找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

JUMPER2_100

型号:

JUMPER2_100

描述:

ISL8225MEVAL4Z双路15A / 30A可选级联评估板设置步骤[ ISL8225MEVAL4Z Dual 15A/Optional 30A Cascadable Evaluation Board Setup Procedure ]

品牌:

INTERSIL[ Intersil ]

页数:

9 页

PDF大小:

2111 K

Application Note 1793  
ISL8225MEVAL4Z Dual 15A/Optional 30A Cascadable  
Evaluation Board Setup Procedure  
The ISL8225M is a complete, dual step-down switching mode  
DC/DC module. The dual outputs can easily be paralleled for  
Recommended Equipment  
• 0V to 20V power supply with at least 5A source current  
capability  
single-output, high-current use. It is easy to apply this  
high-power, current-sharing DC/DC power module to  
power-hungry datacom, telecom, and FPGA applications. All  
that is needed in order to have a complete, dual 15A design  
ready for use are the ISL8225M, a few passive components,  
and VOUT setting resistors.  
• Electronic load capable of sinking current up to 30A  
• Digital multimeters (DMMs)  
• 100MHz quad-trace oscilloscope  
The simplicity of the ISL8225M is its off-the-shelf, unassisted  
implementation. Patented current sharing in multi-phase  
operation greatly reduces ripple currents, BOM costs, and  
complexity. The ISL8225M has a thermally enhanced, compact  
17mm x17mm x 7.5mm QFN package that operates at full load  
and over-temperature without requiring forced-air cooling. Easy  
access to all pins, with few external components, reduces PCB  
design to a component layer and a simple ground layer.  
Quick Start  
For dual output operation, the inputs are BA7 (VIN1), BA8  
(GND), BA3 (VIN2) and BA4 (GND). The outputs are BA5  
(VOUT1), BA6 (GND), BA1 (VOUT2) and BA2 (GND).  
For paralleled single output operation, the inputs are BA7  
(VIN1) and BA8 (GND). The outputs are BA5 (VOUT1) and BA6  
(GND) with BA5 and BA1 shorted.  
This ISL8225MEVAL4Z evaluation board is designed for dual  
15A output applications. Optionally, this board can easily be  
converted for 30A single output use. Multiple  
ISL8225MEVAL4Z boards can be cascadable through the  
SYNC and CLKOUT pins to operate with phase shifting, for  
paralleling or multiple output use. The input voltage of this  
board is 4.5V to 20V and the default outputs on this board are  
set at 1.2V and 1.5V.  
Dual Output Mode  
1. Connect a power supply capable of sourcing at least 5A to  
the inputs BA7 (VIN1), BA8 (GND), BA3 (VIN2) and BA4  
(GND) of the ISL8225MEVAL4Z evaluation board, with a  
voltage between 4.5V to 20V. VIN1 and VIN2 can be  
different with R18 and R19 open.  
2. Connect an electronic load or the device to be powered to  
the outputs BA5 (VOUT1) and BA6 (GND), BA1 (VOUT2) and  
BA2 (GND) of the board. All connections, especially the low  
voltage, high current VOUT lines, should be able to carry the  
desired load current and should be made as short as  
possible.  
Related Resources  
See how-to  
video at  
intersil.com/  
evid03  
-
LOAD2  
(0A~15A)  
V
V
OUT2  
+
4.5V TO 20V  
+
LOAD1  
(0A~15A)  
V
V
OUT1  
-
-
V
IN  
V
+
FIGURE 1. ISL8225MEVAL4Z BOARD IMAGE  
December 6, 2012  
AN1793.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
Copyright Intersil Americas Inc. 2012. All Rights Reserved.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
Application Note 1793  
3. Make sure that the setup is connected correctly. Turn on the  
wire/jumper connections in this case). Measure the output  
voltages, VOUT1, which should be at 1.2V.  
