找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

PXU11A50

型号:

PXU11A50

品牌:

REDLION[ Red Lion Controls. Inc ]

页数:

32 页

PDF大小:

1906 K

Bulletin No. PXU-D  
Drawing No. LP0932  
Released 09/15  
Tel +1 (717) 767-6511  
Fax +1 (717) 764-0839  
www.redlion.net  
MODEL PXU - TEMPERATURE/PROCESS CONTROLLERS  
z PID CONTROL  
z ACCEPTS TC and RTD  
z ACCEPTS 0-10 V, 0/4-20 mA or 0-50 mV SIGNALS  
z FUNCTIONS AS A DIGITAL POT  
z ON DEMAND AUTO-TUNING OF PID SETTINGS  
z DC ANALOG CONTROL OUTPUT (OPTIONAL)  
z 2 USER PROGRAMMABLE FUNCTION BUTTONS  
z PC (MODELS WITH RS 485) OR FRONT PANEL PROGRAMMING  
z 1/16, 1/8 or 1/4 DIN  
z CONTROLLERS MEET IP65 REQUIREMENTS  
U
R
C L US LISTED  
13RW  
PROCESS CONTROL EQUIPMENT  
The PXU is constructed of a lightweight, high impact, black plastic textured  
case with a clear display window. Modern surface-mount technology, extensive  
testing, plus high immunity to noise interference makes the controller extremely  
reliable in industrial environments.  
GENERAL DESCRIPTION  
The PXU controller accepts signals from a variety of temperature sensors  
including thermocouple or RTD. The controller can also be configured for  
process inputs including 0 to 5/10 VDC, 0/4 to 20 mA DC, or 0 to 50 mV DC.  
The PXU can provide an accurate output control signal (time proportional or DC  
Analog Output) to maintain a process at a determined setpoint value. Dual  
4-digit display readings allow viewing of the temperature/process and setpoint  
value simultaneously. Front panel indicators inform the operator of alarm and  
control output status. Comprehensive programming features allow this controller  
to meet a wide variety of application requirements.  
SAFETY SUMMARY  
All safety related regulations, local codes and instructions that appear in the  
manual or on equipment must be observed to ensure personal safety and to  
prevent damage to either the instrument or equipment connected to it. If  
equipment is used in a manner not specified by the manufacturer, the protection  
provided by the equipment may be impaired.  
MAIN CONTROL  
Do not use this unit to directly command motors, valves, or other actuators not  
equipped with safeguards. To do so can be potentially harmful to persons or  
equipment in the event of a fault to the controller. If redundant safeguards are not  
in place, an independent and redundant temperature limit indicator with alarm  
outputs is strongly recommended.  
The PXU allows the user to select between PID, On/Off and Manual control  
mode. The PXU has the ability to provide 2 control outputs. The control outputs  
can be individually configured for Reverse or Direct (heating or cooling)  
applications. The PID tuning constants can be established via on-demand auto-  
tune. The PID constants can also be programmed, or fine-tuned, through the  
front panel or a PC and then locked out from further modification.  
CAUTION: Risk of Danger.  
Read complete instructions prior to  
installation and operation of the unit.  
ALARMS  
Alarm(s) can be configured independently for absolute high or low acting  
with balanced or unbalanced hysteresis. They can also be configured for  
deviation and band alarm. In these modes, the alarm trigger values track the  
setpoint value. Adjustable alarm hysteresis can be used for delaying output  
response. The alarms can be programmed for Automatic or Latching operation.  
A selectable standby feature suppresses the alarm during power-up until the  
temperature stabilizes outside the alarm region.  
CAUTION: Risk of electric shock.  
When the power is on, DO NOT touch the AC terminals, an electric shock may  
occur. Make sure the power is disconnected when you check the input power  
supply.  
1. Prevent dust or metallic debris from falling into the controller and causing malfunctions. DO  
NOT modify the controller.  
2. The PXU is an open-type device. Make sure it is installed in an enclosure free of dust and  
humidity in case of an electric shock.  
3. Wait for one minute after the power is switched off to allow the unit to discharge. DO NOT  
touch the internal wiring within this period of time.  
CONSTRUCTION  
DIMENSIONS In inches (mm) - 1/16 DIN  
PANEL CUT-OUT  
1.89  
0.26  
1.77  
(45.0)  
0.31  
(7.80)  
3.14 (79.70)  
(48.0)  
(6.70)  
1
2
3
4
5
6
7
8
0.47 (11.88)  
0.83 (21.0)  
13  
14  
15  
16  
17  
18  
1.89  
(48.0)  
9
1.77  
(45.0)  
10  
11  
12  
1
DIMENSIONS In inches (mm) - 1/8 DIN  
PANEL CUT-OUT  
1.89  
(48.0)  
0.45  
(11.4)  
1.76  
(44.5)  
2.82 (71.5)  
1
2
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
3
4
5
6
3.77  
(95.8)  
3.60  
(91.5)  
3.60  
7
(91.5)  
8
9
10  
11  
12  
F1 F2  
D
P
DIMENSIONS In inches (mm) - 1/4 DIN  
PANEL CUT-OUT  
0.45  
3.77 (95.8)  
3.58 (91.0)  
2.82 (71.5)  
(11.4)  
1
2
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
3
4
5
6
3.58  
3.58  
7
(91.0)  
(91.0)  
3.77  
8
9
(95.8)  
10  
11  
12  
35  
36  
23  
24  
Table Of COnTenTs  
General Specifications . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . 4  
EMC Installation Guidelines . . . . . . . . . . . . . . 5  
Setting the Current Input Jumper . . . . . . . . . . 5  
Installing the Controller . . . . . . . . . . . . . . . . . . 6  
Wiring the Controller . . . . . . . . . . . . . . . . . . . . 7  
Reviewing the Front Keys and Display . . . . . . 8  
Programming Loops . . . . . . . . . . . . . . . . . . . . 8  
Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . 21  
Control Mode Explanations. . . . . . . . . . . . . . 22  
PID Tuning Explanations. . . . . . . . . . . . . . . . 23  
Parameter Value Chart . . . . . . . . . . . . . . . . . 25  
Programming Overview. . . . . . . . . . . . . . . . . 26  
2
RTD INPUTS:  
Type: 2 or 3 wire  
Excitation: 180 µA typical  
Resolution: 1° or 0.1° for all types  
GENERAL SPECIFICATIONS  
1. DISPLAY: LCD negative image transmissive with backlighting. Top  
(process) display with orange backlighting, bottom (parameter) display with  
green backlighting.  
Line 1 and 2: 4 digits each line  
TYPE  
INPUT TYPE  
RANGE  
STANDARD  
Status Annunciators:  
OUT1 - Control output 1 is active.  
OUT2 - Control output 2 is active.  
ALM1 - Alarm 1 output is active.  
ALM2 - Alarm 2 output is active.  
ALM3 - Alarm 3 output is active.  
°F, °C - Temperature units.  
MAN - Controller is in Manual Mode.  
100 platinum,  
-200 to +850°C  
-328 to +1562°F  
385  
IEC 751  
Alpha = .00385  
100 platinum,  
Alpha = .003919  
-20 to +400°C  
-32 to +752°F  
No official  
standard  
392  
672  
-80 to +300°C  
-112 to +572°F  
120 Nickel  
alpha = .00672  
50 Copper  
alpha = .00428  
-50 to +150°C  
-58 to +302°F  
Cu50  
AT - Auto-Tune active.  
1/4 DIN Model Digit Size: Line 1 - 0.87" (22 mm); Line 2 - 0.55" (14 mm)  
1/8 DIN Model Digit Size: Line 1 - 0.47" (12 mm); Line 2 - 0.47" (12 mm)  
1/16 DIN Model Digit Size: Line 1 - 0.43" (11 mm); Line 2 - 0.27" (7.0 mm)  
2. POWER:  
Line Voltage Models:  
100 to 240 VAC -20/+8 %, 50/60 Hz, 5 VA  
Low Voltage Models:  
PROCESS INPUTS:  
MAX  
INPUT RANGE  
ACCURACY *  
IMPEDANCE CONTINUOUS RESOLUTION  
OVERLOAD  
0.3% of rdg  
+ 0.03 V  
0-5 VDC  
0-10 VDC  
0-20 mA  
4-20 mA  
0-50 mV  
50 V  
50 V  
395 µV  
395 µV  
1.6 µA  
1.6 µA  
2.2 µV  
1.8 MΩ  
1.8 MΩ  
249 Ω  
0.3% of rdg  
+ 0.03 V  
DC Power: 24 VDC, ±10%, 5 W  
0.3% of rdg  
+ 0.04 mA  
30 mA  
30 mA  
30 V  
3. KEYPAD: Mylar overlay with 4 program/selection keys and 2 user  
programmable function keys. 6 keys total.  
4. Display Messages:  
- Measurement exceeds + sensor range  
- Measurement exceeds - sensor range  
- Open sensor is detected (TC or RTD)  
- Shorted sensor is detected (RTD only)  
. . .- Display value exceeds + display range  
. .. .- Display value exceeds - display range  
5. SENSOR INPUT:  
Sample Period: 100 msec (10 Hz rate)  
A/D Converter: 16 bit resolution  
Span Drift (maximum): 130 PPM/°C  
Input Fail Response:  
Main Control Output(s): Programmable preset output  
Display: OPEN, sHrt  
0.3% of rdg  
+ 0.04 mA  
249 Ω  
0.3% of rdg  
+ 0.1 mV  
4.7 MΩ  
*Accuracies are expressed as ± percentages @ 25 °C ambient range after 20  
minute warm-up.  
7. USER INPUT: (Optional)  
Contact Input: ON Resistance 1 Kmax.  
OFF Resistance 100 Kmin.  
Response Time: 1 sec max  
Functions: Programmable  
8. MEMORY: Nonvolatile E2PROM retains all programmable parameters.  
9. OUTPUT CAPABILITIES:  
Output: Time proportioning or DC Analog  
