找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

KXSD9

型号:

KXSD9

描述:

Kionix公司:动感传感器加速度传感器三维角度传感器>柴先生13924663851[ kionix :动感传感器 加速度传感器 三维角度传感器 柴先生13924663851 ]

品牌:

ETC[ ETC ]

页数:

25 页

PDF大小:

260 K

PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Product Description  
The KXSD9 is a tri-axis silicon micromachined accelerometer with  
a user selectable full-scale output range of ±2g, ±4g, ±6g or ±8g.  
The sense element is fabricated using Kionix’s proprietary plasma  
micromachining process technology. Acceleration sensing is based  
on the principle of a differential capacitance arising from  
acceleration-induced motion of the sense element, which further  
utilizes common mode cancellation to decrease errors from  
process variation, temperature, and environmental stress. The  
sense element is hermetically sealed at the wafer level by bonding  
a second silicon lid wafer to the device using a glass frit. A  
separate ASIC device packaged with the sense element provides  
signal conditioning, self-test, and temperature compensation. The  
accelerometer is delivered in a 3 x 3 x 0.9 mm LGA plastic package  
operating from a 1.8 – 3.6V DC supply. Either I2C or SPI interfaces can be used to communicate to  
the chip to trigger A/D conversions or manage power consumption.  
Functional Diagram  
X
Sensor  
Y
Charge  
Amp  
LPF  
Sensor  
Z
Temp  
Sensor  
Sensor  
5
Vdd  
A/D  
7
SPI/I 2C  
Motion Detection  
1
4
IO Vdd  
GND  
3
AUX IN  
6
8
9
10  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 1 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Product Specifications  
Table 1. Mechanical  
(specifications are for operation at 3.3V and T = 25C unless stated otherwise)  
Parameters  
Operating Temperature Range  
Zero-g Offset  
Units  
ºC  
Min  
Typical  
Max  
85  
-
-40  
counts  
1843  
2048  
0.5 (xy)  
3 (z)  
2253  
Zero-g Offset Variation from RT over Temp.  
mg/ºC  
FS1=1, FS0=1 (± 2g)  
794  
390  
257  
189  
819  
844  
430  
289  
221  
FS1=1, FS0=0 (± 4g)  
Sensitivity1  
410  
counts/g  
FS1=0, FS0=1 (± 6g)  
273  
FS1=0, FS0=0 (± 8g)  
Sensitivity Variation from RT over Temp.  
Offset Ratiometric Error (Vdd = 3.3V ± 5%)  
Sensitivity Ratiometric Error (Vdd = 3.3V ± 5%)  
205  
0.01 (xy)  
0.04 (z)  
0.3  
%/ºC  
%
1.1 (xy)  
0.6 (z)  
1.5 (xy)  
0.5 (z)  
4000 (xy)  
2000 (z)  
0.1  
%
1.1  
1.9  
1.1  
Self Test Output change on Activation  
Mechanical Resonance (-3dB)2  
g
0.03  
Hz  
Non-Linearity  
% of FS  
%
Cross Axis Sensitivity  
Noise Density (on filter pins)  
2
µg / Hz  
750  
Notes:  
1. User selectable from CTRL_REGC  
2. Resonance as defined by the dampened mechanical sensor.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 2 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Table 2. Electrical  
(specifications are for operation at 3.3V and T = 25C unless stated otherwise)  
Parameters  
Supply Voltage (Vdd) Operating  
I/O Pads Supply Voltage (VIO)  
Units  
V
V
Min  
Typical  
Max  
1.8  
1.7  
3.3  
3.6  
Vdd  
Operating (full power)  
120  
220  
320  
Current Consumption  
µA  
Operating (15Hz)  
Standby  
-
-
0.1  
-
Output Low Voltage1  
Output High Voltage  
Input Low Voltage  
V
V
0.3 * Vio  
0.9 * Vio  
-
-
-
-
V
0.2 * Vio  
-
Input High Voltage  
Input Pull-down Current  
V
0.8 * Vio  
-
0
µA  
LPF (-3dB) = 50Hz  
LPF (-3dB) = 100Hz  
LPF (-3dB) = 500Hz  
LPF (-3dB) = 1,000Hz  
LPF (-3dB) = 2,000Hz  
15.9  
8.0  
1.6  
0.8  
0.4  
200  
Power Up Time2  
ms  
A/D Conversion time  
µs  
MHz  
KHz  
Hz  
SPI Communication Rate3  
I2C Communication Rate  
Bandwidth (-3dB)4  
1
400  
40  
50  
60  
Notes:  
1. Assuming I2C communication and minimum 1.5Kohm pull-up resistor on SCL and  
SDA.  