power supply. If the board is working properly, the green LED  
will illuminate; if not, the red LED will illuminate (recheck the  
wire/jumper connections in this case). Measure the output  
voltages, VOUT1, which should be at 1.2V and VOUT2, which  
should be at 1.5V  
6. Apply any load that is less than 30A for normal steady state  
operation. Refer to Table 1 to change the output voltage by  
changing resistor R2.  
TABLE 2. BOARD CONFIGURATION FOR SINGLE OUTPUT 30A  
APPLICATION  
4. If different output voltages are desired, board resistors can be  
exchanged to provide the desired VOUT. Please refer to Table 1  
for R2/R4 resistor values, which can be used to produce  
different output voltages.  
ENC  
OPEN OPEN  
ON ON  
VMON MODE COMP  
R9  
0
R13  
0
R14  
OPEN  
0
Dual  
OPEN  
ON  
OPEN  
ON  
For 12V VIN and VOUT more than 1.5V, the switching frequency  
will need to be adjusted, as shown in Table 1. The resistor RFSET  
can be adjusted for the desired frequency. No frequency  
adjustments are necessary for VOUT below 1.5V. For 5V VIN, the  
frequency does not need to be adjusted and the module default  
frequency can be used at any allowed VOUT. If the output voltage  
is set to more than 1.8V, the output current will need to be  
derated to allow for safe operation. Please refer to the derating  
curves in the ISL8225M datasheet.  
Single  
OPEN OPEN  
Optional Cascadable Mode  
Cascadable mode is needed when multiple evaluation boards  
are used for paralleling or multiple output use. To demo the  
parallel features, it is recommended to use ISL8225MEVAL2Z  
6-phase evaluation board for an easy and efficient setup (see  
AN1789). Otherwise, follow the steps shown below:  
TABLE 1. VALUE OF BOTTOM RESISTOR (TOP RESISTOR R1,  
R3 = 1k) AND FREQUENCY SELECTION FOR DIFFERENT  
OUTPUT VOLTAGES  
1. In order to generate CLKOUT at a shifted phase clock signal,  
the control loop of VOUT2 needs to be disabled by connecting  
VSEN2- to VCC.  
VOUT  
(V)  
R2 /R4  
(Ω)  
FREQUENCY  
(kHz)  
RFSET (Ω)  
(VIN = 12V)  
2. Program MODE and VSEN2+ pin voltages to set the CLKOUT  
signal and the shifted degrees between two phases on the  
board (refer to Table 3).  
1.0  
1.2  
1.5  
2.5  
3.3  
5.0  
5.5  
1500  
1000  
665  
316  
DEFAULT  
DEFAULT  
DEFAULT  
650  
OPEN  
OPEN  
OPEN  
249k  
124k  
82.5k  
82.5k  
3. Use a coaxial cable to connect CLKOUT (J5) to SYNC (J2) of the  
next evaluation board, which can be programed for parallel or  
dual output use.  
4. If the second board is programed for parallel use, the ISHARE  
pins of the first and second boards need to be tied together.  
Using two twisted wires, short two different jumpers of JP7  
(ISHARE/SGND) on two evaluation boards. Add 1nF  
221  
800  
137  
950  
121  
950  
capacitors of C14 for different boards to decouple the noise.  
5. If the third board is used in cascadable mode, the second  
board can only be used in the parallel mode to generate the  
CLKOUT signal for the SYNC pin on the third board.  
Optional Paralleled Single Output Mode  
1. To set up the parallel mode, short JP1 (ENC), JP2 (VMON) and  
JP3 (COMP) with a jumper. To set up 180° interleaving phase  
between 2 channels, short the MODE pin and GND pin of JP6  
with a jumper.  
6. Follow the instructions from Steps 1 through 5 for more  
cascadable boards.  
2. Remove R9 and R13. Change R14 to 0. Change R18 and  
R19 to 0. Short VOUT1 to VOUT2 using short wires or copper  
