找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

NXA025A0X6Z

型号:

NXA025A0X6Z

描述:

NaOSTM NXA025 SIP的非隔离电源模块[ NaOSTM NXA025 SIP Non-isolated Power Modules ]

品牌:

LINEAGEPOWER[ LINEAGE POWER CORPORATION ]

页数:

16 页

PDF大小:

948 K

Data Sheet  
October 5, 2009  
NaOSTM NXA025 SIP Non-isolated Power Modules:  
10Vdc – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A Output Current  
Features  
RoHS Compliant  
ƒ
Compliant to RoHS EU Directive 2002/95/EC (-Z  
versions)  
ƒ
Compliant to ROHS EU Directive 2002/95/EC with  
lead solder exemption (non-Z versions)  
ƒ
ƒ
ƒ
Delivers up to 25A output current  
High efficiency – 93% at 3.3V full load  
Small size and low profile:  
31.7 mm x 50.8 mm x 8.50 mm  
(1.25 in x 2.00 in x 0.335 in)  
Low output ripple and noise  
ƒ
ƒ
ƒ
Constant switching frequency (500 kHz)  
Output voltage programmable from 0.8 Vdc to  
5.5Vdc via external resistor  
Applications  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Remote On/Off  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Distributed power architectures  
Remote Sense  
Intermediate bus voltage applications  
Telecommunications equipment  
Servers and storage applications  
Networking equipment  
Parallel operation with current sharing (-P option)  
Output voltage sequencing (multiple modules)  
Output overvoltage protection  
Overtemperature protection  
Enterprise Networks  
Output overcurrent protection (non-latching)  
Wide operating temperature range (-40°C to 85°C)  
UL* 60950-1Recognized, CSAC22.2 No. 60950-1-  
03 Certified, and VDE0805:2001-12 (EN60950-1)  
Licensed  
Latest generation IC’s (DSP, FPGA, ASIC)  
and Microprocessor powered applications  
ƒ
ISO** 9001 and ISO 14001 certified manufacturing  
facilities  
Description  
The NXA025 series SIP (single-in line package) power modules are non-isolated dc-dc converters that can deliver  
up to 25A of output current with full load efficiency of 93% at 3.3Vdc output voltage. These modules provide a  
precisely regulated output voltage from 0.8Vdc to 5.5Vdc, programmable via an external resistor. The open-frame  
construction and small footprint enable designers to develop cost- and space-efficient solutions. Standard features  
include remote On/Off, adjustable output voltage, remote sense, output voltage sequencing of multiple modules,  
over current, over voltage, and over temperature protection.  
*
UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Association.  
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.  
** ISO is a registered trademark of the International Organization of Standards  
Document No: DS05-034 ver 1.53  
PDF name: nxa025_sip_ds.pdf  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are  
absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for  
extended periods can adversely affect the device reliability.  
Parameter  
Device  
Symbol  
Min  
Max  
Unit  
Input Voltage  
All  
VIN  
-0.3  
14  
Vdc  
Continuous  
Operating Ambient Temperature  
(see Thermal Considerations section)  
Storage Temperature  
All  
All  
TA  
-40  
-55  
85  
°C  
°C  
Tstg  
125  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Parameter  
Device  
All  
Symbol  
VIN  
Min  
Typ  
Max  
14.0  
14  
Unit  
Vdc  
Adc  
Operating Input Voltage  
Maximum Input Current  
(VIN=10.0V to 14.0V, IO=IO, max  
10.0  
12.0  
All  
IIN,max  
)
Inrush Transient  
All  
All  
All  
I2t  
1
A2s  
mAp-p  
dB  
Input Reflected Ripple Current, peak-to-peak  
(5Hz to 20MHz, 1μH source impedance; VIN, min to  
60  
50  
VIN, max, IO= IOmax ; See Test configuration section)  
Input Ripple Rejection (120Hz)  
CAUTION: This power module is not internally fused. An input line fuse must always be used.  
This power module can be used in a wide variety of applications, ranging from simple standalone operation to being  