Control: PID, On/Off or user/manual  
Cycle Time: Programmable  
Auto-Tune: When selected, sets proportional band, integral time, derivative  
time, and integration default. Also sets relative gain (if applicable).  
Input Fail Action: Programmable output power level  
CONTROL RELAY OUTPUTS (OUT1/OUT2):  
Type: Form A  
Alarms: programmable for On or Off  
Normal Mode Rejection: >35 dB @ 50/60 Hz  
Common Mode Rejection: >120 dB, DC to 60 Hz  
6. INPUT CAPABILITIES:  
Temperature/RTD Indication Accuracy:  
± (0.3% of span, +1°C) at 25°C ambient after 20 minute warm up. Includes  
NIST conformity, cold junction effect, A/D conversion errors and  
linearization conformity.  
Contact Rating: 5 A @ 250 VAC  
Life Expectancy: 100,000 cycles at max. load rating  
(Decreasing load and/or increasing cycle time, increases life expectancy)  
CONTROL SSR DRIVE OUTPUT (OUT1):  
Rating: 12 VDC ± 10% @ 40 mA max.  
CONTROL ANALOG OUTPUT (OUT1):  
Output: Time proportioning or DC Analog  
Analog Types: 4 to 20 mA or 0 to 10 VDC  
Isolation To Sensor & Communication Common: 500 VDC for 1 min.  
Resolution: 12 bit  
Compliance: 10 VDC: 1 Kload min., 20 mA: 500 load max.  
ALARMS: 2 relay alarm outputs.  
Type: Form A or Form C, model and alarm dependent  
Contact Rating: 3 A @ 250 VAC  
THERMOCOUPLE INPUTS:  
Types: T, E, J, K, R, S, B, N, L, U, and TXK  
Input Impedance: Approximately 4.7 MΩ  
Lead Resistance Effect: -0.3 µV/Ω  
Cold Junction Compensation: Less than ±1.5°C typical (2.5°C max)  
error over 0 to 50°C temperature range.  
Resolution: 1° for types R, S, B and 1° or 0.1° for all other types  
WIRE COLOR  
TYPE  
DISPLAY RANGE  
STANDARD  
ANSI  
BS 1843  
-200 to +400°C  
-328 to +752°F  
(+) Blue  
(-) Red  
(+) White  
(-) Blue  
T
E
J
ITS-90  
ITS-90  
ITS-90  
ITS-90  
ITS-90  
ITS-90  
0 to 600°C  
+32 to +1112°F  
-100 to +1200°C (+) White (+) Yellow  
-148 to +2192°F (-) Red (-) Blue  
-200 to +1300°C (+) Yellow (+) Brown  
-328 to +2372°F  
0 to +1700°C  
+32 to +3092°F  
(+) Violet (+) Brown  
(-) Red (-) Blue  
Life Expectancy: 100,000 cycles at max. load rating  
(Decreasing load and/or increasing cycle time, increases life expectancy)  
Modes:  
K
R
S
None  
(-) Red  
No  
standard  
(-) Blue  
(+) White  
(-) Blue  
Absolute High Acting (Balanced or Unbalanced Hysteresis)  
Absolute Low Acting (Balanced or Unbalanced Hysteresis)  
Deviation High Acting  
Deviation Low Acting  
Inside Band Acting  
0 to +1700°C  
+32 to +3092°F  
No  
standard  
(+) White  
(-) Blue  
+100 to +1800°C  
+212 to +3272°F standard  
No  
No  
standard  
B
N
ITS-90  
ITS-90  
Outside Band Acting  
-200 to +1300°C (+) Orange (+) Orange  
-328 to +2372°F  
Reset Action: Programmable; automatic or latched  
Standby Mode: Programmable; yes or no  
Hysteresis: Programmable  
Input Fail Response: Programmable  
Annunciator: “ALM1”, “ALM2”, and “ALM3”, programmable for  
normal or reverse acting  
(-) Red  
(-) Blue  
-200 to +850°C  
-328 to +1562°F  
-200 to +500°C  
-328 to +932°F  
-200 to +800°C  
-328 to +1472°F  
(+) Red  
(-) Blue  
No  
(+) Red  
(-) Blue  
(+) White  
(-) Blue  
L
U
DIN 43714  
IPTS68  
standard  
TXK  
3
10. ISOLATION LEVEL:  
12. ENVIRONMENTAL CONDITIONS:  
Operating Temperature Range: 0 to 50°C  
Storage Temperature Range: -20 to 65°C  
Operating and Storage Humidity: 80% max relative humidity (non-  
condensing) from 0°C to 50°C  
Vibration Resistance: Operational 10 to 55 Hz, 1 g  
Shock Resistance: Operational 30 g  
Altitude: Up to 2000 meters  
AC power with respect to all other I/O: 250 V working (2300 V for 1 min.)  
Sensor input to analog output: 50 V working (500 V for 1 minute)  
Relay contacts to all other I/O: 250 V working (2300 V for 1 minute)  
DC power with respect to sensor input and analog output: 50 V working  
(500 V for 1 minute)  
11. CERTIFICATIONS AND COMPLIANCES:  
CE Approved  
EN 61326-1 Immunity to Industrial Locations  
Emission CISPR 11 Class A  
EN 61010-1  
RoHS Compliant  
UL Listed: File #E179259  
13. CONNECTION: Wire-clamping screw terminals  
14. CONSTRUCTION: Black plastic alloy case and panel latch. Black plastic  
textured bezel with transparent display window. Controller meets IP65  
requirements for indoor use when properly installed. Installation Category II,  
Pollution Degree 2.  
IP65 Enclosure rating (Face only)  
15. WEIGHT:  
Refer to EMC Installation Guidelines section of the bulletin for additional  
information.  
1/4 DIN: 11.0 oz (312 g)  
1/8 DIN: 7.8 oz (221 g)  
1/16 DIN: 5.3 oz (150 g)  
ORDERING INFORMATION  
PART NUMBERS  
MAIN CONTROL  
OUTPUT 1  
SECONDARY  
CONTROL OUTPUT 2  
MODEL NO.  
DIN SIZE  
USER INPUT(S)  
RS 485  
100 to 240 VAC  
24 VDC  
Relay  
Relay  
-
-
2
-
-
PXU10020  
PXU11A20  
PXU20020  
PXU21A20  
PXU30020  
PXU31A20  
PXU40020  
PXU41A20  
PXU10030  
PXU11A30  
PXU20030  
PXU21A30  
PXU31A30  
PXU40030  
PXU11A50  
PXU31A50  
PXU41A50  
PXU100B0  
PXU11AB0  
PXU200B0  
PXU21AB0  
PXU300B0  
PXU31AB0  
PXU400B0  
N/A  
Relay  
-
Yes  
-
Logic/SSR  
Logic/SSR  
4-20 mA  
4-20 mA  
0-10 VDC  
0-10 VDC  
Relay  
Relay  
-
2
-
Yes  
-
1/16  
Relay  
-
2
-
Yes  
-
Relay  
-
2
-
Yes  
-
PXU  
PXU100C0  
PXU11AC0  
PXU200C0  
PXU21AC0  
PXU31AC0  
PXU400C0  
PXU11AE0  
PXU31AE0  
PXU41AE0  
Relay  
Relay  
-
2
-
Yes  
-
Logic/SSR  
Logic/SSR  
4-20 mA  
0-10 VDC  
Relay  
1/8  
(vertical)  
Relay  
Relay  
-
2
2
-
Yes  
Yes  
-
Relay  
Relay  
Relay  
2
2
2
Yes  
Yes  
Yes  
1/4  
4-20 mA  
0-10 VDC  
Only stocked part numbers are listed. Contact factory for availability of non-stock models.  
In order to program the unit using Crimson, the unit must be purchased with the RS 485 option.  
ACCESSORIES  
MODEL NO.  
DESCRIPTION  
PART NUMBERS  
RLY50000  
RLY60000  
RLY6A000  
RLY70000  
External SSR Power Unit (for Logic/SSR models)  
25 A Single Phase Din Rail Mount Solid State Relay  
40 A Single Phase Din Rail Mount Solid State Relay  
Three Phase Din Rail Mount Solid State Relay  
RLY  
PGUSB  
USB to 485 Converter with Cable  
Crimson PC Configuration Software  
PGUSB485  
SFCRD200  
SFCRD 1  
1 Crimson software is a free download from http://www.redlion.net  
Do not dispose of unit in trash - Recycle  
4
effective. The following EMI suppression devices (or equivalent) are  
recommended:  
Fair-Rite part number 0443167251 (RLC part number FCOR0000)  
Line Filters for input power cables:  
Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)  
6. To protect relay contacts that control inductive loads and to minimize radiated  
and conducted noise (EMI), some type of contact protection network is  
normally installed across the load, the contacts or both. The most effective  
location is across the load.  
a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide  
varistor (MOV) across an AC inductive load is very effective at reducing  
EMI and increasing relay contact life.  
b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor  
switch, care must be taken not to exceed the breakdown voltage of the  
transistor when the load is switched. One of the most effective ways is to  
place a diode across the inductive load. Most RLC products with solid state  
outputs have internal zener diode protection. However external diode  
protection at the load is always a good design practice to limit EMI.  
Although the use of a snubber or varistor could be used.  
EMC INSTALLATION GUIDELINES  
Although Red Lion Controls Products are designed with a high degree of  
immunity to Electromagnetic Interference (EMI), proper installation and wiring  
methods must be followed to ensure compatibility in each application. The type  
of the electrical noise, source or coupling method into a unit may be different  
for various installations. Cable length, routing, and shield termination are very  
important and can mean the difference between a successful or troublesome  
installation. Listed are some EMI guidelines for a successful installation in an  
industrial environment.  
1. A unit should be mounted in a metal enclosure, which is properly connected  
to protective earth.  
2. Use shielded cables for all Signal and Control inputs. The shield connection  
should be made as short as possible. The connection point for the shield  
depends somewhat upon the application. Listed below are the recommended  
methods of connecting the shield, in order of their effectiveness.  
a. Connect the shield to earth ground (protective earth) at one end where the  