2. Power up time is determined after the enabling of the part and is determined by the  
low-pass filter (LPF) set in CTRL_REGC.  
3. SPI Communication Rate can be optimized for faster communication per the SPI  
timing diagram below.  
4. Factory programmable to have a switched capacitor low pass filter at 2kHz, 1kHz,  
500Hz, 100Hz, 50Hz or no low pass filter. Optionally, the user can define with in  
CTRL_REGC. Maximum defined by the frequency response of the sensors.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 3 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
KXSD9 SPI Timing Diagram  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
nCS  
SCLK  
SDI  
bit 7  
bit 6  
bit 1  
bit 0  
bit 7  
bit 7  
bit 6  
bit 6  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
t8  
t10  
t11  
t9  
Table 3. SPI Timing  
Number  
Description  
MIN  
1
MAX Units  
-
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
Enable transition from low to high after Vdd above 1.6V  
ms  
nCS low to first SCLK setup time  
130  
130  
130  
200  
350  
350  
130  
10  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
us  
SCLK pulse width: high (Does not apply to the last bit of a byte.)  
SCLK pulse width: low (Does not apply to the last bit of a byte.)  
SCLK pulse width: high (Only on last bit of a byte.)  
SCLK pulse width: low (Only on last bit of a byte.)  
nCS low after the final SCLK falling edge  
nCS pulse width: high  
-
-
-
-
-
-
SDI valid to SCLK rising edge  
-
SCLK rising edge to SDI invalid  
100  
-
-
SCLK falling edge to SDO valid  
130  
SCLK falling edge to SDO invalid  
0
-
-
-
Recommended SPI SCLK  
1
Notes  
A/D conversion SCLK hold (t5)  
200  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 4 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Table 4. Environmental  
Parameters  
Units  
V
Min  
-0.3  
-40  
Typical  
Max  
6.0  
Supply Voltage (Vdd) Absolute Limits  
Operating Temperature Range  
Storage Temperature Range  
-
-
-
ºC  
85  
ºC  
-55  
150  
5000 for 0.5ms  
10000 for 0.2ms  
Mech. Shock (powered and unpowered)  
g
-
-
-
-
ESD  
HBM  
V
2000  
Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling  
can cause permanent damage to the device.  
This product conforms to Directive 2002/95/EC of the European Parliament and of the  
Council of the European Union (RoHS). Specifically, this product does not contain lead,  
mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), or  
polybrominated diphenyl ethers (PBDE) above the maximum concentration values  
(MCV) by weight in any of its homogenous materials. Homogenous materials are "of  
uniform composition throughout."  
This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this  
HF product contain a maximum total halogen content of 1500 ppm with less than 900-ppm  
bromine and less than 900-ppm chlorine.  
Soldering  
Soldering recommendations are available upon request or from www.kionix.com.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 5 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Application Schematic  
SDA/SDO  
10  
SCL/SCLK  
9
8
7
1
2
3
IO Vdd  
AUX IN  
ADDR/SDI  
MOT  
KXSD9  
CS  
4
6
5
C1  
Vdd  
Table 5. KXSD9 Pin Descriptions  
Pin  
Name  
Description  
1
IO Vdd  
The power supply input for the digital communication bus  
2
3
DNC  
AUX IN  
GND  
Reserved – Do Not Connect  
Auxiliary Input for analog/digital conversion  
Ground  
4
5
Vdd  
The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.  
SPI Enable  
6
nCS  
I2C/SPI mode selection (1 = I2C mode, 0 = SPI mode)  
7
MOT  
Motion Wakeup Interrupt  
8
ADDR/SDI  
SCL/SCLK  
SDA/SD0  
I2C programmable address bit/SPI Serial Data Input  
I2C Serial Clock/SPI Serial Clock  
9
10  
I2C Serial Data/SPI Serial Data Output  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 6 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Test Specifications  
!