part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to  
achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast-  
acting fuse with a maximum rating of 30A (see Safety Considerations section). Based on the information provided in  
this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be  
used. Refer to the fuse manufacturer’s data sheet for further information.  
LINEAGE POWER  
2
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Electrical Specifications (continued)  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set-point  
All  
VO, set  
-1.2  
+1.2  
% VO, set  
(VIN=VN, min, IO=IO, max, TA=25°C)  
Output Voltage  
All  
All  
VO, set  
-3.0  
+3.0  
5.5  
% VO, set  
(Over all operating input voltage, resistive load,  
and temperature conditions until end of life)  
Adjustment Range  
VO  
0.7887  
Vdc  
Selected by an external resistor  
Output Regulation  
Line (VIN=VIN, min to VIN, max  
Load (IO=IO, min to IO, max  
Temperature (Tref=TA, min to TA, max  
)
All  
All  
All  
0.01  
0.1  
0.1  
0.2  
1
% VO, set  
% VO, set  
% VO, set  
)
)
0.5  
Output Ripple and Noise on nominal output  
(VIN=VIN, nom and IO=IO, min to IO, max  
Cout = 2 × 0.47μF ceramic capacitors)  
RMS (5Hz to 20MHz bandwidth)  
All  
All  
5
15  
50  
mVrms  
Peak-to-Peak (5Hz to 20MHz bandwidth)  
External Capacitance  
15  
mVpk-pk  
ESR 1 mΩ  
All  
All  
All  
All  
All  
CO, max  
CO, max  
Io  
1000  
10,000  
25  
μF  
μF  
0
ESR 10 mΩ  
Output Current  
Adc  
% Io  
Adc  
Output Current Limit Inception (Hiccup Mode )  
Output Short-Circuit Current  
(VO250mV) ( Hiccup Mode )  
Efficiency  
IO, lim  
IO, s/c  
125  
1
150  
VO,set = 0.8Vdc  
VO, set = 1.2Vdc  
VO,set = 1.5Vdc  
VO,set = 1.8Vdc  
VO,set = 2.0Vdc  
VO,set = 2.5Vdc  
VO,set = 3.3Vdc  
VO,set = 5.5Vdc  
All  
η
η
79.0  
84.7  
87.3  
88.9  
89.7  
91.4  
93.1  
95.1  
500  
%
%
VIN= VIN, nom, TA=25°C  
IO=IO, max , VO= VO,set  
η
%
η
%
η
%
η
%
η
%
η
%
Switching Frequency  
fsw  
kHz  
Dynamic Load Response  
All  
Vpk  
150  
mV  
(dIo/dt=5A/μs; VIN = VIN, nom; TA=25°C)  
Load Change from Io= 50% to 100% of  
Io,max; No external output capacitors  
Peak Deviation  
Settling Time (Vo<10% peak deviation)  
All  
All  
ts  
25  
25  
μs  
Vpk  
150  
mV  
(dIo/dt=5A/μs; VIN = VIN, nom; TA=25°C)  
Load Change from Io= 100% to 50%of Io,max:  
No external output capacitors  
Peak Deviation  
Settling Time (Vo<10% peak deviation)  
All  
ts  
μs  
LINEAGE POWER  
3
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
General Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Calculated MTBF (IO=80% of IO, max, TA=25°C)  
Weight  
2,150,000  
15.5 (0.55)  
Hours  
g (oz.)  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions for additional information.  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
SEQ/ENA Signal Interface  
(VIN=VIN, min to VIN, max ; open collector or equivalent,  
Signal referenced to GND)  
Logic High (SEQ/ENA pin open – Module Off)  
SEQ/ENA Current  
All  
All  
ISEQ/ENA  
0.5  
3.5  
2.33  
14  
mA  
V
SEQ/ENA Voltage:  
VSEQ/ENA  
Logic Low (Module ON)  
SEQ/ENA Current:  
All  
All  
All  
All  
ISEQ/ENA  
VSEQ/ENA  
Tdelay  
Trise  
200  
1.2  
μA  
V
1
SEQ/ENA Voltage:  
Turn-On Delay and Rise Times  
(IO=IO, max , Vo to within 1% of steady state)  
Output voltage overshoot – Startup  
IO=80% of IO, max; VIN = 12Vdc, TA = 25 oC  
Ouptut Overvoltage Protection (Latching)  
Input Undervoltage Lockout  
Turn-on Threshold  
msec  
msec  
% VO, set  
5
0.5  
0.1  
All  
5.7  
6.0  
6.3  
9.9  
V
All  
All  
V
V
Turn-off Threshold  
8.1  
Remote Sense Range  
0.5  
V
Overtemperature Protection  
All  
All  
Tref  
125  
°C  
(See Thermal Consideration section)  
Forced Load Share Accuracy  
10  
% Io  