straps. Add C2 for a 470pF capacitor.  
Evaluation Board Information  
The evaluation board size is 114.3mm x 76.2mm. It is a 4-layer  
board, containing 2-ounce copper on the top and bottom layers  
and 1-ounce copper on all internal layers. The board can be used  
as a dual 15A reference design. Refer to “Layout” on page 6. The  
board is made of FR4 material and all components, including the  
solder attachment, are lead-free.  
3. Connect a power supply capable of sourcing at least 5A to the  
inputs BA7 (VIN1), BA8 (GND), BA3 (VIN2) and BA4 (GND) of  
the ISL8225MEVAL4Z evaluation board, with a voltage  
between 4.5V to 20V. VIN1 and VIN2 need to be shorted  
together.  
4. Connect an electronic load or the device to be powered to the  
outputs BA5 (VOUT1) and BA6 (GND) of the board. All  
connections, especially the low voltage, high current VOUT  
lines, should be able to carry the desired load current and  
should be made as short as possible.  
Thermal Considerations and Current Derating  
For high current applications, board layout is very critical in order  
to make the module operate safely and deliver maximum  
allowable power. To carry large currents, the board layout needs  
to be designed carefully to maximize thermal performance. To  
achieve this, select enough trace width, copper weight and the  
proper connectors.  
5. Make sure the setup is connected correctly prior to applying any  
power to the board. Adjust the power supply to 12V and turn on  
the input power supply. If the board is working properly, the green  
LED will illuminate; if not, the red LED will illuminate (recheck the  
This evaluation board is designed for running dual 15A at room  
temperature without additional cooling systems needed.  
AN1793.1  
December 6, 2012  
2
Application Note 1793  
However, if the output voltage is increased or the board is  
operated at elevated temperatures, then the available current is  
derated. Refer to the derated current curves in the datasheet to  
determine the output current available.  
For layout of designs using the ISL8225M, the thermal  
performance can be improved by adhering to the following  
design tips:  
1. Use the top and bottom layers to carry the large current.  
VOUT1, VOUT2, Phase 1, Phase 2, PGND, VIN1 and VIN2  
should have large, solid planes. Place enough thermal vias to  
connect the power planes in different layers under and  
around the module.  
2. Phase 1 and Phase 2 pads are switching nodes that generate  
switching noise. Keep these pads under the module. For  
noise-sensitive applications, it is recommended to keep  
phase pads only on the top and inner layers of the PCB; do not  
place phase pads exposed to the outside on the bottom layer  
of the PCB. To improve the thermal performance, the phase  
pads can be extended in the inner layer, as shown in Phase 1  
and Phase 2 pads on layer 2 (Figure 5) for this dual 15A  
evaluation board. Make sure that layer 1 and layer 3 have the  
GND layers to cover the extended areas of phase pads at  
layer 2 to avoid noise coupling.  
3. Place the modules evenly on the board and leave enough  
space between modules. If the board space is limited, try to  
put the modules with low power loss closely together (i.e. low  
VOUT or IOUT) while still separating the module with high power  
loss.  
4. If the ambient temperature is high or the board space is  
limited, airflow is needed to dissipate more heat from the  