unit is mounted.  
b. Connect the shield to earth ground at both ends of the cable, usually when  
the noise source frequency is over 1 MHz.  
RLC part numbers: Snubber: SNUB0000  
3. Never run Signal or Control cables in the same conduit or raceway with AC  
power lines, conductors, feeding motors, solenoids, SCR controls, and  
heaters, etc. The cables should be run through metal conduit that is properly  
grounded. This is especially useful in applications where cable runs are long  
and portable two-way radios are used in close proximity or if the installation  
is near a commercial radio transmitter. Also, Signal or Control cables within  
an enclosure should be routed as far away as possible from contactors, control  
relays, transformers, and other noisy components.  
Varistor: ILS11500 or ILS23000  
7. Care should be taken when connecting input and output devices to the  
instrument. When a separate input and output common is provided, they  
should not be mixed. Therefore a sensor common should NOT be connected  
to an output common. This would cause EMI on the sensitive input common,  
which could affect the instrument’s operation.  
Visit RLC’s web site at http://www.redlion.net/emi for more information on  
EMI guidelines, Safety and CE issues as they relate to Red Lion Controls  
products.  
4. Long cable runs are more susceptible to EMI pickup than short cable runs.  
5. In extremely high EMI environments, the use of external EMI suppression  
devices such as Ferrite Suppression Cores for signal and control cables is  
1.0 seTTing The CurrenT inpuT Jumper  
When Input Type is selected as one of the two current input types (0-20 or  
4-20), the current input jumper must be installed. The current input jumper is  
factory set for Temperature and Voltage input types. To change the jumper to  
Thermocouple, RTD  
or Voltage Input  
Current Input  
(4-20 mA or 0-20 mA)  
configure the input for a current input type, the inside of the unit must be  
accessed and the jumper position changed.  
To access the jumper, locate the two latches located on top and bottom of the  
front of the unit. Starting with the top latch, insert a small flat-blade screwdriver  
between the case latch and bezel while using your thumb to push out on the  
bezel until the latch is disengaged. Repeat this process with the bottom latch.  
After the latches are disengaged, using the flat-blade screwdriver, gently pry out  
on the bezel in several areas until the unit releases from the case.  
Look for the Current Input Jumper which will be located close to the pc board  
area that connects to the input terminals. If a current input type is desired,  
position the jumper across both pins. If input type is anything other than a  
current input, position the jumper on only one pin.  
JUMPER  
JUMPER  
JP8  
JP8  
PIN HEADER  
PIN HEADER  
FACTORY SETTING  
5
2.0 insTalling The COnTrOller  
1/16 DIN Installation  
The controller is designed to be mounted into an enclosed panel. The  
unit must be inserted in the case during installation of the controller.  
Instructions:  
7
8
1. Prepare the panel cutout to the proper dimensions.  
2. Assemble the mounting clip by inserting the nut into the slot and then  
insert the screw and thread through the nut as shown (See drawing)  
3. Slide the panel gasket over the rear of the controller, seating it against  
9
10  
1
1
12  
the lip at the front of the case.  
4. Insert the controller into the panel cutout. While holding the controller  
in place, install the panel latch and then slide it to the farthest forward  
slot possible.  
PANEL LATCH  
(SUPPLIED W/UNIT)  
PANEL GASKET  
EXISTING PANEL CUT-OUT  
1/16 DIN  
1.77” (45.0 mm) X 1.77(45.0 mm)  
5. To achieve a proper seal, tighten the panel latch screws evenly until  
the controller is snug in the panel, torquing the screws to 13.9 to 20.8  
oz-in (9.8 to 14.7 N-cm). Overtightening can result in distortion of the  
controller, and reduce the effectiveness of the seal.  
Note: The installation location of the controller is important. Be sure to  
keep it away from heat sources (ovens, furnaces, etc.) and away from  
direct contact with caustic vapors, oils, steam, or any other process  
by-products in which exposure may affect proper operation.  
1/8 DIN Installation  
(2) PANEL LATCH  
(SUPPLIED W/UNIT)  
The controller is designed to be mounted into an enclosed panel. The unit must be inserted  
in the case during installation of the controller.  
Instructions:  
1. Prepare the panel cutout to the proper dimensions.  
2. Assemble the mounting clip by inserting the nut into the slot and then insert the screw and  
thread through the nut as shown (See drawing)  
3. Slide the panel gasket over the rear of the controller, seating it against the lip at the front of  
the case.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
4. Insert the controller into the panel cutout. While holding the controller in place, install the  
panel latches and then slide them to the farthest forward slot possible.  
5. To achieve a proper seal, tighten the panel latch screws evenly until the controller is snug  
in the panel, torquing the screws to 13.9 to 20.8 oz-in (9.8 to 14.7 N-cm). Overtightening  
can result in distortion of the controller, and reduce the effectiveness of the seal.  
2
2
2
2
3
4
Note: The installation location of the controller is important. Be sure to keep it away from heat  
sources (ovens, furnaces, etc.) and away from direct contact with caustic vapors, oils,  
steam, or any other process by-products in which exposure may affect proper operation.  
PANEL  
GASKET  
EXISTING PANEL CUT-OUT  
1.76" (44.5 mm) X 3.60" (91.5 mm)  
1/4 DIN Installation  
(4) PANEL LATCH  
(SUPPLIED W/UNIT)  
The controller is designed to be mounted into an enclosed panel. The unit must be inserted  
in the case during installation of the controller.  
Instructions:  
1. Prepare the panel cutout to the proper dimensions.  
2. Assemble the mounting clip by inserting the nut into the slot and then insert the screw and  
thread through the nut as shown (See drawing)  
3. Slide the panel gasket over the rear of the controller, seating it against the lip at the front  
of the case.  
4. Insert the controller into the panel cutout. While holding the controller in place, install the  
panel latches and then slide them to the farthest forward slot possible.  
5. To achieve a proper seal, tighten the panel latch screws evenly until the controller is snug  
in the panel, torquing the screws to 13.9 to 20.8 oz-in (9.8 to 14.7 N-cm). Overtightening  
can result in distortion of the controller, and reduce the effectiveness of the seal.  
PANEL  
GASKET  
Note: The installation location of the controller is important. Be sure to keep it away from  
heat sources (ovens, furnaces, etc.) and away from direct contact with caustic vapors, oils,  
steam, or any other process by-products in which exposure may affect proper operation.  
EXISTING PANEL CUT-OUT  
3.58" (91.0 mm) X 3.58" (91.0 mm)  
6
3.0 Wiring The COnTrOller  
All wiring connections are made to the rear screw terminals.  
When wiring the controller, use the numbers on the label and  
WIRING CONNECTIONS  
L
N
D-  
AC 100~240V  
50/60 Hz  
5VA  
13  
14  
15  
16  
17  
18  
19  
20  
21  
1
2
3
4
5
6
7
8
9
~
RS-485  
D+  
NO  
those embossed on the back of the case, to identify the position  
number with the proper function.  
L
AL 1  
1
13  
7
&200  
+
AC 100-240V  
50/60 Hz  
5VA  
User1  
All conductors should meet voltage and current ratings for  
each terminal. Also, cabling should conform to appropriate  
standards of good installation, local codes and regulations. It is  
recommended that power (AC or DC) supplied to the controller  
be protected by a fuse or circuit breaker. Strip the wire, leaving  
approximately 1/4" (6 mm) bare wire exposed (stranded wires  
should be tinned with solder). Insert the wire under the clamping  
washer and tighten the screw until the wire is clamped tightly.  
NO  
-
2
14  
15  
8
N
&200  
AL2  
AL 2  
+
+
User 2  
-
3
+
9
NC  
NO  
+
AL1  
OP 2 / AL 3 User 2  
-
-
4
16  
10  
11  
RTD  
+
+
User 1  
OP 1  
&200  
-
-
+
5
OP 1  
17  
&200  
+
-
D
+
10 22  
11 23  
12 24  
Tc  
RS-485  
IN  
+
IN  
-
+
-
D
-
OP 2/ AL 3  
6
18  
12  
- -  
Tc  
-
+
NO  
1/16 DIN  
1/8 or 1/4 DIN  
VAC  
VDC  
CONTROLLER POWER CONNECTIONS  
