST108  
Electrical characteristics  
Figure 14.  
Typical VDD-VOH vs. Iload at VDD = 2.4 V Figure 15.  
Typical VDD-VOH vs. VDD at Iload = 2 mA  
VDD-VOH vs Iload @ VDD = 2.4 V HS Pins  
VDD-VOH vs VDD @Iload = 2 mA HS Pins  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
700  
600  
500  
400  
300  
200  
100  
0
85°C  
125°C  
VDD[V]  
2
4
Iload[mA]  
Figure 16.  
Typical VDD-VOH vs. Iload at VDD = 3 V  
Figure 17.  
Typical VDD-VOH vs. VDD at Iload = 4 mA  
VDD-VOH vs Iload @ VDD = 3 V HS Pins  
VDD-VOH vs VDD @Iload = 4 mA HS Pins  
1800  
1600  
1400  
1200  
1000  
800  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
600  
400  
600  
200  
400  
0
200  
0
VDD [V]  
0
2
4
6
Iload[mA]  
Figure 18.  
Typical VDD-VOH vs. Iload at VDD = 5 V  
VDD-VOH vs Iload @ VDD = 5 V HS Pins  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
-40°C  
25°C  
85°C  
125°C  
0
0
2
4
6
8
10  
12  
14  
Iload[mA]  
33/38  
Electrical characteristics  
QST108  
6.7  
RESET pin  
T = -40°C to 125°C, unless otherwise specified.  
A
Table 28. RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
VSS 0.3  
0.3x VDD  
VDD + 0.3  
V
0.7 x VDD  
Schmitt trigger voltage  
hysteresis(1)  
Vhys  
VOL  
2
V
Output low level  
voltage(2)  
VDD = 5V IIO = +2mA  
200  
TBD  
70  
mV  
VDD = 5V  
VIN = VSS  
30  
20  
50  
Pull-up equivalent  
resistor(3)  
RON  
kΩ  
μs  
VDD = 3V  
90(1)  
Generated reset pulse  
duration  
tw(RSTL)out  
Internal reset sources  
90(1)  
External reset pulse  
hold time(4)  
th(RSTL)in  
μs  
tg(RSTL)in Filtered glitch duration  
200  
ns  
1. Data based on characterization results, not tested in production.  
2. The IIO current sunk must always respect the absolute maximum rating specified in Table 21: Current  
characteristics on page 29 and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin  
between VILmax and VDD  
.
4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses  
applied on RESET pin with a duration below th(RSTL)in can be ignored.  
34/38  
QST108  
Electrical characteristics  
I2C control interface  
6.8  
Subject to general operating conditions for V , and T unless otherwise specified.  
DD  
A
2
2
The QST108 I C interface meets the requirements of the Standard I C communication  
protocol described in the following table with the restriction mentioned below:  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
Table 29. I²C characteristics  
Standard mode  
Fast mode  
Symbol  
Parameter  
Unit  
Min. (1) Max. (1) Min. (1) Max. (1)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
1.3  
0.6  
µs  
ns  
250  
0 (3)  
100  
0 (2)  
th(SDA)  
SDA data hold time  
900 (3)  
300  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
1000  
300  
ns  
µs  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
300  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
tsu(STA)  
Repeated START condition setup time  
tsu(STO) STOP condition setup time  
μs  
µs  
pF  
tw(STO:STA) STOP to START condition time (bus free)  
Cb  
Capacitive load for each bus line  
400  
400  
Data based on standard I2C protocol requirement, not tested in production.  
1.  
2. The device must internally proivde a hold time of at least 300ns for the SDA signal in order to bridge the  
undefined region of the falling esdge of the SCL signal.  
3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low  
period of the SCL signal.  
2
Typical application with I C bus and timing diagram  
Figure 19.  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
QST108  
REPEATED START  
START  
t
t
w(STO:STA)  
su(STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
35/38  
Package mechanical data  
QST108  
7
Package mechanical data  
Figure 20. 32-Pin Low Profile Quad Flat Package (7x7) outline  
D
A
D1  
A2  
A1  
e
E
E1  
b
c
L1  
L
h
Table 30. 32-Pin Low Profile Quad Flat Package mechanical data  
mm  
inches(1)  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.45  
0.20  
0.063  
0.006  
0.057  
0.018  
0.008  
0.05  
1.35  
0.30  
0.09  
0.002  
0.053  
0.012  
0.004  
1.40  
0.37  
0.055  
0.015  
C
D
9.00  
7.00  
9.00  
7.00  
0.80  
3.5°  
0.60  
1.00  
0.354  
0.276  
0.354  
0.276  
0.031  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.45  
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
Number of Pins  
32  
N
1. Values in inches are converted from mm and rounded to 3 decimal digits.  
36/38  
QST108  
Revision history  
8
Revision history  
Table 31. Document revision history  
Date  
Revision  
Changes  
8-Jun-2007  
1
2
Initial release.  
15-Jun-2007  
Datasheet status changed to Preliminary Data.  
Removed Beeper function.  
Changed LED output pins to GPO pins.  
Updated pin names and functions in Section 2: Pin description on  
page 5.  
Added Figure 2: QTouch™ measuring circuitry on page 7.  
Changed order of chapters in Section 3 for better comprehension.  
Removed Simplified independent output mode from Section 4:  
Device operating modes on page 11. Independent output mode  
renamed Stand-alone mode.  
Added Section 4.2: Reset and power-up on page 11.  
Removed Power supply option chapter from Section 4.4.2: Option  
descriptions on page 14.  
26-Sep-2007  
3
Updated Table 6: Max On-Duration (MOD) truth table on page 14  
and Table 7: Output mode (OM) truth table on page 15.  
Updated Figure 3: Stand-alone mode typical schematic on page 13  
and Figure 4: I2C mode typical schematic on page 16.  
Updated Table 9: I²C address versus option resistor on page 17.  
Added Figure 5: Optional LED schematic on page 18.  
Updated Section 4.5: I2C mode on page 15.  
Added Section 5.2.3: Key balance on page 24.  
Updated Section 6.4: Supply current characteristics on page 29.  
Added Section 6.5: Capacitive sensing characteristics on page 30.  
and Section 6.7: RESET pin on page 34.  
Updated Table 29: I²C characteristics on page 35.  
37/38  
QST108  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
38/38  
厂商 型号 描述 页数 下载

SAMTEC

QST-110-01-F-T [ Board Stacking Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator, Socket, ROHS COMPLIANT ] 1 页

SAMTEC

QST-110-01-G-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-01-M-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-01-S-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-01-S-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-F-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-G-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-G-T-MW [ Board Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-L-5-MW [ Board Connector, 50 Contact(s), 5 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator ] 1 页

SAMTEC

QST-110-02-L-T [ Board Stacking Connector, 30 Contact(s), 3 Row(s), Female, Straight, 0.079 inch Pitch, Solder Terminal, Locking, Black Insulator, Socket, ROHS COMPLIANT ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.220372s