找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

VXDEMO

型号:

VXDEMO

描述:

3通道差分线路驱动器[ 3-CHANNEL DIFFERENTIAL LINE DRIVER ]

品牌:

ICHAUS[ IC-HAUS GMBH ]

页数:

11 页

PDF大小:

603 K

iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 1/11  
FEATURES  
APPLICATIONS  
° Line driver for 24V control  
°
6 current-limited and short-circuit-proof push-pull driver  
stages in complementary configuration  
engineering  
°
°
°
°
°
Guaranteed driver current can be set to 30mA or 100mA  
Outputs compatible to TTL at low load current  
Integrated free-wheeling diodes  
Short switching times and high slew rate  
Schmitt trigger inputs with integrated pull-up current sources  
and clamping diodes  
PACKAGES  
°
°
°
°
Inputs compatible to TTL and CMOS levels  
Operating points can be shifted by separate feed of inputs  
On-chip thermal shutdown with hysteresis  
Extended temperature range of -25..85EC  
SO16W  
TSSOP20  
thermal pad  
BLOCK DIAGRAM  
3
6
16  
VCC  
VT  
VB1  
A1  
15  
14  
1
2
7
E1  
E2  
E3  
NA1  
CHAN1  
CHAN2  
CHAN3  
A2  
13  
11  
NA2  
A3  
10  
9
NA3  
THERMAL SHUTDOWN  
BIAS  
iC-VX  
SO16W  
VB2  
VEE  
PROG  
VSUB  
4
5
12  
8
© 2001  
iC-Haus GmbH  
Integrated Circuits  
Am Kuemmerling 18, D-55294 Bodenheim  
Tel +49-6135-9292-0  
Fax +49-6135-9292-192  
http://www.ichaus.com  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 2/11  
DESCRIPTION  
The device iC-VX is a monolithic, 3-channel line driver with complementary outputs for 24V applications.  
The Schmitt trigger inputs contain pull-up current sources and run on separate operating voltages. Their  
reference potential can be adjusted in the range of the output stage supply voltage to adapt the input threshold  
voltage for various applications.  
The guaranteed driver current can be set to 30mA (PROG pin open) or 100mA (PROG pin at VSUB). At low  
load the drivers are TTL-compatible due to reduced saturation voltages. The output stages are current-limited  
and, due to the shutdown at overtemperature, they are also protected against thermal destruction. Due to the  
hysteresis of the overtemperature shutdown, the driver outputs switch on and off as a function of the iC power  
loss until the overload ceases.  
For 30mA driver current the short-circuit strength is guaranteed directly by the iC. For 100mA driver current  
in 24V applications this is guaranteed by 30S series resistors.  
Free-wheeling diodes at the outputs protect the iC against echoes of mismatched lines. The inputs and  
outputs of the channels have diodes for protection against destruction by ESD.  
PACKAGES SO16W, TSSOP20 to JEDEC Standard  
PIN CONFIGURATION SO16W  
PIN FUNCTIONS  
(top view)  
Name Function  
E1  
Input Channel 1  
E2  
Input Channel 2  
VCC  
VEE  
Inputs Supply Voltage (+5V)  
Reference Voltage for Inputs (0V)  
PROG Programming Input for Driver Current  
(open 30mA, PROG to VSUB 100mA)  
VT  
E3  
+4.5..+30V Bias Supply Voltage  
Input Channel 3  
VB2  
NA3  
A3  
+4.5..+30V Drivers Supply Voltage  
Inverting Output Channel 3  
Output Channel 3  
NA2  
Inverting Output Channel 2  
VSUB Ground, Substrate  
PIN CONFIGURATION TSSOP20tp 4.4mm  