Special Characteristics:  
These characteristics have been identified as being critical to the customer. Every part is tested to verify  
its conformance to specification prior to shipment.  
Table 6. Test Specifications  
Parameter  
Zero-g Offset @ RT  
Sensitivity @ RT  
Specification  
2048 +/- 205 counts  
819 +/- 25 counts/g  
Test Conditions  
25C, Vdd = 3.3 V  
25C, Vdd = 3.3 V  
Current Consumption -- Operating 120 <= Idd <= 320 uA 25C, Vdd = 3.3 V  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 7 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Package Dimensions and Orientation  
3 x 3 x 0.9 mm LGA  
All dimensions and tolerances conform to ASME Y14.5M-1994  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 8 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Orientation  
+Y  
Pin 1  
+X  
+Z  
When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1-g):  
FS1=1, FS0=1 (± 2g)  
Position  
1
2
3
4
5
6
Diagram  
Top  
Bottom  
Bottom  
Top  
X
Y
Z
2048  
counts  
2867  
counts  
2048  
counts  
1229  
counts  
2048  
counts  
2048  
counts  
2867  
counts  
2048  
counts  
1229  
counts  
2048  
counts  
2048  
counts  
2048  
counts  
2048  
2048  
2048  
2048  
2867  
1229  
counts  
counts  
counts  
counts  
counts  
counts  
X-Polarity  
Y-Polarity  
Z-Polarity  
0
+
0
+
0
0
0
-
0
-
0
0
0
0
+
0
0
-
(1-g)  
Earth’s Surface  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 9 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
KXSD9 Digital Interfaces  
The Kionix KXSD9 digital accelerometer has the ability to communicate on both I2C and SPI digital serial  
interface busses. This flexibility allows for easy system integration by eliminating analog-to-digital  
converter requirements and by providing direct communication with system micro-controllers. In doing so,  
all of the digital communication pins have shared responsibilities.  
The serial interface terms and descriptions as indicated in Table 7 below will be observed throughout this  
document.  
Term  
Transmitter  
Receiver  
Master  
Description  
The device that transmits data to the bus.  
The device that receives data from the bus.  
The device that initiates a transfer, generates clock signals and terminates a transfer.  
The device addressed by the Master.  
Slave  
Table 7. Serial Interface Terminologies  
I2C Serial Interface  
The KXSD9 has the ability to communicate on an I2C bus. I2C is primarily used for synchronous serial  
communication between a Master device and one or more Slave devices. The Master, typically a micro  
controller, provides the serial clock signal and addresses Slave devices on the bus. The KXSD9 always  
operates as a Slave device during standard Master-Slave I2C operation as shown in Figure 1 on the  
following page.  
I2C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL  
is a serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master  
into a wait condition. SDA is a bi-directional line used to transmit and receive data to and from the  
interface. Data is transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of  
bytes transmitted per transfer is unlimited. The I2C bus is considered free when both lines are high.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091012-01  
www.kionix.com - info@kionix.com  
Page 10 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
SDA SCL  
Vdd  
SDA  
SCL  
MCU  
SDA  
KXSD9  
SCL  
ADDR  
SDA  
KXSD9  
SCL  
ADDR  
Figure 1 Multiple KXSD9 I2C Connection  
I2C Operation  
Transactions on the I2C bus begin after the Master transmits a start condition (S), which is defined as a  
high-to-low transition on the data line while the SCL line is held high. The bus is considered busy after this  
condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in  
the seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be  
receiving data ‘1’ from the Slave or transmitting data ‘0’ to the Slave. When a Slave Address is sent, each  
device on the bus compares the seven MSBs with its internally-stored address. If they match, the device  
considers itself addressed by the Master. The KXSD9’s Slave Address is comprised of a programmable  
part and a fixed part, which allows for connection of multiple KXSD9's to the same I2C bus. The Slave  
Address associated with the KXSD9 is 001100X, where the programmable bit, X, is determined by the  
assignment of ADDR (pin 8) to GND or Vdd. Figure 1 above shows how two KXSD9's would be  
implemented on an I2C bus.  