modules. A heat sink can also be applied to the top side of the  
module to further improve the thermal performance (heat  
sink recommendation: Aavid Thermalloy, part number  
375424B00034G, www.aavid.com).  
AN1793.1  
December 6, 2012  
3
Application Note 1793  
TABLE 3. ISL8225M OPERATION MODES  
1ST MODULE (I = INPUT; O = OUTPUT; I/O = INPUT AND OUTPUT, BI-DIRECTION)  
VMON1  
MODES OF OPERATION  
OPERATION OPERATION  
OUTPUT  
(SEE  
DESCRIPTION  
FOR DETAILS)  
CLKOUT/REFIN  
WRT 1ST  
OF 2ND 2ND CHANNEL  
VMON2 MODULE WRT 1ST (O)  
MODE  
OF 2ND  
MODE  
OF 3RD  
EN1/FF1 EN2/FF2 VSEN2- MODE VSEN2+  
MODE  
1
(I)  
(I)  
(I)  
(I)  
(I)  
(I OR O)  
(Note 2) (Note 2)  
(NOTE 1)  
MODULE  
MODULE  
-
0
0
-
-
-
-
-
-
-
-
-
-
-
-
Disabled  
2A  
0
1
Active Active Active  
Active  
VMON1 =  
VMON2toKeep  
PGOOD Valid  
Single Phase  
2B  
1
0
-
-
-
-
-
-
VMON1 =  
VMON2toKeep  
PGOOD Valid  
-
-
Single Phase  
3A  
3B  
1
1
1
1
<VCC -0.7V Active Active 29% to 45%  
of VCC (I)  
Active  
Active  
-
-
0°  
-
-
-
-
Dual Regulator  
Dual Regulator  
<VCC -0.7V Active Active 45% to 62%  
of VCC (I)  
90°  
3C  
4
1
1
1
1
1
1
<VCC -0.7V Active Active >62% of VCC (I) Active  
<VCC -0.7V Active Active <29% of VCC (I) Active  
-
-
-
180°  
-60°  
-
-
-
-
-
-
Dual Regulator  
DDR Mode  
2-Phase  
5A  
VCC  
GND  
-
60°  
VMON1  
or  
180°  
Divider  
5B  
5C  
1
1
1
1
VCC  
VCC  
GND  
GND  
-
-
60°  
60°  
Divider Divider  
180°  
180°  
5B  
5C  
5B  
5C  
6-Phase  
VMON1 Active  
3 Outputs  
or  
Divider  
6
1
1
1
1
1
1
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
120°  
90°  
1k  
1kΩ  
1kΩ  
Active  
Divider  
Active  
240°  
180°  
180°  
2B  
7A  
7B  
-
-
-
3-Phase  
4-Phase  
7A  
7B  
VCC  
90°  
2 Outputs  
(1st module in  
Mode 7A)  
7C  
1
1
VCC  
VCC  
VCC  
90°  
1kΩ  
Active  
180°  
3, 4  
-
3 Outputs  
(1st module in  
Mode 7A)  
8
9
Cascaded Module Operation MODEs 5B+5B+7A+5B+5B+5B/7A, No External Clock Required  
External Clock or External Logic Circuits Required for Equal Phase Interval  
12-Phase  
5, 7, 8, 9, 10, 11,  
or  
(PHASE >12)  
NOTE:  
1. “2ND CHANNEL WRT 1ST” means “second channel with respect to first;” in other words, Channel 2 lags Channel 1 by the degrees specified in this  
column. For example, 90° means Channel 2 lags Channel 1 by 90°; -60° means Channel 2 leads Channel 1 by 60°.  
2. “VMON1” means that the pin is tied to the VMON1 pin of the same module.  
“Divider” means that there is a resistor divider from VOUT to SGND; refer to Figure 24 in the ISL8225M datasheet.  
“1k” means that there is a 1kresistor connecting the pin to SGND; refer to Figure 22 in the ISL8225M datasheet.  
AN1793.1  
December 6, 2012  
4
ISL8225MEVAL4Z Board Schematic  
1 VOUT2  
VOUT1 1  
J1  
2
4
J4  
C9  
4
2
C8  
P1  
P5  
C11  
C12  
1000PF  
E
1000PF  
VOUT2  
BA1  
VOUT1  
OPEN  
E
R20  
R22  
OPEN  
BA5  
R3  
R1  
0
0
1K  
1K  
P2  
P6  
GND  
GND  
R9  
R10  
BA2  
BA6  
R14  
DNP  
R21  
0
0
IN  
IN  
VCC  
VCC  
DNP  
E
E
COMP1  
OUT  
VOUT2  
VOUT1  
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
COMP1  
COMP2  
MODE  
OUT  
OUT  
COMP2  
ISHARE  
MODE  
SYNC  
ISHARE  
VMON1  
CLKOUT  
EN/FF2  
EN/FF1  
OUT  
OUT  
IN  
VMON2  
SYNC  
VMON2  
VMON1  
1
2
J2  
U1  
5
CLKOUT  
EN/FF2  
EN/FF1  
RFSET  
**  
SGND  
OUT  
VCC  
D
C1  
4.7UF  
ISL8225MIRZ  
D
DNP  
P7  
VCC  
IN  
D
P3  
VIN2  
OUT  
D
8
VIN1  
D
VIN1  
E
14  
13  
BA7  
VIN2  
BA3  
CLKOUT  
IN  