A2  
Output Channel 2  
(top view)  
NA1  
A1  
VB1  
Inverting Output Channel 1  
Output Channel 1  
+4.5..+30V Drivers Supply Voltage  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
n.c.  
E1  
n.c.  
VB  
E2  
A1  
Pins VB1 and VB2 must both be connected when  
the 100mA driver current is set.  
To enhance heat removal, the TSSOP20 package  
offers a large area pad to be soldered (a connection  
is only permitted to VSUB).  
NA1  
A2  
VCC  
VEE  
PROG  
VT  
VSUB  
NA2  
A3  
E3  
VB2  
n.c.  
NA3  
n.c.  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 3/11  
ABSOLUTE MAXIMUM RATINGS  
Values beyond which damage may occur; device operation is not guaranteed.  
Item Symbol Parameter  
Conditions  
Fig.  
Unit  
Min.  
Max.  
G001 VCC-VEE Supply Voltage for Schmitt Trigger  
Inputs  
0
12  
V
V
G002 VB1, VB2 Positive Supply Voltage for  
Output Drivers  
0
32  
G003 VT  
Bias Supply Voltage  
0
0
30  
2
V
V
G004 V(PROG) Voltage at PROG  
G005 I(A,NA)  
G006 I(E)  
Output Current in A1..3, NA1..3  
-300  
-8  
300  
8
mA  
mA  
kV  
Current in E1..3  
E001 Vd()  
ESD Susceptibility, all Inputs and  
Outputs  
MIL-STD-883, Method 3015, HBM  
100pF discharged through 1.5k  
1
TG1 Tj  
Junction Temperature  
-40  
155  
°C  
°C  
TG2 Ts  
Storage Temperature  
-40  
150  
THERMAL DATA  
Operating Conditions: VB= 4.5..30V, VT= VCC= 5V ±10%  
Item Symbol Parameter  
Conditions  
Fig.  
Unit  
Min.  
-25  
Typ.  
Max.  
T1 Ta  
Operating Ambient Temperature  
Range  
85  
°C  
(extended range to -40°C on request)  
T2 Rthja  
T3 Rthja  
SO16W Thermal Resistance  
Junction to Ambient  
surface mounted with ca. 2cm²  
heat sink at leads (see Demo Board)  
55  
30  
75  
40  
K/W  
K/W  
TSSOP20 Thermal Resistance  
Junction to Ambient  
surface mounted, thermal pad  
soldered to ca. 2cm² heat sink  
All voltages are referenced to ground unless otherwise noted.  
All currents into the device pins are positive; all currents out of the device pins are negative.  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 4/11  
ELECTRICAL CHARACTERISTICS  
Operating Conditions:  
VEE= VSUB= 0V, VB= 4.5..30V, VT= VCC= 5V ±10%, Tj= -25..125°C, unless otherwise noted  
Item Symbol Parameter  
Conditions  
Tj  
°C  
Fig.  
Unit  
Min.  
Typ.  
Max.  
Total Device  
001 VCC-  
VEE  
Permissible Supply Voltage  
Range for Inputs  
4.5  
11  
V
002 VCC  
003 VEE  
Permis. Supply Voltage VCC  
Permis. Supply Voltage VEE  
4.5  
0
VB  
V
V
VB  
-4.5V  
004 I(VCC)  
Supply Current in VCC  
0.5  
2.4  
mA  
mA  
mA  
27  
125  
1.35  
0.89  
005 VT  
Permis. Bias Supply Voltage VT  
Supply Current in VT  
4.5  
3
VB  
12  
V
006 I(VT)  
PROG at VSUB  
PROG open  
mA  
mA  
mA  
27  
125  
6.4  
5.1  
007 I(VT)  
Supply Current in VT  
1.3  
5
mA  
mA  
mA  
27  
125  
2.6  
2.2  
008 VB1,  
VB2  
Permis. Drivers Supply Voltage  
at VB1 and VB2  
4.5  
0.6  
30  
V
009 I(VB)  
Supply Current in VB  
PROG at VSUB,  
I(A1..3, NA1..3)= 0  
4.8  
mA  
mA  
mA  
27  
125  
2.1  
1.5  
010 I(VB)  
Supply Current in VB  
PROG open,  
I(A1..3, NA1..3)= 0  
0.15  
1.2  
mA  
mA  
mA  
27  
125  
0.42  
0.31  
Driver Outputs A1..3, NA1..3  