For best results, the power should be relatively “clean” and within  
the specified limits. Drawing power from heavily loaded circuits or  
from circuits that also power loads that cycle on and off should be  
avoided. It is recommended that power supplied to the controller be  
protected by a fuse or circuit breaker.  
L
+
_
1
DC 24V  
0 V  
1
2
AC 100-240V  
50/60 Hz  
5VA  
2
N
INPUT CONNECTIONS  
lead wire compensation. If a sense wire is not used, then use a jumper. A  
temperature offset error will exist. The error may be compensated by  
programming a temperature offset.  
For two wire RTDs, install a copper sense lead of the same gauge and length  
as the RTD leads. Attach one end of the wire at the probe and the other end to  
input common terminal. This is the preferred method as it provides complete  
RTD and Resistance  
Thermocouple and Millivolt  
Voltage and Current  
DC+ VOLTAGE/CURRENT  
10  
11  
12  
11  
TC+  
11  
12  
TC-  
12  
DC- VOLTAGE/CURRENT  
CONTROL AND ALARM OUTPUT CONNECTIONS  
Alarm 1 and 2 * (1/16 DIN Shown)  
OP1/OP2 Output Control Relay *  
OP1 Output Control Analog *  
COMM  
NO (+)  
IN +  
NO (+)  
LOAD  
AC/DC  
ANALOG INPUT  
CONTROL  
DEVICE  
AC/DC  
Power  
Power (-)  
AL 2  
NO  
NO  
IN -  
COMM (-)  
COMM (-)  
LOAD  
LOAD  
AL 1  
AC/DC  
Power (+)  
OP1 Output Control Logic/SSR *  
NO (+)  
+
AC  
SSR  
POWER  
UNIT  
AC Power  
-
AC  
COMM (-)  
USER INPUT CONNECTIONS *  
RS 485 CONNECTIONS *  
+
D-  
-
RS485  
RECEIVING  
DEVICE  
User 1  
RS-485  
-
+
D+  
+
User 2  
-
* See unit label for terminal identification.  
7
4.0 revieWing The frOnT Keys and display  
F1  
F2  
D
P
FRONT PANEL KEYS  
The Arrow keys are used to scroll through parameter selections/  
values and in the Configuration Loop they are used to scroll to the  
appropriate Parameter Module.  
In the Display Loop, the D key is pressed to identify the display  
parameter and to advance to the next enabled display item. In all other  
loops, the D key is pressed to exit (or escape) directly to the first enabled  
Display Loop item.  
BJ  
12  
=
The F1/F2 keys are used to perform the function assigned to the  
key in Configuration Module 1.  
The P key is pressed to advance to the next parameter, to activate a  
selection/value change, and to enter the Hidden Loop when held for three  
seconds.  
:
5.0 prOgramming lOOps  
DISPLAY/PARAMETER/HIDDEN LOOP REFERENCE TABLE  
FACTORY  
PARAMETER  
DESCRIPTION  
RANGE/UNITS  
SETTING  
0
Active Setpoint Value  
Control Output 1  
Control Output 2  
Setpoint Ramp Rate  
PID Group  
Input Range Dependent  
0 to 100%  
SPx  
OP1  
0.0  
0.0  
0
0 to 100%  
OP2  
0 to 999 display units/minute  
1 or 2  
SPrP  
PId  
1
Controller Status  
Output Power Offset  
Proportional Band  
Integral Time  
rUN or StOP  
r-S  
rUN  
OPOF  
ProP  
Intt  
dErt  
dInt  
AL-1  
AL-2  
AL-3  
ALrS  
ALrS  
SPSL  
tUNE  
CtrL  
trnF  
dEv  
0 to 9999 % display units  
0 to 9999 seconds.  
70  
120  
30  
Derivative Time  
Integration Default  
Alarm 1 Value  
0 to 9999 seconds per repeat  
Default Integration Value 0.0 to 100.0%  
Input Range Dependent  
Input Range Dependent  
Input Range Dependent  
1-2 ( B Resets AL1; J Resets AL2)  
3 ( J Resets AL3)  
SP-1 or SP-2  
0.0  
100  
200  
300  
Alarm 2 Value  
Alarm 3 Value  
Alarm reset  
Alarm Reset  
Setpoint Select  
Auto-Tune Start  
Control Mode  
SP-1  
NO  
NO or YES  
OnOF or PId  
PId  
Auto  
Control Mode Transfer  
Setpoint Deviation  
Access Code  
Auto or USEr  
Display Units  
-125 to 125  
COdE  
0
8
DISPLAY LOOP  
At power up, all display segments light, and then the programmed input type  
and the controller’s software version will flash. Then the Temperature/Process  
Value is shown in the top display, and the bottom display will show the first  
Display Loop parameter configured as dISP in Configuration Module 3.  
Pressing the = key will advance the bottom display to the next Display Loop  
parameter. After viewing the last parameter, the display will loop back to the  
beginning of the Display Loop. If the bottom display is blank, it is because there  
are no parameters enabled for display in the Display Loop.  
D
MAIN  
DISPLAY LOOP  
P
Hold  
P
D
Changes made to parameters are effective immediately. Parameters that can  
be displayed in the Display Loop include:  
PARAMETER  
LOOP  
SP  
OP1  
OP2  
SPrP PId  
r-S  
dEv  
Hold  
P
P
Pressing the : key will advance the bottom display to the Parameter Loop.  
PARAMETER LOOP  
Pressing the : key, while in the Display Loop, will advance the bottom  
display to the Parameter Loop. Applicable items configured as PArA in  
Configuration Module 3 will be displayed in the Parameter Loop. Each press of  
the : key will advance the bottom display to the next Parameter Loop  
parameter. After viewing the last parameter the display will loop back to the  
beginning of the Parameter Loop. Pressing the : key while parameters are not  
configured as PArA in Module 3, will cause the bottom display to remain in the  
Display Loop and advance to the first Display Loop parameter.  
Pressing the = key will return the display to the Display Loop. To accept a  
parameter change, the : key must be pressed prior to pressing the = key.  
The unit will automatically exit to the Display Loop after approximately one  
minute of no key presses.  
IF Code =  
1 to 125  
IF Code =  
0
IF Code =  
-1 to -125  
COdE  
HIDDEN  
LOOP  
1 to 125  
P
HIDDEN LOOP  
w/CONFIGURATION  
LOOP ACCESSIBLE  
Parameters that can be displayed in the Parameter Loop include:  
*
SP  
OP1  
OP2  
SPrP PId  
r-S  
OPOF Prop  
COdE  
Intt dErt dInt AL-1 AL-2 AL-3 ALrS SPSL  
-1 to -125  
P
HIDDEN LOOP  
CONFIGURATION  
LOOP  
Press and Hold the : key for 3 seconds to enter the Hidden Loop. If a  
lockout code 1 thru 125 has been configured in Module 3 (COdE), the correct  
access code will need to be entered prior to gaining access to the Hidden Loop.  
If a User Input is configured for PLOC (program disable), the User Input will  
need to be de-activated prior to gaining access to the Hidden Loop. Factory  
programmed setting for Code = 0, and the User Inputs are not configured.  
After accessing the Hidden Loop, each consecutive press of the : button  
will advance the bottom display through the applicable parameters selected as  
HidE in Module 3. The last item in the Hidden Loop is either COdE or CNFP. If a  
lockout code -1 thru -125 has been configured in Module 3 (COdE), the correct  
access code will need to be entered prior to gaining access to the Configuration  
Loop. Pressing : while CNFPis selected as NOwill exit to the first parameter in  
the Display Loop.  
*
* If PLOC is active, the Configuration Loop is not accessible.  
To accept a parameter change, the : key must be pressed prior to pressing  
the = key. Pressing the = key will return the display to the Display Loop.  
The unit will automatically exit to the Display Loop after approximately one  
minute of no key presses.  
Parameters that can be displayed in the Hidden Loop include:  
SP  
OP1  
OP2  
SPrP PId  
r-S  
OPOF Prop Intt dErt  
dInt AL-1 AL-2 AL-3 ALrS SPSL tUNE CtrL trnF  
C  
to   
ACCESS CODE  
C  
to   
If the Access Code is set from -1 to -125, in Lockout Module 3C, CodE will  
appear as the last Hidden Loop item. By entering the proper code, access to the  
Configuration Loop is permitted (with a negative code value, the Hidden Loop  
can be accessed without the use of a code). With an active User Input configured  
for Program Lock (C), CodE will not appear. An active user input configured  
for Program Lock (C) always locks out the Configuration Loop, regardless of  
Access Code.  
If the Access Code is set from 1 to 125, in Lockout Module 3C, CodE will  
appear prior to gaining access to the Hidden Loop. By entering the proper code,  
access to the Hidden Loop is permitted. With the factory setting of 0, CodE will  
not appear in the Hidden Loop.  
9
display/parameTer/hidden lOOp parameTer desCripTiOns  
The following parameters may be locked from display or made available in  
either the main Display Loop, the Parameter Loop or the Hidden Loop as  
CONTROLLER STATUS  
configured in programming module 3-LC. Values configured for dSPr are read  
only when in the main display loop, but are writable when in the Hidden Loop.  
The value mnemonics are shown for each parameter, as well as the factory  
setting for each of the values.  
  