CLKOUT  
BA8  
1
PHASE2  
J5  
PHASE1  
9
2
5
P4  
GND  
P8  
GND  
D
BA4  
E
E
R11  
E
E
D
D
3.32K  
PHASE2  
PHASE1  
R12  
IN  
VMON1  
VCC  
3.32K  
IN  
2
1
OUT  
EN/FF1  
JP1  
ENC  
LED1  
OUT  
EN/FF2  
SSL_LXA3025IGC  
VMON2  
IN  
IN  
PGOOD  
Q1  
1
R18  
D
2N7002-7-F  
VIN2  
IN  
VIN1  
IN  
DNP  
R19  
D
D
E
COMP1  
IN  
DNP  
COMP2  
NOTE:  
**  
IN  
GROUND AND  
D
GROUND ARE TIED TOGETHER AT PIN 6 OF U1.  
E
D
F  
~/ISL8225M/ISL8225MEVAL4ZD  
1
1
FIGURE 2. ISL8225MEVAL4Z BOARD SCHEMATIC  
Layout  
FIGURE 3. TOP SILK SCREEN  
FIGURE 4. TOP LAYER COMPONENT SIDE  
FIGURE 5. LAYER 2  
FIGURE 6. LAYER 3  
Layout (Continued)  
FIGURE 8. BOTTOM SILK SCREEN  
FIGURE 7. BOTTOM LAYER SOLDER SIDE  
Bill of Materials  
PART NUMBER  
REF DES  
C04, C08  
QTY VALUE TOL. VOLTAGE POWER PACKAGE TYPE  
JEDEC TYPE  
CAP_7343_149  
MANUFACTURER  
DESCRIPTION  
10TPB330M  
2
2
1
2
8
8
2
1
4
4
2
4
6
4
5
5
4
2
2
2
1
2
1
7
1
4
330µF 20%  
10V  
SMD  
CONN  
SOT23  
CONN  
THOLE  
CONN  
SMD  
805  
131-4353-00  
J1, J4  
TEK131-4353-00  
SOT23  
2N7002-7-F  
Q1  
31-5329-52RFX  
5002  
J2, J5  
CON_BNC_31_5329_52RFX  
MTP500X  
P1-P8  
575-4  
BA1-BA8  
CON_BAN_575  
CAPAE_315X402  
CAP_0805  
EEVHA1E331UP  
GRM21BR71C475KA73L  
GRM32ER71A476KE15L  
H1045-OPEN  
CIN1, CIN4  
C1  
330µF 20%  
4.7µF 10%  
47µF 10%  
25V  
16V  
Murata  
Murata  
Generic  
Generic  
Generic  
Generic  
Generic  
Ceramic Capacitor  
C01, C03, C05, C07  
C2, C3, C6, C7  
C15, C16  
10V  
1210  
603  
CAP_1210  
Ceramic Chip Capacitor  
Multilayer Capacitor  
Multilayer Capacitor  
Multilayer Capacitor  
Multilayer Capacitor  
Ceramic Chip Capacitor  
OPEN  
5%  
OPEN  
16V  
CAP_0603  
H1045-00102-16V10  
H1045-00102-50V10  
H1045-OPEN  
1000pF 10%  
1000pF 10%  
603  
CAP_0603  
C4, C5, C8, C9  
C10, C11, C12, C14  
50V  
603  
CAP_0603  
OPEN  
5%  
OPEN  
OPEN  
603  
CAP_0603  
H1082-OPEN  
C02, C06, C09, C010  
R14-R16, R21, RFSET  
R9, R10, R13, R17, R20  
R1, R2, R3, R6, R8  
R11, R12  
OPEN 10%  
1210  
603  
CAP_1210  
H2505-DNP-DNP-1  
H2511-00R00-1/16W1  
H2511-01001-1/16W1  
H2511-03321-1/16W1  
H2511-16501-1/16W1  
H2511-04121-1/16W1  
H2511-06650-1/16W1  
H2512-OPEN  
DNP  
0Ω  
1%  
1%  
1%  
DNP  
RES_0603  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/10W  
603  
RES_0603  
1kΩ  
603  
RES_0603  
3.32k1%  
16.5k1%  
4.12k1%  
603  
RES_0603  
R5, R7  
603  
RES_0603  
R6, R8  
603  
RES_0603  
R4  
665Ω  
1%  
0%  
603  
RES_0603  
R18, R19  
OPEN  
805  
RES_0805  
ISL8225MIRZ  
U1  
QFN  
QFN26_670X670_ISL8225M  
JUMPER-1  
JUMPER2_100  
JP1-JP7  
THOLE  
SMD  
1210  
SSL-LXA3025IGC  
LED1  
LED_3X2_5MM  
CAP_1210  
TMK325B7226MM-TR  
CIN2, CIN3, CIN5, CIN6  
22µF 20%  
25V  
Taiyo Yuden  
Ceramic Chip Capacitor  
Application Note 1793  
ISL8225MEVAL4Z Efficiency Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
3.3V  
1.8V  
2.5V AT 500kHz  
3.3V AT 650kHz  
1.2V AT 500kHz  
2.5V  
5V AT 850kHz  
95  
90  
85  
1.5V  
1V  
1.2V  
80  
75  
70  
65  
60  
55  
50  
1.5V AT 500kHz  
1.8V AT 500kHz  
1V AT 500kHz  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 9. EFFICIENCY vs LOAD CURRENT (5VIN AT 500kHz)  
FIGURE 10. EFFICIENCY vs LOAD CURRENT (12VIN)  
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is  
cautioned to verify that the Application Note or Technical Brief is current before proceeding.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
AN1793.1  
December 6, 2012  
9
厂商 型号 描述 页数 下载