It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter  
must release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it  
remains stable low during the high period of the ACK clock pulse. A receiver that has been addressed,  
whether it is Master or Slave, is obliged to generate an ACK after each byte of data has been received. To  
conclude a transaction, the Master must transmit a stop condition (P) by transitioning the SDA line from low  
to high while SCL is high. The I2C bus is now free.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091012-01  
www.kionix.com - info@kionix.com  
Page 11 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Writing to a KXSD9 8-bit Register  
Upon power up, the Master must write to the KXSD9’s control registers to set its operational mode.  
Therefore, when writing to a control register on the I2C bus, as shown Sequence 1 on the following page,  
the following protocol must be observed: After a start condition, SAD+W transmission, and the KXSD9  
ACK has been returned, an 8-bit Register Address (RA) command is transmitted by the Master. This  
command is telling the KXSD9 to which 8-bit register the Master will be writing the data. Since this is I2C  
mode, the MSB of the RA command should always be zero (0). The KXSD9 acknowledges the RA and the  
Master transmits the data to be stored in the 8-bit register. The KXSD9 acknowledges that it has received  
the data and the Master transmits a stop condition (P) to end the data transfer. The data sent to the  
KXSD9 is now stored in the appropriate register. The KXSD9 automatically increments the received RA  
commands and, therefore, multiple bytes of data can be written to sequential registers after each Slave  
ACK as shown in Sequence 2 on the following page.  
Reading from a KXSD9 8-bit Register  
When reading data from a KXSD9 8-bit register on the I2C bus, as shown in Sequence 3 on the next page,  
the following protocol must be observed: The Master first transmits a start condition (S) and the  
appropriate Slave Address (SAD) with the LSB set at ‘0’ to write. The KXSD9 acknowledges and the  
Master transmits the 8-bit RA of the register it wants to read. The KXSD9 again acknowledges, and the  
Master transmits a repeated start condition (Sr). After the repeated start condition, the Master addresses  
the KXSD9 with a ‘1’ in the LSB (SAD+R) to read from the previously selected register. The Slave then  
acknowledges and transmits the data from the requested register. The Master does not acknowledge  
(NACK) it received the transmitted data, but transmits a stop condition to end the data transfer. Note that  
the KXSD9 automatically increments through its sequential registers, allowing data reads from multiple  
registers following a single SAD+R command as shown below in Sequence 4 on the following page.  
If a receiver cannot transmit or receive another complete byte of data until it has performed some other  
function, it can hold SCL low to force the transmitter into a wait state. Data transfer only continues when  
the receiver is ready for another byte and releases SCL. For instance, after the Master has requested to  
read acceleration data from the KXSD9, the KXSD9 can hold SCL low to force the Master into a wait state  
while it completes the A/D conversion. After the A/D conversion, the KXSD9 will release SCL and transmit  
the acceleration data to the Master. Note that the KXSD9 will hold for A/D conversions only if the CLKhld  
bit is set in CTRL_REGB.  
Data Transfer Sequences  
The following information clearly illustrates the variety of data transfers that can occur on the I2C bus and  
how the Master and Slave interact during these transfers. Table 8 on the following page defines the I2C  
terms used during the data transfers.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091012-01  
www.kionix.com - info@kionix.com  
Page 12 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Term  
S
Definition  
Start Condition  
Sr  
SAD  
W
Repeated Start Condition  
Slave Address  
Write Bit  
R
Read Bit  
ACK  
NACK  
RA  
Data  
P
Acknowledge  
Not Acknowledge  
Register Address  
Transmitted/Received Data  
Stop Condition  
Table 8. I2C Terms  
Sequence 1. The Master is writing one byte to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Sequence 2. The Master is writing multiple bytes to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
Sequence 3. The Master is receiving one byte of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
NACK  
ACK  
P
ACK  
ACK  
ACK DATA  
Sequence 4. The Master is receiving multiple bytes of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
NACK  
P
ACK  
ACK  
ACK DATA  
DATA  
Sequence 5. The Master is receiving acceleration bytes from the Slave (ADDR = 0, CLKhld = 1).  