Number of units in Parallel  
3
LINEAGE POWER  
4
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Characteristic Curves  
The following figures provide typical characteristics for the NXA025A0X at 25ºC.  
88%  
87%  
86%  
85%  
84%  
83%  
82%  
81%  
94%  
93%  
92%  
91%  
Vin=13.2V  
Vin=12.0V  
Vin=10.8V  
Vin=13.2V  
Vin=12.0V  
Vin=10.8V  
90%  
89%  
88%  
80%  
0
5
10  
15  
2 0  
2 5  
0
5
10  
15  
2 0  
2 5  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
Figure 1. Converter Efficiency versus Output Current Figure 4. Converter Efficiency versus Output Current  
(Vout = 1.2Vdc).  
(Vout = 2.5Vdc).  
91%  
90%  
89%  
88%  
87%  
86%  
85%  
84%  
95%  
94%  
93%  
92%  
91%  
Vin=13.2V  
Vin=12.0V  
Vin=10.8V  
Vin=13.2V  
Vin=12.0V  
90%  
89%  
Vin=10.8V  
83%  
0
88%  
0
5
10  
15  
2 0  
2 5  
5
10  
15  
2 0  
2 5  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
Figure 2. Converter Efficiency versus Output Current Figure 5. Converter Efficiency versus Output Current  
(Vout = 1.5Vdc).  
(Vout = 3.3Vdc).  
97%  
96%  
95%  
94%  
93%  
92%  
91%  
92%  
91%  
90%  
89%  
88%  
87%  
86%  
Vin=13.2V  
Vin=12.0V  
Vin=10.8V  
Vin=13.2V  
Vin=12.0V  
Vin=10.8V  
90%  
89%  
0
85%  
0
5
10  
15  
2 0  
2 5  
5
10  
15  
2 0  
2 5  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
Figure 3. Converter Efficiency versus Output Current Figure 6. Converter Efficiency versus Output Current  
(Vout = 1.8Vdc).  
(Vout = 5.0Vdc).  
LINEAGE POWER  
5
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Characteristic Curves (continued)  
The following figures provide typical characteristics for the NXA025A0X at 25ºC.  
TIME, t (1μs/div)  
Figure 7. Typical Output Ripple and Noise (Vin = 12V  
dc, Vo = 3.3 Vdc, Cout = 2x 0.47uF ceramic capacitor).  
TIME, t (5 μs/div)  
Figure 10. Transient Response to Dynamic Load  
Change from 100% to 50% of full load (Vo = 3.3Vdc).  
TIME, t (0.5ms/div)  
TIME, t (1μs/div)  
Figure 8. Typical Output Ripple and Noise (Vin = 12V  
dc, Vo = 1.2Vdc, Cout = 2x 0.47uF ceramic capacitor).  
Figure 11. Typical Start-Up with application of Vin (Vo  
= 3.3Vdc).  
TIME, t (0.5ms/div)  
TIME, t (5μs/div)  
Figure 9. Transient Response to Dynamic Load  
Change from 50% to 100% of full load (Vo = 3.3Vdc).  
Figure 12. Typical Start-Up Using Enable (Vo =  
3.3Vdc).  
LINEAGE POWER  
6
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Characteristic Curves (continued)  
The following figures provide typical characteristics for the NXA025A0X at 25oC.  
TIME, t (1ms/div)  
Figure 13. Synchronized Start-up of Output Voltage  
when SEQ/ENA pins are tied together (Module #1 =  
1.5Vdc, Module #2 = 3.3Vdc).  
TIME, t (1ms/div)  
Figure 14. Synchronized Shut-down of Output Voltage  
when SEQ/ENA pins are tied together (Module #1 =  
1.5Vdc, Module #2 = 3.3Vdc).  
LINEAGE POWER  
7
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Characteristic Curves (continued)  
The following figures provide typical thermal derating curves for NXA025A0X (Figures 19 and 20 show derating  
curves with base plate).  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
100LFM  
200LFM  
100LFM  
200LFM  
300LFM  
300LFM  
400LFM  
400LFM  
0
0
20  
30  
40  
50  
60  
70  
80  
20  
30  
40  
50  
60  
70  
80  
AMBIENT TEMPERATURE, TA OC  
AMBIENT TEMPERATURE, TA OC  
Figure 15. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12Vdc,  
Vo=1.2Vdc).  
Figure 18. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12Vdc,  
Vo=5.0 Vdc).  
30  
30  
25  
20  
15  
25  
100LFM  
20  
200LFM  
15  
300LFM  
10  
10  
400LFM  
100 LFM  
200 LFM  
30  
5
5
0
0
20  
30  
40  
50  
60  
70  
80  
20  
40  
50  
60  
70  
80  
AMBIENT TEMPERATURE, TA OC  
AMBIENT TEMPERATURE, TA OC  
Figure 16. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12Vdc,  