101 Vs()hi Saturation Voltage hi  
PROG to VSUB, VB1 and VB2  
connected,  
(driver capability 100mA)  
Vs(A)hi= VB-V(A,NA);  
I(A,NA)= -10mA  
I(A,NA)= -30mA  
1.0  
1.2  
2.0  
V
V
V
I(A,NA)= -100mA  
102 Vs()lo  
Saturation Voltage lo  
(driver capability 100mA)  
PROG to VSUB, VB1 and VB2  
connected;  
I(A,NA)= 10mA  
I(A,NA)= 30mA  
I(A,NA)= 100mA  
0.9  
1.0  
1.5  
V
V
V
103 Isc()hi  
104 Isc()lo  
105 SR()  
Short-Circuit Current hi  
(driver capability 100mA)  
PROG to VSUB, VB1 and  
VB2 connected, V(A,NA)= 0V  
-350  
100  
100  
-100  
mA  
Short-Circuit Current lo  
(driver capability 100mA)  
PROG to VSUB, VB1 and  
VB2 connected, V(A,NA)= VB  
350  
mA  
Slew-Rate hi lo  
(driver capability 100mA)  
PROG to VSUB, VB1 and VB2  
connected,  
V/µs  
RL(A,NA)= 750  
,
CL(A,NA)= 100pF  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 5/11  
ELECTRICAL CHARACTERISTICS  
Operating Conditions:  
VEE= VSUB= 0V, VB= 4.5..30V, VT= VCC= 5V ±10%, Tj= -25..125°C, unless otherwise noted  
Item Symbol Parameter  
Conditions  
Tj  
°C  
Fig.  
Unit  
Min.  
Typ.  
Max.  
Driver Outputs A1..3, NA1..3 (continued)  
106 Vs()hi  
107 Vs()lo  
Saturation Voltage hi  
(driver capability 30mA)  
PROG open, Vs()hi= VB-V(A,NA);  
I(A,NA)= -3mA  
I(A,NA)= -10mA  
0.9  
1.0  
1.4  
V
V
V
I(A,NA)= -30mA  
Saturation Voltage lo  
PROG open;  
(driver capability 30mA)  
I(A,NA)= 3mA  
I(A,NA)= 10mA  
I(A,NA)= 25mA, VB= 4.5..10V  
I(A,NA)= 30mA, VB= 10..30V  
0.9  
1.0  
1.2  
1.2  
V
V
V
V
108 Isc()hi  
109 Isc()lo  
110 SR()  
111 Vs()lo  
Short-Circuit Current hi  
(driver capability 30mA)  
PROG open, V(A,NA)= 0V  
-100  
30  
-30  
mA  
mA  
V/µs  
V
Short-Circuit Current lo  
(driver capability 30mA)  
PROG open, V(A,NA)= VB  
100  
Slew-Rate hi lo  
(driver capability 30mA)  
PROG open, RL(A/NA)= 750  
CL(A/NA)= 100pF  
,
30  
Saturation Voltage lo  
for TTL-Levels  
I(A,NA)= 1.6mA  
0.4  
100  
1.7  
112 I0(A,NA) Tri-state Leakage Current  
Tj> Toff, V(A,NA)= 0..VB  
-100  
0.4  
µA  
V
113 Vc()hi  
Clamp Voltage hi  
Clamp Voltage lo  
Vc(A,NA)hi= V(A)-VB;  
I(A,NA)= 100mA  
114 Vc()lo  
Inputs E1..3  
201 Vt(E)hi  
I(A,NA)= -100mA  
-1.7  
-0.4  
V
Threshold Voltage hi  
referred to VCC-VEE  
45  
%
%
202 Vt(E)lo  
Threshold Voltage lo  
referred to VCC-VEE  
35  
203 Vt(E)hys Hysteresis  
204 I(E) Input Current  
3
6
-30  
1.6  
-0.4  
1
%
µA  
V
V(E)= VEE..VCC-1V  
-81  
0.4  
-1.6  
-55  
205 Vc(E)hi Clamp Voltage hi  
206 Vc(E)lo Clamp Voltage lo  
Vc(E)hi= V(E)-VCC; I(E)= 4mA  
I(E)= -4mA  
V
207 tp()  
Propagation Delay E A, E NA  
50%V(E) : 50%I(A,NA);  
PROG to VSUB, RL(A/NA)= 750  
0.4  
0.15  
0.8  
µs  
(driver capability 100mA)  
208  
tp  
Delay Skew A vs. NA  
tp()= tp(E-A) -tp(E-NA);  
PROG to VSUB, RL(A/NA)= 750  
0.5  
2
µs  
µs  
µs  
(A-NA)  
(driver capability 100mA)  
209 tp()  
Propagation Delay E A, E NA  
(driver capability 30mA)  
50%V(E) : 50%I(A,NA);  
PROG open, RL(A/NA)= 750  
210  
tp  
Delay Skew A vs. NA  
tp()= tp(E-A) -tp(E-NA);  
0.35  
1
(A-NA)  
(driver capability 30mA)  
PROG open, RL(A/NA)= 750  
Thermal Shutdown, Bias  
301 Toff  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