Master  
Slave  
S
0x30h  
0x00h  
200µS  
Sr  
0x31h  
ACK  
ACK  
ACK  
ACK CLKhld  
ACK XOUT_H  
XOUT_L  
Master ACK  
Slave  
ACK  
ACK  
NACK  
P
YOUT_H  
YOUT_L  
ZOUT_H  
ZOUT_L  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 13 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
SPI Interface  
The KXSD9 also utilizes an integrated Serial Peripheral Interface (SPI) for digital communication. The SPI  
interface is primarily used for synchronous serial communication between one Master device and one or  
more Slave devices. The Master, typically a micro controller, provides the SPI clock signal (SCLK) and  
determines the state of Chip Select (nCS). The KXSD9 always operates as a Slave device during standard  
Master-Slave SPI operation.  
SPI is a 4-wire synchronous serial interface that uses two control and two data lines. With respect to the  
Master, the Serial Clock output (SCLK), the Data Output (SDI or MOSI) and the Data Input (SDO or MISO)  
are shared among the Slave devices. The Master generates an independent Chip Select (nCS) for each  
Slave device that goes low at the start of transmission and goes back high at the end. The Slave Data  
Output (SDO) line, remains in a high-impedance (hi-z) state when the device is not selected, so it does not  
interfere with any active devices. This allows multiple Slave devices to share a master SPI port as shown  
in Figure 2 below.  
Master  
Slave 0  
Serial Clock  
CS0  
SCLK  
CS  
KXSD9  
CS1  
MCU  
SDI  
SDO  
MOSI (Data Out)  
MISO (Data In)  
Slave 1  
SCLK  
CS  
KXSD9  
SDI  
SDO  
Figure 2 KXSD9 SPI Connections  
Read and Write Control Registers  
The control registers embedded in the KXSD9 have 8-bit addresses. Upon power up, the Master must  
write to the accelerometer’s control registers to set its operational mode. On the falling edge of nCS, a 2-  
byte command is written to the appropriate control register. The first byte initiates the write to the  
appropriate register, and is followed by the user-defined, operational-mode byte. The MSB (Most  
Significant Bit) of the control register address byte will indicate “0” when writing to the register and “1” when  
reading from the register. This operation occurs over 16 clock cycles. All commands are sent MSB first,  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091012-01  
www.kionix.com - info@kionix.com  
Page 14 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
and the host must return nCS high for at least 130nS before the next data request. Figure 3 below shows  
the timing diagram for carrying out the 8-bit control register write operation.  
SCLK  
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
(MSB)  
(MSB)  
HI-Z  
HI-Z  
SDO  
CS  
Figure 3 Timing Diagram for 8-Bit Control Register Write Operation  
In order to read an 8-bit control register, an 8-bit read command must be written to the accelerometer to  
initiate the read. The MSB of this control register address byte will indicate “0” when writing to the register  
and “1” when reading from the register. Upon receiving the command, the accelerometer returns the 8-bit  
operational-mode data stored in the appropriate control register. This operation also occurs over 16 clock  
cycles. All returned data is sent MSB first, and the host must return nCS high for at least 130nS before the  
next data request. Figure 4 shows the timing diagram for an 8-bit control register read operation.  
SCLK  
A7 A6 A5 A4 A3 A2 A1 A0  
(MSB)  
SDI  
HI-Z  
HI-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
(MSB)  
SDO  
CS  
Figure 4 Timing Diagram for 8-Bit Control Register Read Operation  
Accelerometer Read Back Operation  
The KXSD9 has an onboard 12-bit ADC that can sample, convert and read back sensor data at any time.  
Transmission of an 8-bit axis-conversion command (see Table 10) begins on the falling edge of nCS. The  
MSB of this command indicates if you are writing to (0) or reading from (1) the register. After the eight  
clock cycles used to send the command, the host must hold SCLK low for at least 200µs during the A/D  
conversion time. Note that all returned data is sent MSB first. Once the data is received, nCS must be  
returned high for at least 130nS before the next data request. Figure 5 on the following page shows the  
timing and diagram for the accelerometer 12-bit ADC read operation.  
The Read Back Operation is a 3-byte SPI command. The first byte of SDI contains the command to  
convert one of the axes. The second and third bytes of SDO contain the 12 bits of the A/D result plus four  
bits of padding in the LSB to make a total of 16 bits. See Figure 6 below.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091012-01  
www.kionix.com - info@kionix.com  
Page 15 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
200µs  
SCLK  
SDI  
A7 A6 A5 A4 A3 A2 A1 A0  
(MSB)  
HI Z  
HI Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
(MSB) (MSB)  
SDO  
CS  
Figure 5 Timing Diagram for an A/D conversion and 12-Bit data read operation.  