  
   
When in rUNmode, the control output(s) respond based on their corresponding  
% output value. When in StOP mode, the control output(s) are disabled.  
Integral wind-up can be reset by entering StOP and then going back to rUN  
mode.  
ACTIVE SETPOINT VALUE  
x   
to  display units *  
OUTPUT POWER OFFSET  
The parameter name indicates the active setpoint. The Setpoint value can be  
changed by pressing the arrow keys. This parameter can be configured as read  
only in the Display Loop, but read/write in the Hidden Loop (dSPr). Select the  
second Setpoint value by using the 1 or 2 key, user input, or the SPSL  
parameter. Both Setpoint values are limited by the Setpoint Low and High  
Limits in Input Module 1-IN.  
  
.  
. to . % power  
When the Integral Time is set to zero, the power offset is used to shift the  
proportional band to compensate for errors in the steady state. If Integral Action  
is later invoked, the controller will re-calculate the internal integral value to  
provide “bumpless” transfer and Output Power Offset will not be necessary.  
CONTROL OUTPUT 1 or 2 % OUTPUT POWER  
PROPORTIONAL BAND  
  
.  
. to .  
  
7  
to  display units *  
While the controller is in Automatic Mode, this value  
is read only. When the controller is placed in Manual  
Mode, the value can be changed by pressing the arrow  
keys. For more details on % Output Power, see Control  
Mode Explanations.  
  
.  
The proportional band should be set to obtain the best response to a process  
disturbance while minimizing overshoot. For more information, see Control  
Mode and PID Tuning Explanations.  
SETPOINT RAMP RATE  
INTEGRAL TIME  
I  
  
  
to  display units/minute *  
to  seconds  
Integral action shifts the center point position of the proportional band to  
eliminate error in the steady state. The higher the integral time, the slower the  
response. The optimal integral time is best determined during PID Tuning.  
By ramping the setpoint at a controlled rate, the setpoint ramp rate can reduce  
sudden shock to the process and reduce overshoot on startup or after setpoint  
changes. When viewing setpoint value, and the setpoint is ramping, the setpoint  
will alternate between rSPx and the target setpoint value. The ramp rate is in least-  
significant (display units) digits per minute. A value of 0 disables setpoint  
ramping. Once the ramping setpoint reaches the target setpoint, the setpoint ramp  
rate disengages until the setpoint is changed again. If the ramp value is changed  
during ramping, the new ramp rate takes effect. If the setpoint is ramping prior to  
starting Auto-Tune, the ramping will terminate when Auto-Tune starts. Deviation  
and band alarms are relative to the target setpoint, not the ramping setpoint. A  
slow process may not track the programmed setpoint rate. At power up, the  
ramping setpoint is initialized to the current temperature/process value.  
DERIVATIVE TIME  
  
3  
to  seconds  
Derivative time helps to stabilize the response, but too high of a derivative  
time, coupled with noisy signal processes, may cause the output to fluctuate too  
greatly, yielding poor control. Setting the time to zero disables derivative action.  
PID GROUP  
I  
or   
INTEGRATION DEFAULT  
I  
.  
Select different PID parameters by choosing one of two different PID groups.  
. to . % output power  
The Integration Default is the default integration value of integral control.  
When the process value enters the proportional band, the PXU will take the  
Integration Default as the default control output of integral control. The value is  
determined at Auto-Tune.  
* Range/Decimal position is Programming dependent.  
10  
ALARM RESET  
AUTO CONTROL MODE  
s  
  
C  
I  
  
3
PId or OnOF  
Select the desired control mode. When OnOF is selected, the PID parameters  
are not available.  
This parameter provides for the ability to individually reset active alarms  
from the front panel, without using 1 or 2 function keys. When ALrS is  
displayed with 1-2 on bottom display, pressing the B key, under the 1, will  
reset an active Alarm 1. Pressing the J key, under the 2, will reset an active  
Alarm 2. When ALrSis displayed with 3 on the bottom display, pressing the J  
key, under the 3, will reset an active Alarm 3. All alarms may be simultaneously  
reset from the front panel by using User 1 or 2 programmed for ALrS.  
CONTROL MODE TRANSFER  
  
  
   
In Automatic Mode (), the percentage of Output Power is automatically  
determined by the controller based on the Auto Control Mode selected. In  
Manual/User Mode (), the percentage of Output Power is adjusted  
manually by the user. The Control Mode can also be transferred through the 1  
or 2 key or User Input. For more information, see Control Mode Explanations.  
SETPOINT SELECT  
  
  
or   
The SPSLfunction allows the operator to select setpoint 1 or setpoint 2 as the  
active setpoint value.  
SETPOINT DEVIATION VALUE  
v  
Setpoint deviation is the number of display units that the input display varies  
from the active setpoint value. This is a read only value.  
AUTO-TUNE START  
  
  
   
The Auto-Tune procedure sets the Proportional Band, Integral Time,  
Derivative Time, Integration Default, and relative Gain (Heat/Cool) values  
appropriate to the characteristics of the process. This parameter allows front  
panel starting  or stopping  of Auto-Tune. For more information, see PID  
Tuning Explanations.  
6.0 prOgramming: COnfiguraTiOn lOOp  
HIDDEN  
LOOP  
DISPLAY  
LOOP  
CONFIGURATION LOOP  
P
INPUT  
PARAMETERS  
MODULE  
OUTPUT  
PARAMETERS  
MODULE  
LOCKOUT  
PARAMETERS  
MODULE  
ALARM  
PARAMETERS  
MODULE  
COMMUNICATION  
PARAMETERS  
MODULE  
FACTORY  
SERVICE  
MODULE  
CNFP  
no  
1-IN  
2-OP  
3-LC  
4-AL  
7-SC  
9-FS  
To access the Configuration Loop, press the up key when C/is displayed  
in the Hidden Loop. In the Configuration Loop, C will alternate with the  
parameter number in the bottom display and the Temperature/Process Value is  
shown on the top display. The arrow keys are used to select the parameter  
module (1-9). To enter a specific module press : while the module number is  
displayed. In the Configuration Loop, C will alternate with the parameter  
number in the bottom display and the Temperature/Process Value is shown on  
the top display.  
At the end of each module, the controller returns to C/. At this location,  
pressing : again returns the display to the the Display Loop. Pressing the B  
key allows re-entrance to the Configuration Loop. Whenever = is pressed,   
momentarily appears, the current parameter change will be aborted, and the  
controller returns to the Display Loop.  
After entering a parameter module, press : to advance through the  
parameters in the module. To change a parameter’s selection/value, press the  
arrow keys while the parameter is displayed. In the modules, the top display  
shows the parameter name, and the bottom display shows the selection/value.  
Use : to enter and store the selection/value that has been changed. If a power  
loss occurs before returning to the Display Loop, the new values should be  
checked for accuracy.  
11  
7.1 mOdule 1 - inpuT parameTers (1-IN)  
CNFP  
1-INP  
PARAMETER MENU  
P
P
tYPE SCAL dCPt FLtr bANd SHFt dSP1 dSP2 SPLO SPHI  
FILTER  
BAND  
INPUT  
TYPE  
TEMP  
SCALE  
DECIMAL  
RESOLUTION  
DIGITAL  
FILTERING  
SHIFT/  
OFFSET  
DISPLAY  
VALUE 1  
DISPLAY  
VALUE 2  
SETPOINT  
LOW LIMIT  
SETPOINT  
HIGH LIMIT  
CJC  
COLD  
JUNCTION  
USr1 USr2 F1In F2In  
USER  
Programming/model dependent.  
USER  
F1 KEY  
F2 KEY  
INPUT 1  
INPUT 2  
FUNCTION  
FUNCTION  
INPUT FILTER BAND  
INPUT TYPE  
b  
to  display units  
SELECTION  
t-K  
t-J  
t-t  
t-E  
t-N  
t-r  
t-S  
t-b  
t-L  
t-U  
TYPE  
K TC  
J TC  
T TC  
E TC  
N TC  
R TC  
S TC  
B TC  
L TC  
U TC  
SELECTION  
TYPE  
  
  
TXK TC  
RTD 392  
RTD 385  
RTD 672  
Cu 50  
ttK  
r32  
r35  
nI  
The filter will adapt to variations in the input signal. When the variation  
exceeds the input filter band value, the digital filter disengages and a noise  
discrimination filter engages that rejects noise bursts. When the variation  
becomes less than the band value, the digital filter engages again. The value of  
the band is in display units.  
U  
0-5 Volt  
0-10 Volt  
0-20 mA  
4-20 mA  
0-50 mV  
Su  
10u  
0-20  
4-20  
0.05u  
SHIFT/OFFSET  
  
to  display units  
Select the input type that corresponds to the input sensor.  
This value offsets the controller’s display value by the entered amount. This  
is useful in applications in which the sensor does not provide an accurate signal.  
TEMPERATURE SCALE  
C  
  
DISPLAY VALUE SCALING POINT 1  
Fahrenheit  
CCelsius  
  
 to   
Select either degrees Fahrenheit or Celsius. If changed, check related  
parameter values.  
Enter the first coordinate zero Display Value associated with the lower range  
(0V/mA, 4mA) of the input signal, by using the arrow keys.  
* Temperature Input only.  
DISPLAY VALUE SCALING POINT 2  
DECIMAL RESOLUTION  
  
  
 to   
C  
to .for temperature inputs  
to .for process inputs  
Enter the second coordinate full scale Display Value associated with the  
upper range (5V, 10V, etc) of the input signal, by using the arrow keys.  
Select whole degrees, or tenths of degrees for Temperature display, Setpoint  
values, and related parameters. For thermocouple types R, S, and B, only whole  
degrees of resolution is available. For process inputs up to three decimal point  
resolution is available.  
* Process input only.  
DIGITAL FILTERING  
SETPOINT LOW LIMIT  
  
8
  
48  
= least to = most  
 to input range dependent  
The filter is an adaptive digital filter that discriminates between measurement  
noise and actual process changes. The equation for digital filtering is:  
The controller has a programmable low setpoint limit value to restrict the  
range of the setpoint. Set the limit so that the setpoint value cannot be set below  
the safe operating area of the process.  
Last displayed PV [ n + measured value  
PV =  
n + 1  
Where: n = Digital Filtering selection  
If the signal is varying greatly due to measurement noise, increase the filter  
value. Decrease the filter value for quicker controller response.  
Shaded parameters are programming/model dependent.  
12  
SETPOINT HIGH LIMIT  
F KEY FUNCTION  
I  
  