125  
15  
135  
22  
155  
30  
°C  
°C  
303 Thys  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 6/11  
APPLICATIONS INFORMATION  
Line drivers for control engineering couple digital signals with TTL or CMOS levels via lines to 24V systems. Due  
to possible line short circuits, the drivers are current-limited and shut down in the event of overtemperature.  
The device iC-VX permits the operating points of the Schmitt trigger inputs to be shifted with the supply voltages  
VCC and VEE, thus within the range of the output stage supply voltage VB.  
The programming of the driver current to 30mA or 100mA permits optimum matching on the basis of line length  
and required transmission rate. External series resistors must be provided for higher driver current to ensure  
short-circuit strength in 24V applications. Furthermore, these series resistors improve the ability of the driver to  
adapt to the line surge impedance.  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 7/11  
EXAMPLE 1: Short lines  
Short lines of 5m, for example, are approximations of capacitive load for the iC; no adjustment of characteristic  
impedance is required. With each switching slope changeover losses of Pc= 1/2 VB × I(A) per channel occur in  
the iC. The load capacity is reloaded with the guaranteed driver current I(A)$ 30mA. These changeover losses  
determine the possible cut-off frequency, since the high chip power loss without cooling results in shutdown of  
the iC. At high capacitive load the transmission rate can also be limited by the fall and rise times wich reduce the  
signal strength.  
24V  
5V  
C2  
1µF  
C1  
1µF  
3
6
16  
VCC  
VT  
VB1  
PLC  
A1  
15  
14  
L=5m, CL=500pF  
1
2
7
E1  
E2  
E3  
A
2k  
NA1  
CHAN1  
CHAN2  
CHAN3  
A2  
13  
11  
B
2k  
NA2  
A3  
10  
9
Z
2k  
NA3  
THERMAL SHUTDOWN  
BIAS  
iC-VX  
VEE  
PROG  
5
VSUB  
12  
VB2  
4
8
Fig. 1: Balanced data transmission at low capacitive load, PROG pin open: I(A)$ 30mA  
As a typical application, Fig. 1 shows the transmission of the output signals of an incremental rotary encoder  
(track A, track B, index pulse Z) to a programmable control (PLC). The maximum signal frequency which is  
limited by the power loss can be estimated by standardizing the limiting values of the example for short lines:  
2
413K&Ta  
70K  
500pF  
24V  
75K/W  
2
fmax . 200kHz ×  
×
×
×
×
(1.1)  
CL  
VB  
Rthja  
channels  
If the slew-rate is the limiting factor, the following applies for the maximum signal frequency (saturation voltages  
neglected):  
30mA  
fmax  
.
(1.2)  
VB×(CL%1nF)  
CL  
= Capacitive load at output A to output NA  
VB = Supply voltage  
Ta  
= Ambient temperature  
Rthja = Thermal resistance chip/board/ambient (Rthja = Rthjb + Rthba  
)
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 8/11  
EXAMPLE 2: Long lines  
Lines which are relatively long, for example 100m, require a higher driver current and an adapter. An appropriate  
30S series resistor at the driver output ensures short-circuit strength and a suitable division of the power loss to  