Vo=1.8 Vdc).  
Figure 19. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12Vdc,  
Vo=3.3 Vdc) with baseplate.  
30  
30  
25  
20  
25  
100LFM  
20  
200LFM  
15  
100 LFM  
15  
300LFM  
200 LFM  
10  
10  
400LFM  
300 LFM  
5
5
400 LFM  
30 40  
0
0
20  
30  
40  
50  
60  
70  
80  
20  
50  
60  
70  
80  
AMBIENT TEMPERATURE, TA OC  
AMBIENT TEMPERATURE, TA OC  
Figure 17. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12Vdc,  
Vo=3.3 Vdc).  
Figure 20. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12Vdc,  
Vo=5.0 Vdc) with baseplate.  
LINEAGE POWER  
8
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Test Configurations  
Typical Application Circuit  
CURRENT PROBE  
VIN  
TO OSCILLOSCOPE  
CIN  
Vin Vin  
LTEST  
Rx  
VIN(+)  
Share  
Share  
SEN+  
1μH  
Vout  
Vout  
Vout  
4.99k  
CIN  
Min  
Dx  
CS 220μF  
SEQ/ENA  
SEN-  
E.S.R.<0.1Ω  
Cout  
150μF  
@ 20°C 100kHz  
Qx  
COM  
NOTE: Measure input reflected ripple current with a simulated  
source inductance (LTEST) of 1μH. Capacitor CS offsets  
possible battery impedance. Measure current as shown  
above.  
1uF  
Figure 21. Input Reflected Ripple Current Test Setup.  
Figure 24. Application Schematic  
COPPER STRIP  
VO(+)  
COM  
RESISTIVE  
LOAD  
Design Considerations  
1uF  
.
10uF  
SCOPE  
Input Source Impedance  
The power module should be connected to a low  
ac-impedance source. Highly inductive source impedance  
can affect the stability of the power module. The input  
capacitor CIN should be located equal distance from the  
two input pins of the module. CIN is recommended to be  
150μF minimum. The ripple voltage is 50mV RMS at  
1MHz and the capacitor should be chosen with an ESR  
and an RMS Current Rating for this amount of ripple  
voltage. When using multiple modules in parallel, a small  
inductor (0.2 –0.5μH) is recommended at the input of  
each module to prevent interaction between modules.  
Consult the factory for further application guidelines.  
GROUND PLANE  
NOTE: All voltage measurements to be taken at the module  
terminals, as shown above. If sockets are used then  
Kelvin connections are required at the module terminals  
to avoid measurement errors due to socket contact  
resistance.  
Figure 22. Output Ripple and Noise Test Setup.  
Rdistribution Rcontact  
Rcontact Rdistribution  
VIN(+)  
VO  
Safety Considerations  
RLOAD  
VO  
VIN  
For safety agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards,  
i.e., UL 60950-1, CSA C22.2 No. 60950-1-03, and VDE  
0850:2001-12 (EN60950-1) Licensed.  
Rdistribution Rcontact  
Rcontact Rdistribution  
COM  
COM  
NOTE: All voltage measurements to be taken at the module  
terminals, as shown above. If sockets are used then  
Kelvin connections are required at the module terminals  
to avoid measurement errors due to socket contact  
resistance.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power module  
has extra-low voltage (ELV) outputs when all inputs are  
ELV.  
Figure 23. Output Voltage and Efficiency Test Setup.  
The input to these units is to be provided with a maximum  
of 30 A fast-acting fuse in the ungrounded lead.  
VO. IO  
Efficiency  
=
x
100 %  
η
VIN. IIN  
LINEAGE POWER  
9
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
voltage at the point of load, connect SENSE (+) to Vo(+)  
and Sense (-) to ground. The amount of power delivered  
Feature Description  
Remote On/Off using SEQ/ENA Pin  
by the module is defined as the voltage at the output  
terminals multiplied by the output current. When using  
the remote sense, the output voltage of the module can  
be increased, which at the same output current would  
increase the power output of the module. Ensure that the  
maximum output power of the module remains at or  