I  
  
I  
  
 to  input range dependent  
The controller has a programmable high setpoint limit value to restrict the  
range of the setpoint. Set the limit so that the setpoint value cannot be set above  
the safe operating area of the process.  
The controller performs the selected F1 Key Function, when 1 is pressed.  
SELECTION  
NONE  
FUNCTION  
DESCRIPTION  
No Function  
No function is performed.  
Controller Status  
This function can be used to start (rUN) and  
stop (stOp) the control function of the  
controller. When in StOp mode, control  
output 1 and 2 are disabled and output  
calculations are suspended.  
r-S  
COLD JUNCTION COMPENSATION  
CJC  
  
On  
OFF  
Setpoint 1 or 2  
Select  
This function toggles (momentary action)  
the controller between Setpoint 1 and  
Setpoint 2.  
SPSL  
trnF  
ALrS  
This parameter turns the internal cold junction compensation on or off. For  
most applications, cold junction compensation should be enabled (On). This  
parameter does not appear if a process input type is selected.  
Auto/Manual Select  
Reset All Alarms  
This function toggles (momentary action)  
the controller between Automatic and  
Manual Control.  
This function can be used to reset all of the  
alarms when activated (momentary action).  
The alarms will remain reset until the alarm  
condition is cleared and triggered again.  
Reset Alarm 1  
Reset Alarm 2  
Reset Alarm 3  
This function can be used to reset alarm 1  
when activated (momentary action). The  
alarm will remain reset until the alarm  
condition is cleared and triggered again.  
USER INPUT FUNCTION  
(Model dependent)  
A1rs  
A2rS  
A3rS  
  
  
  
  
This function can be used to reset alarm 2  
when activated (momentary action). The  
alarm will remain reset until the alarm  
condition is cleared and triggered again.  
This function can be used to reset alarm 3  
when activated (momentary action). The  
alarm will remain reset until the alarm  
condition is cleared and triggered again.  
The controller performs the programmed User Input selection (User Input  
option models), when the User terminal + is connected to User terminal -.  
SELECTION  
NONE  
FUNCTION  
DESCRIPTION  
No Function  
No function is performed.  
Controller Status  
This function can be used to start (rUN) and  
stop (stOp) the control function of the  
controller. When in StOp mode, control  
output 1 and 2 are disabled and output  
calculations are suspended.  
r-S  
Setpoint 1 or 2  
Select  
This function selects (maintained action)  
Setpoint 1(user inactive) or Setpoint 2 (user  
active) as the active setpoint.  
SPSL  
trnF  
Auto/Manual Select  
This function selects (maintained action)  
Automatic (user inactive) or Manual Control  
(user active).  
Program Lock  
The Configuration Loop is locked, as long  
as user input is active (maintained action).  
PLOC  
ILOC  
Integral Action Lock  
The integral action of the PID computation  
is disabled (suspended), as long as  
activated (maintained action).  
Setpoint Ramp  
Disable  
The setpoint ramping feature is disabled, as  
long as activated (maintained action). Any  
time the user input is activated with a ramp  
in process, ramping is aborted.  
SPrP  
ALrS  
Reset All Alarms  
Reset Alarm 1  
Reset Alarm 2  
Reset Alarm 3  
This function can be used to reset all of the  
alarms as long as activated (maintained  
action). Active alarms are reset until the  
alarm condition is cleared and triggered  
again (momentary action).  
This function can be used to reset alarm 1  
as long as activated (maintained action).  
An active alarm is reset until the alarm  
condition is cleared and triggered again  
(momentary action).  
A1rs  
A2rS  
A3rS  
This function can be used to reset alarm 2  
as long as activated (maintained action).  
An active alarm is reset until the alarm  
condition is cleared and triggered again  
(momentary action).  
This function can be used to reset alarm 3  
as long as activated (maintained action).  
An active alarm is reset until the alarm  
condition is cleared and triggered again  
(momentary action).  
Shaded parameters are programming/model dependent.  
13  
7.2 mOdule 2 - OuTpuT parameTers (2-OP)  
2-OP  
PARAMETER MENU  
CNFP  
P
P
OPAC  
CtrL  
CYC1  
OP1L  
OP1H  
1F01  
An1L  
An1H  
CYC2  
OP2L  
OUTPUT 1  
ANALOG LOW  
SCALING  
CONTROL  
ACTION  
CONTROL  
MODE  
OP1 CYCLE  
TIME  
OUTPUT 1  
POWER  
LOW LIMIT  
OUTPUT 1  
POWER  
HIGH LIMIT  
INPUT  
FAIL OP1  
POWER LEVEL  
OUTPUT 1  
ANALOG  
HIGH SCALING  
OP2 CYCLE  
TIME  
OUTPUT 2  
POWER  
LOW LIMIT  
OP2H  
IF02  
gAN2  
db-2  
CHYS  
Programming/model dependent.  
OUTPUT 2  
POWER  
HIGH LIMIT  
INPUT  
FAIL OP2  
POWER LEVEL  
OUTPUT 2  
RELATIVE  
GAIN  
OUTPUT 2  
DEADBAND  
ON/OFF  
CONTROL  
HYSTERESIS  
CONTROL ACTION  
OUTPUT 1 POWER UPPER LIMIT  
  
.  
C  
l  
r = Reverse Acting  
d = Direct Acting  
A = Alarm 3  
.to .%  
This parameter may be used to limit controller power at the upper end due to  
process disturbances or setpoint changes. Enter the safe output 1 power limit for  
the process. When the controller is in USEr or OnOF Control Mode, this limit  
does not apply.  
This determines the action for each Output. When programmed as r1d2,  
Output 1 will function in the Reverse mode (heating) and Output 2 will function  
in the Direct mode (Cooling). When selected as A, OP2 is configured as the  
alarm 3 output and the alarm 3 settings will become accessible in the Alarm  
module configuration menu and OP2 parameters will no longer be available.  
INPUT FAIL OP1 POWER LEVEL  
I.to .%  
CONTROL MODE  
.  
C  
I  
I  
  
This parameter sets the power level in the event of an input failure (open TC/  
RTD or shorted RTD). Manual (USEr) Control overrides the input fail preset.  
Select the Control Output(s) mode of operation. This parameter can also be  
selected in the Hidden Loop when configured in Module 3.  
OUTPUT 1 ANALOG LOW SCALING  
.to .  
OP1 CYCLE TIME  
.  
CC  
.  
.to .seconds  
The output power level that corresponds with 0 V or 4 mA analog output.  
The Cycle Time is entered in seconds with one tenth of a second resolution.  
It is the total time for one on and one off period of an OP1 time proportioning  
control output. With time proportional control, the percentage of power is  
converted into an output on-time relative to the cycle time value set. (If the  
controller calculates that 65% power is required and a cycle time of 10.0  
seconds is set, the output will be on for 6.5 seconds and off for 3.5 seconds.)  
For best control, a cycle time equal to one-tenth or less, of the natural period of  
oscillation of the process is recommended. When OP1 is an analog output, the  
Cycle Time is the analog output update time. A Cycle Time selection of 0.0 will  
disable the output.  
OUTPUT 1 ANALOG HIGH SCALING  
.to .  
.  
The output power level that corresponds with 10 V or 20 mA analog output.  
An inverse action can be achieved by reversing the high and low scaling points.  
OP2 CYCLE TIME  
OUTPUT 1 POWER LOWER LIMIT  
CC  
.  
.to .seconds  
  
.  
.to .%  
The Cycle Time is entered in seconds with one tenth of a second resolution.  
It is the total time for one on and one off period of an OP2 time proportioning  
control output. With time proportional control, the percentage of power is  
converted into an output on-time relative to the cycle time value set. (If the  
controller calculates that 65% power is required and a cycle time of 10.0  
seconds is set, the output will be on for 6.5 seconds and off for 3.5 seconds.)  
For best control, a cycle time equal to one-tenth or less, of the natural period of  
oscillation of the process is recommended. When OP2 is an analog output, the  
Cycle Time is the analog output update time. A Cycle Time selection of 0.0 will  
disable the output.  
This parameter may be used to limit controller power at the lower end due to  
process disturbances or setpoint changes. Enter the safe output 1 power limit for  
the process. When the controller is in USEror OnOFControl Mode or Auto Tune,  
this limit does not apply.  
Shaded parameters are programming/model dependent.  
14  
RELATIVE GAIN  
OUTPUT 2 POWER LOWER LIMIT  
  
.  
  