resistor and iC. The PROG pin at VSUB selects the high driver current of 100mA. In this case the driver supply  
must be channeled via VB1 and VB2.  
24V  
C2  
1µF  
5V  
C1  
1µF  
3
6
16  
VCC  
VT  
VB1  
PLC  
A1  
15 30  
1
2
7
E1  
E2  
E3  
A
2k  
NA1  
30  
14  
CHAN1  
CHAN2  
CHAN3  
L=100m, CB=100pF/m  
A2  
13 30  
B
2k  
NA2  
30  
11  
A3  
30  
30  
10  
9
Z
2k  
NA3  
THERMAL SHUTDOWN  
BIAS  
iC-VX  
VEE  
PROG  
5
VSUB  
12  
VB2  
4
8
Fig. 2: Balanced data transmission at high capacitive load, PROG to VSUB: I(A)$ 100mA  
The maximum signal frequency which is restricted by the power loss can be estimated by standardizing to the  
limiting values of the example for long lines:  
2
413K&Ta  
70K  
100pF/m  
100m  
24V  
75K/W  
2
fmax . 20kHz ×  
×
×
×
×
×
(2.1)  
CB  
L
VB  
Rthja  
channels  
If the slew rate is the limiting factor, the following applies for the maximum signal frequency (saturation voltages  
neglected):  
100mA  
fmax  
.
(2.2)  
4×VB×(CL%1nF)  
CB = Line capacitance per meter  
L
CL  
= Length of the line  
= Effective capacitance at output A to NA  
VB = Supply voltage  
Ta  
= Ambient temperature  
Rthja = Thermal resistance chip/board/ambient (Rthja = Rthjb + Rthba  
)
The current limitation of the driver stages extends to about 300mA in the 100mA setting. By that, until the  
activation of the thermal shutdown, the maximum power dissipation for each 30S series resistance and for the  
iC at 24V can be estimated.  
Max. power loss in the resistor:  
PmaxR= I² × R = (300mA)² × 30S = 2.7W  
Max. power loss in the iC pro channel:  
PmaxIC= (VB - I(A) × R) × I(A) = 4.5W  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 9/11  
The average power loss in the iC and the resistors declines when the thermal shutdown interrupts the driver  
outputs due to abnormal rising chip temperature. The installed series resistances should suit for the estimated  
power dissipation to avoid overload due to permanent line short-circuits. If the drivers are operated at low power  
supply, e.g. VB= 12V instead of VB= 24V, the power loss account for the iC declines and the thermal shutdown  
is initially delayed or is not activated at all. If VB is under 20V, lower resistors are permitted (>10S) without  
endangering the short-circuit strength of the iC. Consequently, the iC’s temperature monitoring is reactivated and  
even 1/3W resistors are not overloaded.  
EXAMPLE 3: Data transmission in the case of activation with TTL/CMOS signals  
In the case of activation with TTL/CMOS logic, the device can be operated with the 5V logic supply to VCC and  
VT. The pins VEE and VSUB must be connected to the logic ground. The 24V supply voltage must be applied  
to VB1 or VB2 (Fig. 3).  
Figure 4 shows an alternative application with common positive supplies for logic and driver. Ground,  
respectively the reference potential VEE for the inputs, is generated by using a negative voltage regulator. This  
wiring increases the iC power dissipation due to the higher bias supply voltage at VT.  
Fig. 3: VEE = VSUB  
Fig. 4: VEE > VSUB  
In both examples the operating points of the Schmitt trigger inputs E1..3 are compatible with TTL and CMOS  
levels.  