The NXA025A0X SIP power modules feature an  
SEQ/ENA pin for remote On/Off operation. If not using  
the remote On/Off pin, leave the pin open (module will be  
on). The SEQ/ENA signal (VSEQ/ENA) is referenced to  
ground. Circuit configuration for remote On/Off operation  
of the module using SEQ/ENA pin is shown in Figure 25.  
below the maximum rated power (Po,max = Io,max x  
Vo,max).  
During Logic High on the SEQ/ENA pin (transistor Qx is  
OFF), the module remains OFF. The external resistor  
Rx should be chosen to maintain 3.5V minimum on the  
SEQ/ENA pin to insure that the unit is OFF when  
transistor Qx is in the OFF state. During Logic-Low  
when Qx is turned ON, the module is turned ON. Note  
that the external diode is required to make sure the  
internal thermal shutdown (THERMAl_SD) and  
undervoltage (UVLO) circuits are not disabled when Qx is  
turned ON  
Figure 26. Effective Circuit Configuration for Remote  
sense operation  
Overcurrent Protection  
THERMAL_SD  
To provide protection in a fault (output overload)  
condition, the unit is equipped with internal  
VIN  
UVLO  
current-limiting circuitry and can endure current limiting  
continuously. At the point of current-limit inception, the  
unit enters hiccup mode. The unit operates normally once  
the output current is brought back into its specified range.  
Rx  
4.99k  
Enable  
SEQ/ENA  
Pin  
R1  
The average output current during hiccup is 10% IO, max  
.
Dx  
1k  
Input Undervoltage Lockout  
R2  
Qx  
At input voltages below the input undervoltage lockout  
4.99k  
limit, module operation is disabled. The module will begin  
to operate at an input voltage above the undervoltage  
lockout turn-on threshold.  
Figure 25. Remote On/Off Implementation.  
Overtemperature Protection  
The SEQ/ENA pin can also be used to synchronize the  
output voltage start-up and shutdown of multiple modules  
in parallel. By connecting SEQ/ENA pins of multiple  
modules, the output start-up can be synchronized (please  
refer to characterization curves). When SEQ/ENA pins  
are connected together, all modules will shutdown if any  
one of the modules gets disabled due to undervoltage  
lockout or overtemperature protection.  
To provide protection in a fault condition, the unit is  
equipped with a thermal shutdown circuit. The unit will  
shutdown if the thermal reference point Tref, exceeds  
125oC (typical), but the thermal shutdown is not  
intended as a guarantee that the unit will survive  
temperatures beyond its rating. The module will  
automatically restarts after it cools down.  
Output Voltage Programming  
Remote Sense  
The output voltage of the NXA025A0X can be  
Remote sense feature minimizes the effects of  
programmed to any voltage from 0.8Vdc to 5.5Vdc by  
inserting a series resistor (shown as Rtrim in figure 27) in  
the Sense(+) pin of the module. Without an external  
resistor in the Sense(+) pin (Sense (+) pin is shorted to  
Vo(+)), the output voltage of the module will be 0.7887V.  
With Sense(+) not connected to Vo(+), the output of the  
module will reach overvoltage shutdown. A 1μF multi-  
layer ceramic capacitor is required from Rtrim to Sense(-)  
pin to minimize noise. To calculate the value of the  
distribution losses by regulating the voltage at the remote  
sense pins. The voltage between the remote sense pins  
and the output terminals must not exceed the remote  
sense range given in the Feature Specification table, i.e.:  
[Vo(+) – Vo(GND)] –[SENSE(+) – SENSE(-)] < 0.5V  
Remote sense configuration is shown in Figure 26. If not  
using the remote sense feature to regulate the output  
LINEAGE POWER  
10  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Forced Load sharing (Parallel Operation)  
Feature Descriptions (continued)  