.  
.to .%  
.to .  
This parameter may be used to limit controller power at the lower end due to  
process disturbances or setpoint changes. Enter the safe output 2 low power  
limit for the process. When the controller is in USEror OnOFControl Mode, this  
limit does not apply.  
This defines the gain of OP2 relative to OP1. It is generally set to balance the  
effects of cooling to that of heating(r1d2) or vice versa (d1r2). This is  
illustrated in the Heat/Cool Relative Gain Figures below. After completion of  
Auto-Tune, this parameter will be changed.  
DEADBAND/OVERLAP  
OUTPUT 2 POWER UPPER LIMIT  
b  
to   
  
.  
.to .%  
This defines the deadband area between the bands (positive value) or the  
overlap area in which both heating and cooling are active (negative value). If a  
heat/cool overlap is specified, the percent output power is the sum of the heat  
power and the cool power. The function of Deadband/Overlap is illustrated in  
the Control Mode Explanations.  
This parameter may be used to limit controller power at the upper end due to  
process disturbances or setpoint changes. Enter the safe output 2 high power  
limit for the process. When the controller is in USEror OnOFControl Mode, this  
limit does not apply.  
ON/OFF CONTROL HYSTERESIS  
INPUT FAIL OP2 POWER LEVEL  
C  
I  
.  
.to .%  
to   
This parameter sets the power level in the event of an input failure (open TC/  
RTD or shorted RTD). Manual (USEr) Control overrides the input fail preset.  
The On/Off Control Hysteresis (balanced around the setpoint) eliminates  
output chatter. The control hysteresis value affects both OP1 and OP2 control.  
The hysteresis band has no effect on PID Control. On/Off Control Hysteresis is  
illustrated in the Control Mode explanations.  
Shaded parameters are programming/model dependent.  
HEAT/COOL RELATIVE GAIN FIGURES  
DEADBAND  
NEGATIVE VALUE  
2X PROPORTIONAL  
BAND  
RELATIVE GAIN  
1
OP1  
100%  
OP2  
100%  
OP1  
100%  
OP2  
100%  
2
.5  
%
%
OUTPUT  
POWER  
OUTPUT  
POWER  
TEMPERATURE  
TEMPERATURE  
RELATIVE GAIN = .5  
HEAT  
COOL  
COOL  
HEAT  
SETPOINT  
SETPOINT  
Deadband/Overlap = 0  
Deadband/Overlap < 0  
DEADBAND  
POSITIVE VALUE  
RELATIVE GAIN  
1
OP1  
100%  
OP2  
100%  
2
.5  
%
OUTPUT  
POWER  
TEMPERATURE  
RELATIVE GAIN = .5  
COOL  
HEAT  
SETPOINT  
Deadband/Overlap > 0  
15  
7.3 mOdule 3 - lOCKOuT parameTers (3-LC)  
PARAMETER MENU  
3-LC  
CNFP  
P
P
SP  
SETPOINT  
OP1  
OUTPUT 1  
POWER  
OP2 SPrP PId r-S  
PID  
OPOF  
ProP Intt dErt dInt  
OUTPUT 2  
POWER  
SETPOINT  
CONTROLLER  
STATUS  
OUTPUT  
POWER  
OFFSET  
PROPORTIONAL  
BAND  
DERIVATIVE INTEGRATION  
INTEGRAL  
TIME  
TIME  
DEFAULT  
RAMP RATE  
GROUP  
AL-1 AL-2 AL-3 ALrS SPSL tUNE CtrL trnF dEv  
AUTO-TUNE  
START  
CodE  
ALARM 1  
VALUE  
ALARM 2  
VALUE  
ALARM 3  
VALUE  
ALARM  
RESET  
SETPOINT  
SELECT  
CONTROL  
MODE  
ACCESS  
CODE  
CONTROL  
MODE  
TRANSFER  
DEVIATION  
VALUE  
Programming/model dependent.  
ACCESS CODE  
SELECTION  
DESCRIPTION  
Display: accessible in Display Loop.  
dISP  
PArA  
HIdE  
LOC  
C  
 to   
Parameter: accessible in Parameter Loop  
Hide: accessible in Hidden Loop.  
Locked: not accessible in loops.  
Full access to Display, Hidden, and  
Configuration Loops  
Code necessary to access  
Configuration Loop only. *  
Code necessary to access Hidden  
and Configuration Loops. *  
0
Display/read: read only in Display Loop, but read/write  
in Hidden Loop.  
dSPr  
-1 to -125  
1 to 125  
The following parameters can be configured for the selections described  
above. See Programming Loops section for a description of loops and  
parameters.  
* If PLOC is active, Configuration Loop is not accessible.  
FACTORY  
SETTING  
PARAMETER  
SELECTION  
SP  
dISP  
dISP, PArR, HIdE, LOC, dSPr  
dISP, PArR, HIdE, LOC, dSPr  
dISP, PArR, HIdE, LOC, dSPr  
dISP, PArR, HIdE, LOC, dSPr  
dISP, PArR, HIdE, LOC, dSPr  
dISP, PArR, HIdE, LOC, dSPr  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
PArR, HIdE, LOC  
HIdE, LOC  
HIdE, LOC  
HIdE, LOC  
OP1  
PArR  
PArR  
PArR  
PArR  
dISP  
PArR  
PArR  
PArR  
PArR  
LOC  
OP2  
SPrP  
PId  
r-S  
OPOF  
ProP  
Intt  
dErt  
dInt  
AL-1  
AL-2  
AL-3  
ALrS  
SPSL  
tUNE  
CtrL  
trnf  
dEv  
PArR  
PArR  
PArR  
PArR  
PArR  
HIdE  
HIdE  
HIdE  
dISP  
dISP, LOC  
Parameters may not appear in selected loop if not applicable to current  
operating mode.  
Ex. 1. If At2 = NONE, AL-2 will not be displayed in selected loop.  
2. If CtrL = ONOF, PID parameters will not be displayed in selected loop.  
Shaded parameters are programming/model dependent.  
16  
7.4 mOdule 4 - alarm parameTers (4-AL) (OpTiOnal)  
PARAMETER MENU  
4-AL  
CNFP  
P
P
ACt1  
Lit1  
rSt1  
Stb1  
AL-1  
1FA1  
Act2  
Lit2  
rSt2  
Stb2  
AL-2  
ALARM 1  
ACTION  
ALARM 1  
ANNUNCIATOR  
ALARM 1  
RESET  
MODE  
ALARM 1  
STANDBY  
ALARM 1  
VALUE  
INPUT FAIL  
ALARM 1  
ACTION  
ALARM 2  
ACTION  
ALARM 2  
ANNUNCIATOR  
ALARM 2  
RESET  
MODE  
ALARM 2  
STANDBY  
ALARM 2  
VALUE  
IFA2  
Stb3  
ACt3  
Lit3  
rSt3  
AL-3  
IFA3  
AHYS  
Colr  
INPUT FAIL  
ALARM 2  
ACTION  
ALARM 3  
STANDBY  
ALARM 3  
ACTION  
ALARM 3  
ANNUNCIATOR  
ALARM 3  
RESET  
MODE  
ALARM 3  
VALUE  
INPUT FAIL  
ALARM 3  
ACTION  
ALARM  
HYSTERESIS  
CHANGE  
DISPLAY  
COLOR  
Programming/model dependent.  
AVAILABLE ALARM ACTIONS  
No action, the remaining Alarm  
parameters are not available.  
Deviation High  
Deviation Low  
The alarm value tracks the Setpoint value  
The alarm value tracks the Setpoint value  
The alarm value tracks the Setpoint value  
The alarm value tracks the Setpoint value  
d-HI  
d-LO  
b-IN  
b-ot  
None  
NONE  
AbHI  
The alarm energizes when the Process  
Value exceeds the alarm value + 1/2 the  
hysteresis value.  
Absolute High  
(balanced hysteresis)  
Band Acting (inside)  
Band Acting (outside)  
The alarm energizes when the Process  
Value falls below the alarm value -1/2 the  
hysteresis value.  
Absolute Low  
(balanced hysteresis)  
AbLO  
Absolute High  
The alarm energizes when the Process  
AuHI  
AuLO  
(unbalanced hysteresis) Value exceeds the alarm value.  
Absolute Low The alarm energizes when the Process  
(unbalanced hysteresis) Value falls below the alarm value.  
ALARM ACTION FIGURES  
SP  
AL + ½Hys  
AL + Hys  
AL  
Hys  
Hys  
Hys  
SP - AL  
AL  
AL - ½Hys  
OFF  
ON  
OFF  
ALARM  
STATE  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ALARM  
STATE  
ALARM  
STATE  
TRIGGER POINTS  
TRIGGER POINTS  
TRIGGER POINTS  
AbHI - Absolute High Acting (Balanced Hys)  
AuLO - Absolute Low Acting (Unbalanced Hys)  
d-LO - Deviation Low Acting (AL>0)  
Hys  
Hys  
SP + AL  
SP + AL  
AL + ½Hys  
Hys  
SP  
AL  
Hys  
SP  
SP - AL  
AL - ½Hys  
ALARM  
STATE  
OFF  
ON  
OFF  
ALARM  
STATE  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ALARM  
STATE  
TRIGGER POINTS  
TRIGGER POINTS  
TRIGGER POINTS  
BnIsie Atig  
b-IN - Inside Acting  
d-HI - Deviation High Acting (AL>0)  
AbLO - Absolute Low Acting (Balanced Hys)  
SP + AL  
Hys  
Hys  
SP  
AL  
SP  
Hys  
SP + (-AL)  
Hys  
AL - Hys  
SP - AL  
ALARM  
STATE  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ALARM  
STATE  
OFF  
ON  
OFF  
ON  
OFF  
ALARM  
STATE  
TRIGGER POINTS  
TRIGGER POINTS  
TRIGGER POINTS  
BsAi
Altitg ld
AuHI - Absolute High Acting (Unbalanced Hys)  
d-HI - Deviation High Acting (AL<0)  
b-ot - Band Outside Acting  
Note: Hys in the above figures refers to the Alarm Hysteresis.  
17  
ALARM 1 ACTION  
ALARM 2 ANNUNCIATOR  
  
  
C  
  
 Normal  
v Reverse  
NONE AbHI AbLO AuHI AuLO  
d-HI d-LO b-IN b-ot  
With normal selection, the alarm annunciator indicates an “on” alarm output  
2. With reverse selection, the alarm annunciator indicates an “off” alarm output.  
Select the action for the alarm. See Alarm Action Figures at the beginning of  
this section for a visual explanation.  
ALARM 1 ANNUNCIATOR  
ALARM 2 RESET MODE  
Lit1  
 Normal  
  