Depending on the line length, the driver current may be selected to 30mA with PROG= open or to 100mA with  
PROG= VSUB. In case of the 100mA driver current the final stages must be supplied via VB1 and VB2.  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 10/11  
DEMO BOARD  
The device iC-VX with SO16W package is equipped with a Demo Board for test purposes. The following figures  
show the wiring as well as the top and bottom layout of the test PCB.  
VT  
Bridge  
B01  
Bridge  
B03  
C02  
C01  
VB  
VCC  
1µF/40V  
1µF/40V  
3
6
16  
A1  
VCC  
VT  
VB1  
15  
14  
R01  
30  
1
2
7
A1  
L1  
E1  
E2  
E3  
E1  
NA1  
R02  
30  
CHAN1  
CHAN2  
CHAN3  
NA1  
NL1  
A2  
13  
11  
R03  
30  
A2  
L2  
E2  
NA2  
R04  
30  
NA2  
NL2  
A3  
10  
9
R05  
30  
A3  
L3  
E3  
NA3  
R06  
30  
NA3  
NL3  
THERMAL-SHUTDOWN  
BIAS  
PROG  
iC-VX  
VEE  
PROG  
5
VSUB  
12  
VB2  
4
8
VEE  
Bridge  
B02  
GND  
Fig. 6: Schematic diagram of the Demo Board  
Fig. 7: Demo Board (components side)  
Fig. 8: Demo Board (solder dip side)  
iC-VX  
3-CHANNEL DIFFERENTIAL LINE DRIVER  
Rev C1, Page 11/11  
ORDERING INFORMATION  
Type  
Package  
Order designation  
iC-VX  
SO16W  
iC-VX SO16W  
TSSOP20tp 4.4mm  
iC-VX TSSOP20  
VX Demo Board  
VX DEMO  
For information about prices, terms of delivery, options for other case types, etc., please contact:  
iC-Haus GmbH  
Tel +49-6135-9292-0  
Fax +49-6135-9292-192  
http://www.ichaus.com  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
This specification is for a newly developed product. iC-Haus therefore reserves the right to modify data without further notice. Please contact  
us to ascertain the current data. The data specified is intended solely for the purpose of product description and is not to be deemed  
guaranteed in a legal sense. Any claims for damage against us - regardless of the legal basis - are excluded unless we are guilty of  
premeditation or gross negligence.  
We do not assume any guarantee that the specified circuits or procedures are free of copyrights of third parties.  
Copying - even as an excerpt - is only permitted with the approval of the publisher and precise reference to source.  
厂商 型号 描述 页数 下载

VECTRON

VXD1 [ VXD1 ] 2 页

Carling Technologies

VXD1000B-00000-000-XRV1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

Carling Technologies

VXD1000B-AZCXX-1XX-XCV1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

Carling Technologies

VXD1000B-AZCXX-1XX-XSD1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

Carling Technologies

VXD1000B-AZCXX-1XX-XVD1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

Carling Technologies

VXD1000B-AZCXX-1XX-XVP1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

Carling Technologies

VXD1000B-AZCXX-1XX-XVS1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

Carling Technologies

VXD1AN01-6AZEE-1XX-XCR2 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

VECTRON

VXD1_06 [ VXD1 ] 2 页

Carling Technologies

VXD2S00B-6ZZXX-2XX-XHS1 [ Rocker Switch, 20A, 12VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount, ] 14 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.218655s