For additional power requirements, the power module can  
be configured for parallel operation with forced load  
sharing (See Figure 28). Good layout techniques should  
be observed for noise immunity when using multiple units  
in parallel. To implement forced load sharing, the  
following connections should be made:  
Output Voltage Programming (continued)  
resistor Rtrim for a particular desired voltage Vo, use the  
following equation:  
Vo  
Rtrim = 775*  
1 Ω  
0.7887  
The share pins of all units in parallel must be  
connected together. The path of these connections  
should be as direct as possible.  
Where Vo is the desired output voltage  
and Rtrim is the external resistor in ohms  
All remote-sense pins should be connected to the  
power bus at the same point, i.e., connect all the  
SENSE(+) pins to the (+) side of the bus and all the  
SENSE(-) pins to the GROUND of the power bus at  
the same point. Close proximity and directness are  
necessary for good noise immunity  
For example, to program the output voltage of the  
NXA025A0X-S module to 2.5Vdc, Rtrim is calculated as  
follows:  
2.5  
Rtrim = 775*  
1  
0.7887  
The share bus is not designed for redundant operation  
and the system will be non-functional upon failure of one  
of the unit when multiple units are in parallel. The  
maximum number of modules tied to share bus is 3.  
When not using the parallel feature, leave the share pin  
open.  
Rtrim =1682Ω  
VIN(+)  
ENA  
VO  
Sense+  
Rtrim  
1µF  
RLOAD  
Share  
Sense-  
COM  
COM  
Figure 27. Circuit Configuration for Programming  
Output voltage  
Table 1 provides Rtrim values required for most common  
output voltages. To achieve the output voltage tolerance  
as specified in the electrical specifications over all  
operating input voltage, resistive load and temperature  
conditions, use 0.1% thick metal film resistor.  
Table 1  
Vo,set  
Rtrim  
(V)  
0.8  
11  
Figure 28. Circuit Configuration for modules in  
parallel.  
1.0  
208  
1.2  
404  
1.5  
699  
1.8  
994  
2.0  
1190  
1682  
2468  
4138  
Open  
2.5  
3.3  
5.0  
Overvoltage Shutdown  
LINEAGE POWER  
11  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Thermal Considerations  
The power modules operate in a variety of thermal  
environments; however, sufficient cooling should be  
provided to help ensure reliable operation.  
Considerations include ambient temperature, airflow,  
module power dissipation, and the need for increased  
reliability. A reduction in the operating temperature of the  
module will result in an increase in reliability. The thermal  
data presented here is based on physical measurements  
taken in a wind tunnel.  
The thermal reference point, Tref used in the  
specifications is shown in Figure 29. For reliable  
operation this temperature should not exceed 110oC.  
Please refer to the Application Note “Thermal  
Characterization Process For Open-Frame Board-  
Mounted Power Modules” for a detailed discussion of  
thermal aspects including maximum device temperatures.  
Figure 29. T  
Temperature measurement location.  
ref  
Heat Transfer via Convection  
Increased airflow over the module enhances the heat  
transfer via convection. Derating figures showing the  
maximum output current that can be delivered by various  
module versus local ambient temperature (TA) for natural  
convection and up to 2m/s (400 ft./min) are shown in the  
respective Characteristics Curves section.  
Layout Considerations  
The input capacitors should be located equal distance  
from the two input pins of the module. Recommended  
layout is shown in the mechanical section. In addition to  
the input and output planes, a ground plane beneath the  
module is recommended.  
LINEAGE POWER  