Axis Conversion Command  
SDI A7 A6 A5 A4 A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MSB  
MSB  
SDO  
X
X
X
X
X
X
X
X
D11D10 D9 D8 D7 D6 D5 D4  
D3 D2 D1 D0 X  
Conversion Read Back Data  
X = Don’t Care Bits  
Figure 6 Register Diagram for 12-Bit ADC Read Operation  
Digital Accelerometer SPI Sequence  
An example of a SPI sequence for reading sensor data using the auto-increment feature is as follows:  
Power up digital accelerometer  
nCS low to select  
Write operational mode commands to the 8-bit control registers  
CTRL_REGB and CTRL_REGC  
nCS high for at least 130nS  
nCS low to select  
Send convert axis command  
There should be a minimum of 200s between the command byte and readback bytes in order  
to give the A/D conversion adequate time to complete.  
The 12-bit A/D data is read to the second and third SDO bytes.  
The KXSD9 auto-increments register transmits on SDO. Therefore, Y-axis, Z-axis, AuxOut,  
CTRL_REGC, CTRL_REGB, and CTRL_REGA will follow the two X-axis bytes automatically.  
After receiving the last byte of required data, return nCS high for at least 130nS to reset the auto-  
increment.  
Repeat data read cycle  
Recommend reading X-axis, Y-axis, Z-axis, and the three Control Registers for each read cycle to  
verify the mode selections and status  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 16 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
KXSD9 Embedded Registers  
The KXSD9 has 12 embedded 8-bit registers that are accessible by the user. This section contains the  
addresses and describes bit functions all embedded registers. Table 9 and Table 10 below list the  
accessible 8-bit registers and their addresses when in I2C mode and SPI Mode.  
Type  
Address  
Binary  
Register Name  
XOUT_H  
XOUT_L  
YOUT_H  
YOUT_L  
ZOUT_H  
ZOUT_L  
AUXOUT_H  
AUXOUT_L  
-
Read/Write  
Hex  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
xxxx  
xxxx  
0x0A  
xxxx  
0x0C  
0x0D  
0x0E  
R
R
R
R
R
R
R
R
-
-
W
-
R/W  
R/W  
R
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 1010  
xxxx xxxx  
0000 1100  
0000 1101  
0000 1110  
-
Reset_write  
-
CTRL_REGC  
CTRL_REGB  
CTRL_REGA  
Table 9. I2C Mode Register Map  
Type  
Read Address  
Write Address  
Register Name  
XOUT_H  
XOUT_L  
YOUT_H  
YOUT_L  
ZOUT_H  
ZOUT_L  
AUXOUT_H  
AUXOUT_L  
-
Read/Write  
Hex  
0x80  
Binary  
1000 0000  
Hex  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0x0A  
xxxx  
0x0C  
0x0D  
xxxx  
Binary  
R
R
R
R
R
R
R
R
-
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 1010  
xxxx xxxx  
0000 1100  
0000 1101  
xxxx xxxx  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
xxxx  
xxxx  
xxxx  
xxxx  
0x8C  
0x8D  
0x8E  
1000 0001  
1000 0010  
1000 0011  
1000 0100  
1000 0101  
1000 0110  
1000 0111  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
1000 1100  
1000 1101  
1000 1110  
-
-
W
-
Reset_write  
-
CTRL_REGC  
CTRL_REGB  
CTRL_REGA  
R/W  
R/W  
R
Table 10. SPI Mode Register Map  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 17 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Register Descriptions  
XOUT_H  
X-axis accelerometer output most significant byte  
R
R
R
R
R
R
R
R
XOUTD11 XOUTD10 XOUTD9 XOUTD8 XOUTD7 XOUTD6 XOUTD5 XOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
I2C Address: 0x00h  
SPI Read Address: 0x80h  
Bit0  
XOUT_L  
X-axis accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
XOUTD3 XOUTD2 XOUTD1 XOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x01h  
SPI Read Address: 0x81h  
YOUT_H  
Y-axis accelerometer output most significant byte  
R
R
R
R
R
R
R
R
YOUTD11 YOUTD10 YOUTD9 YOUTD8 YOUTD7 YOUTD6 YOUTD5 YOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
I2C Address: 0x02h  
SPI Read Address: 0x82h  
Bit0  
YOUT_L  
Y-axis accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