OPLINK

JUMP-S0021 光纤跳线[ Optical Jumper Cable ] 2 页

INTERSIL

JUMPER-3-100 ISL8225MEVAL2Z 6相, 90A评估板设置步骤[ ISL8225MEVAL2Z 6-Phase, 90A Evaluation Board Setup Procedure ] 12 页

INTERSIL

JUMPER2-100 ISL8225MEVAL2Z 6相, 90A评估板设置步骤[ ISL8225MEVAL2Z 6-Phase, 90A Evaluation Board Setup Procedure ] 12 页

NICHICON

JUMT1105MED [ Electric Double Layer Capacitor, 2.7V, 20% +Tol, 20% -Tol, 1000000uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT ] 1 页

NICHICON

JUMT1105MHD 双电层电容器EVerCAP[ ELECTRIC DOUBLE LAYER CAPACITORS EVerCAP ] 1 页

NICHICON

JUMT1106MED [ Electric Double Layer Capacitor, 2.7V, 20% +Tol, 20% -Tol, 10000000uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT ] 1 页

NICHICON

JUMT1106MHD 双电层电容器EVerCAP[ ELECTRIC DOUBLE LAYER CAPACITORS EVerCAP ] 1 页

NICHICON

JUMT1106MPD [ Electric Double Layer Capacitor, 2.7V, 20% +Tol, 20% -Tol, 10000000uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT ] 1 页

NICHICON

JUMT1225MHD 双电层电容器EVerCAP[ ELECTRIC DOUBLE LAYER CAPACITORS EVerCAP ] 1 页

NICHICON

JUMT1226MED [ Electric Double Layer Capacitor, 2.7V, 20% +Tol, 20% -Tol, 22000000uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.184388s