12  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Mechanical Outline  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated]  
x.xx mm 0.25 mm (x.xxx in 0.010 in.)  
Top View  
Side View  
Bottom View  
Pin #  
Function  
1
Sen+  
2
Sen-  
3
Vin  
4
Ground  
Vout  
5
6
Vout  
7
Ground  
Ground  
Vout  
8
9
10  
11  
12  
13  
14  
Vout  
Ground  
Vin  
SEQ/ENA  
SHARE  
LINEAGE POWER  
13  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Recommended Pad Layout  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated]  
x.xx mm 0.25 mm (x.xxx in 0.010 in.)  
Layout Guidelines  
LINEAGE POWER  
14  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Post solder Cleaning and Drying  
Considerations  
Post solder cleaning is usually the final circuit-board  
assembly process prior to electrical board testing. The  
result of inadequate cleaning and drying can affect  
both the reliability of a power module and the  
testability of the finished circuit-board assembly. For  
guidance on appropriate soldering, cleaning and  
drying procedures, refer to Board Mounted Power  
Modules: Soldering and Cleaning Application Note.  
Through-Hole Lead-Free Soldering  
Information  
The RoHS-compliant through-hole products use the  
SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant  
components. They are designed to be processed  
through single or dual wave soldering machines. The  
pins have an RoHS-compliant finish that is compatible  
with both Pb and Pb-free wave soldering processes.  
A maximum preheat rate of 3°C/s is suggested. The  
wave preheat process should be such that the  
temperature of the power module board is kept below  
210°C. For Pb solder, the recommended pot  
temperature is 260°C, while the Pb-free solder pot is  
270°C max. Not all RoHS-compliant through-hole  
products can be processed with paste-through-hole  
Pb or Pb-free reflow process. If additional information  
is needed, please consult with your Lineage Power  
technical representative for more details.  
LINEAGE POWER  
15  
Data Sheet  
NaosTM NXA025 SIP Non-isolated Power Modules:  
October 5, 2009  
10 – 14Vdc Input; 0.8Vdc to 5.5Vdc Output; 25A output current  
Ordering Information  
Please contact your Lineage Power Sales Representative for pricing, availability and optional features.  
Table 2. Device Codes  
Input  
Voltage  
Output  
Current  
Efficiency  
3.3V @ 25A  
Connector  
Type  
Product codes  
Output Voltage  
Comcodes  
93 %  
93 %  
93 %  
93 %  
93 %  
SIP  
SIP  
SIP  
SIP  
SIP  
NXA025A0X  
NXA025A0X-P  
NXA025A0XZ  
NXA025A0X-PZ  
NXA025A0X6Z  
10 – 14 Vdc  
10 – 14 Vdc  
10 – 14 Vdc  
10 – 14 Vdc  
10 – 14 Vdc  
0.8Vdc – 5.5Vdc  
0.8Vdc – 5.5Vdc  
0.8Vdc – 5.5Vdc  
0.8Vdc – 5.5Vdc  
0.8Vdc – 5.5Vdc  
25 A  
25 A  
25 A  
25 A  
25 A  
108975095  
108997565  
CC109107166  
CC109106754  
CC109145736  
-Z refers to RoHS-compliant versions.  
Table 3. Device Options  
Option  
Suffix  
Short Pins  
3.6 mm ± 0.25 mm  
[0.141 ± 0.010 in.]  
6
Asia-Pacific Headquarters  
Tel: +65 6593 7211  
Europe, Middle-East and Africa Headquarters  
World Wide Headquarters  
Lineage Power Corporation  
Tel: +49 898 780 672 80  
601 Shiloh Road, Plano, TX 75074, USA  
+1-800-526-7819  
India Headquarters  
(Outside U.S.A.: +1-972-244-9428)  
www.lineagepower.com  
Tel: +91 80 28411633  
e-mail: techsupport1@lineagepower.com  
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or  
application. No rights under any patent accompany the sale of any such product(s) or information.  
Lineage Power DC-DC products are protected under various patents. Information on these patents is available at www.lineagepower.com/patents.  
© 2009 Lineage Power Corporation, (Plano, Texas) All International Rights Reserved.  
LINEAGE POWER  
16  
Document No: DS05-034 ver 1.53  
PDF name: nxa025_sip_ds.pdf  
厂商 型号 描述 页数 下载