YOUTD3 YOUTD2 YOUTD1 YOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x03h  
SPI Read Address: 0x83h  
ZOUT_H  
Z-axis accelerometer output most significant byte  
R
R
R
R
R
R
R
R
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 18 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
ZOUTD11 ZOUTD10 ZOUTD9 ZOUTD8 ZOUTD7 ZOUTD6 ZOUTD5 ZOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
I2C Address: 0x04h  
SPI Read Address: 0x84h  
Bit0  
ZOUT_L  
Z-axis accelerometer output least significant byte  
R
R
R
R
R
X
Bit3  
R
X
Bit2  
R
X
Bit1  
R
X
Bit0  
ZOUTD3 ZOUTD2 ZOUTD1 ZOUTD0  
Bit7 Bit6 Bit5 Bit4  
I2C Address: 0x05h  
SPI Read Address: 0x85h  
AUXOUT_H  
Auxiliary output most significant byte  
R
R
R
R
R
R
R
R
AUXOUTD11 AUXOUTD10 AUXOUTD9 AUXOUTD8 AUXOUTD7 AUXOUTD6 AUXOUTD5 AUXOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
I2C Address: 0x06h  
SPI Read Address: 0x86h  
Bit0  
AUXOUT_L  
Auxiliary output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
AUXOUTD3 AUXOUTD2 AUXOUTD1 AUXOUTD0  
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x07h  
SPI Read Address: 0x87h  
Reset_write  
When the key (11001010) is written to this register the offset, sensitivity and temperature correction  
values will be loaded into RAM and used for all further measurements. This is also accomplished at  
power-up by an internal power-up reset circuit.  
W
W
W
W
W
W
W
W
1
1
0
0
1
0
1
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x0Ah  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 19 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
SPI Write Address: 0x0Ah  
CTRL_REGC  
Read/write control register: Factory programmed power up/reset default value (0xE1h)  
R/W  
LP2  
Bit7  
R/W  
LP1  
Bit6  
R/W  
LP0  
Bit5  
R/W  
MOTLev MOTLat  
Bit4 Bit3  
R/W  
R/W  
0
Bit2  
R/W  
FS1  
Bit1  
R/W  
FS0  
Bit0  
Reset Value  
11100001  
I2C Address: 0x0Ch  
SPI Read Address: 0x8Ch  
SPI Write Address: 0x0Ch  
FS0 is the first of two bits used to select the full scale sensing range of the accelerometer. See  
Table 11 below.  
FS1 is the second of two bits used to select the full scale sensing range of the accelerometer. See  
Table 11 below.  
Full Scale  
FS1  
FS0  
12-bit Sensitivity  
Range  
+/-8 g  
+/-6 g  
+/-4 g  
+/-2 g  
0
0
1
1
0
1
0
1
205 counts/g  
273 counts/g  
410 counts/g  
819 counts/g  
Table 11. Full Scale Range  
MOTLat switches the motion wake up response function between latching and non-latching.  
MOTLat = 1 - If MOTIen in CTRL_REGB is “1” and a motion event happens, the MOTI bit in  
CTRL_REGA will be set to “1” and the MOT pin (7) will be pulled high. The part will clear  
the MOTIen bit in CTRL_REGB and enter full-power mode. To re-enter low power motion  
wakeup mode, reset the MOTIen bit to “1”. Figure 7 shows the response of the KXSD9 as  
described above.  
MOTLat = 0 – If MOTIen in CTRL_REGB is “1” and a motion event happens, the MOTI bit in  
CTRL_REGA will be set to “1” and the MOT pin (7) will be pulled high. The part will remain  
in low power motion wakeup mode. The MOT pin (7) can be cleared by reading  
CTRL_REGA. Figure 8 shows the response of the KXSD9 as described above.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 20 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Typical Motion Wake Up Interrupt Example (MOTLat = 1)  
MOTLev Threshold  
Input Acceleration  
0g  
MOTLev Threshold  
Accelerometer Output  
MOT  
Figure 7 Latched Motion Wake Up Response  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 21 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Typical Motion Wake Up Interrupt Example (MOTLat = 0)  
MOTLev Threshold  
Input Acceleration  
0g  
MOTLev Threshold  
Accelerometer Output  
MOT  
CRTL_REGA Read  
Figure 8 Unlatched Motion Wake Up Response  
MOTLev sets the motion wakeup threshold to an acceleration level as defined in Table 12.  