RUBYCON

NXA 小型铝电解电容器[ MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS ] 2 页

LINEAGEPOWER

NXA025A0X NaOSTM NXA025 SIP的非隔离电源模块[ NaOSTM NXA025 SIP Non-isolated Power Modules ] 16 页

LINEAGEPOWER

NXA025A0X-HS [ 10Vdc – 14Vdc Input 0.8Vdc to 5.5Vdc Output; 25A Output Current ] 21 页

LINEAGEPOWER

NXA025A0X-HSZ [ 10Vdc – 14Vdc Input 0.8Vdc to 5.5Vdc Output; 25A Output Current ] 21 页

LINEAGEPOWER

NXA025A0X-L [ 10Vdc – 14Vdc Input 0.8Vdc to 5.5Vdc Output; 25A Output Current ] 21 页

LINEAGEPOWER

NXA025A0X-LP [ 10Vdc – 14Vdc Input 0.8Vdc to 5.5Vdc Output; 25A Output Current ] 21 页

LINEAGEPOWER

NXA025A0X-LPZ [ 10Vdc – 14Vdc Input 0.8Vdc to 5.5Vdc Output; 25A Output Current ] 21 页

LINEAGEPOWER

NXA025A0X-LZ [ 10Vdc – 14Vdc Input 0.8Vdc to 5.5Vdc Output; 25A Output Current ] 21 页

LINEAGEPOWER

NXA025A0X-P NaOSTM NXA025 SIP的非隔离电源模块[ NaOSTM NXA025 SIP Non-isolated Power Modules ] 16 页

LINEAGEPOWER

NXA025A0X-PZ NaOSTM NXA025 SIP的非隔离电源模块[ NaOSTM NXA025 SIP Non-isolated Power Modules ] 16 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.197264s