Motion Wake Up  
MOTLev  
FS1  
FS0  
Threshold  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+/-6 g  
+/-4.5 g  
+/-3 g  
+/-1.5 g  
+/-4 g  
+/-3 g  
+/-2 g  
+/-1 g  
Table 12. Motion Wake Up Acceleration Threshold  
LP0 is the first of three bits used to select the operational bandwidth of the accelerometer. See  
Table 13 below.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 22 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
LP1 is the second of three bits used to select the operational bandwidth of the accelerometer. See  
Table 13 below.  
LP2 is the third of three bits used to select the operational bandwidth of the accelerometer. See  
Table 13 below.  
Filter Corner  
LP2  
LP1  
LP0  
Frequency  
No Filter  
2000 Hz  
2000 Hz  
2000 Hz  
1000 Hz  
500 Hz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
100 Hz  
50 Hz  
Table 13. Operational Bandwidth  
CTRL_REGB  
Read/write control register: Factory programmed power up/reset default value (0x40h)  
R/W  
CLKhld ENABLE  
Bit7 Bit6  
R/W  
R/W  
ST  
Bit5  
R/W  
0
Bit4  
R/W  
0
Bit3  
R/W  
MOTIen  
Bit2  
R/W  
0
Bit1  
R/W  
0
Bit0  
Reset Value  
01000000  
I2C Address: 0x0Dh  
SPI Read Address: 0x8Dh  
SPI Write Address: 0x0Dh  
MOTIen enables the motion wakeup feature.  
MOTIen = 1 – the KXSD9 will run in a low power mode until a motion event occurs that  
causes MOTI in CTRL_REGA and the MOT pin (7) to go high. The part then enters normal  
operation if MOTLat = 1 or remains in low power mode if MOTLat = 0.  
MOTIen = 0 – the KXSD9 is in normal operating mode  
ST activates the self-test function for the sensor elements on all three axes. A correctly functioning  
KXSD9 will increase all channel outputs when Self test = 1 and Enable = 1. This bit can be  
read or written.  
Enable powers up the KXSD9 for operation.  
Enable = 1 – normal operation  
Enable = 0 – low-power standby  
CLKhld allows the KXSD9 to hold the serial clock, SCL, low in I2C mode to force the transmitter  
into a wait state during A/D conversions.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 23 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
CLKhld = 1 – SCL held low during A/D conversions  
CLKhld = 0 – SCL unaffected  
CLKhld should be set to 0 when Enable is set to 0 (disabled) to prevent potential holding of the CLK  
line.  
CTRL_REGA  
Read-only status register  
R
X
Bit7  
R
X
Bit6  
R
X
Bit5  
R
X
Bit4  
R
X
Bit3  
R
X
Bit2  
R
R
X
Bit0  
MOTI  
Bit1  
I2C Address: 0x0Eh  
SPI Read Address: 0x8Eh  
SPI Write Address: 0x0Eh  
MOTI reports the status of the motion wakeup interrupt. Reading CTRL_REGA clears the  
MOTI bit and MOT pin (7).  
MOTI = 1 - a motion wake up event has occurred and the MOT pin (7) is high.  
MOTI = 0 - a motion wake up event has not occurred and the MOT pin (7) is low.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091012-01  
Page 24 of 25  
PART NUMBER:  
± 2g Tri-axis Digital Accelerometer  
Specifications  
KXSD9-2050  
Rev. 2  
Jul-2009  
Revision History  
REVISION DESCRIPTION  
DATE  
1
2
Initial release  
Changed to new format & revisioning. 17-Jul-2009  
16-May-2008  
"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or  
otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not  
assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior  
notice. This publication supersedes and replaces all information previously supplied.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091012-01  
www.kionix.com - info@kionix.com  
Page 25 of 25  
厂商 型号 描述 页数 下载

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.214146s