  
 Automatic  
v Reverse  
 Latched  
  
With normal selection, the alarm annunciator indicates an “on” alarm output  
1. With reverse selection, the alarm annunciator indicates an “off” alarm output.  
In Automatic mode, an energized alarm turns off automatically after the  
Temperature/Process value leaves the alarm region. In Latched mode, an  
energized alarm requires an 1 / 2 key or user input alarm reset to turn off.  
After an alarm reset, the alarm remains reset off until the trigger point is crossed  
again.  
ALARM 1 RESET MODE  
  
  
 Automatic  
ALARM 2 STANDBY  
 Latched  
b  
  
 Standby on  
 Standby off  
In Automatic mode, an energized alarm turns off automatically after the  
Temperature/Process value leaves the alarm region. In Latched mode, an  
energized alarm requires an 1 / 2 key or user input alarm reset to turn off. After  
an alarm reset, the alarm remains reset off until the trigger point is crossed again.  
Standby prevents nuisance (typically low level) alarms after a power up.  
After powering up the controller, the process must leave the alarm region (enter  
normal non-alarm area of operation). After this has occurred, the standby is  
disabled and the alarm responds normally until the next controller power up.  
ALARM 1 STANDBY  
b  
  
 Standby on  
ALARM 2 VALUE  
 Standby off  
  
  
Standby prevents nuisance (typically low level) alarms after a power up.  
After powering up the controller, the process must leave the alarm region (enter  
normal non-alarm area of operation). After this has occurred, the standby is  
disabled and the alarm responds normally until the next controller power up.  
to   
The alarm values are entered as process units or degrees. They can also be  
entered in the Parameter or Hidden Loops. When the alarm is configured as  
deviation or band acting, the associated output tracks the Setpoint as it is  
changed. The value entered is the offset or difference from the Setpoint.  
ALARM 1 VALUE  
  
  
to   
INPUT FAIL ALARM 2 ACTION  
I  
  
The alarm values are entered as process units or degrees. They can be entered  
in the Parameter or Hidden Loops, when enabled in 3-LC. When the alarm is  
configured as deviation or band acting, the associated output tracks the Setpoint  
as it is changed. The value entered is the offset or difference from the Setpoint  
at which the alarm condition will occur.  
   
Select the Alarm action in the event of a detected input failure (open TC/RTD  
or shorted RTD).  
Alarm 3 parameters in this module are programming dependent. They are  
available only when Output 2 control action is programmed as alarm.  
INPUT FAIL ALARM 1 ACTION  
I  
  
   
ALARM 3 ACTION  
C3  
  
Select the Alarm action in the event of a detected input failure (open TC/RTD  
or shorted RTD).  
NONE AbHI AbLO AuHI AuLO  
d-HI d-LO b-IN b-ot  
Select the action for the alarm. See Alarm Action Figures at the beginning of  
this section for a visual explanation.  
ALARM 2 ACTION  
NONE AbHI AbLO AuHI AuLO  
C  
  
ALARM 3 ANNUNCIATOR  
d-HI d-LO b-IN b-ot  
Lit3  
 Normal  
v Reverse  
Select the action for the alarm. See Alarm Action Figures at the beginning of  
this section for a visual explanation.  
  
With normal selection, the alarm annunciator indicates an “on” alarm output  
3. With reverse selection, the alarm annunciator indicates an “off” alarm output.  
Shaded parameters are programming/model dependent.  
18  
INPUT FAIL ALARM 3 ACTION  
ALARM 3 RESET MODE  
3  
  
 Automatic  
 Latched  
I3  
  
   
In Automatic mode, an energized alarm turns off automatically after the  
Temperature/Process value leaves the alarm region. In Latched mode, an  
energized alarm requires an 1 / 2 key or user input alarm reset to turn off. After  
an alarm reset, the alarm remains reset off until the trigger point is crossed again.  
Select the Alarm action in the event of a detected input failure (open TC/RTD  
or shorted RTD).  
ALARM HYSTERESIS  
ALARM 3 STANDBY  
  
to   
b3  
  
 Standby on  
 Standby off  
The Hysteresis Value is either added to or subtracted from the alarm value,  
depending on the alarm action selected. The same value applies to both alarms.  
See the Alarm Action Figures at the beginning of this section for a visual  
explanation of how alarm actions are affected by the hysteresis.  
Standby prevents nuisance (typically low level) alarms after a power up.  
After powering up the controller, the process must leave the alarm region (enter  
normal non-alarm area of operation). After this has occurred, the standby is  
disabled and the alarm responds normally until the next controller power up.  
CHANGE COLOR  
ALARM 3 VALUE  
Cl  
  
AL-3  
OFF ANY AL-1 AL-2  
3  
3  
to   
Select alarm(s) to change Input Display color intensity when appropriate  
alarm(s) are triggered.  
The alarm values are entered as process units or degrees. They can also be  
entered in the Parameter or Hidden Loops. When the alarm is configured as  
deviation or band acting, the associated output tracks the Setpoint as it is  
changed. The value entered is the offset or difference from the Setpoint.  
Shaded parameters are programming/model dependent.  
7.5 mOdule 7 - serial COmmuniCaTiOns parameTers (C)  
7-SC  
PARAMETER MENU  
CNFP  
P
P
tYPE  
bAUd  
dAtA  
PArb  
Addr  
DATA  
BIT  
PARITY  
BIT  
UNIT  
ADDRESS  
COMUNICATIONS  
TYPE  
BAUD  
RATE  
COMMUNICATIONS TYPE  
PARITY BIT  
  
  
  
NO  
 ModBus RTU  
C ModBus ASCII  
NO  
EvEN  
Odd  
Select the desired communications protocol.  
Set the parity bit to match that of the other serial communications equipment  
used.  
BAUD RATE  
  
UNIT ADDRESS  
2400 600 3K4  
400 1K2  
38K4  
  
247  
1 to 247  
Set the baud rate to match that of other serial communications equipment.  
Normally, the baud rate is set to the highest value that all of the serial  
communications equipment is capable of transmitting.  
Select a Unit Address that does not match an address number of any other  
device on the serial link.  
DATA BIT  
  
8
7
Select either 7 or 8 bit data word lengths. Set the word length to match that  
of other serial communication equipment. If rtUis selected as the communication  
type, dAtA defaults to 8.  
19  
serial COmmuniCaTiOns  
When using a PXU with RS485 communications option, the PXU will support Modbus communications. Unit configuration,  
as well as data interrogation, can be accomplished through Modbus communications. The PXU allows for 32 Read / Write  
registers. A complete list of Modbus registers is available at the end of this document.  
PXU CONFIGURATION USING CRIMSON  
CRIMSON SOFTWARE  
Crimson is a Windows® based program that allows configuration of the PXU  
controller from a PC. Crimson offers standard drop-down menu commands to  
make it easy to program the PXU controller, the PXU database can then be  
saved in a PC file for future use. The Crimson 2.0 software is available at www.  
redlion.net. An RS-485 PC card or USB to RS485 converter and cabling is  
required. Prior to downloading or extracting the database, the PXU must be set  
to Modbus RTU communications type. The proper communications port, baud  
rate, and unit address must be configured in the Link, Options dialog and must  
matchthebaudrateandunitaddressconfiguredinthePXUserialcommunications  
module (7-SC).  
1. Install Crimson software, available for download at www.redlion.net.  
2. Connect communications cable from PXU to PC.  
3. Supply power to PXU.  
4. Configure serial parameters as Modbus RTU (rtu), 38,400 baud, address  
247.  
5. Create a new file (File, New) or open an existing PXU database within  
Crimson.  
6. Configure Crimson 2 Link options (Link, Options) to the serial port which the  
communication cable is attached (in step 2).  
7. Select Update (Link, Update).  
PXU FREQUENTLY USED MODBUS REGISTERS  
Only frequently used registers are shown below. The entire Modbus Register Table can be found at the end of this document.  
The following is an example of the necessary query and corresponding response for holding register 2. In this example register 2 is the decimal value 123.  
Query: 01 03 00 01 00 01 D5 CA  
Response: 01 03 02 00 7B F8 67  
Notes:  
1. The PXU registers can be read as holding (4x) or input (3x) registers.  
2. The PXU should not be powered down while parameters are being changed. Doing so may result in an in-complete write to the non-volatile memory and produce  
checksum errors.  
FACTORY  
SETTING  
REGISTER (4x)  
REGISTER NAME  
LOW LIMIT  
HIGH LIMIT  
ACCESS  
COMMENTS  
1
2
Process Value (PV)  
N/A  
-999  
-999  
-999  
N/A  
-999  
-999  
-999  
0
N/A  
9999  
9999  
9999  
N/A  
N/A  
Read  
1 = 1 Display unit  
Active Setpoint (SP)  
Setpoint 1 (SP1)  
Setpoint 2 (SP2)  
Setpoint Deviation  
Alarm 1 Value  
0
0
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read Only 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
3
4
0
5
N/A  
100  
200  
300  
0
6
9999  
9999  
9999  
1000  
1000  
7
Alarm 2 Value  
8
Alarm 3 Value  
9
Output Power 1  
Output Power 2  
Read/Write 1 = 0.1%; writable when in manual mode only.  
Read/Write 1 = 0.1%; writable when in manual mode only.  
10  
0
0
999(.9)° or  
9999 (process)  
11  
PB Proportional band (Active)  
1
70  
Read/Write 1 = 1 Display unit  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Integral time (Active)  
Derivative time (Active)  
Integration default (Active)  
PID parameter set selection  
Auto-Tune Start  
0
0
0
0
0
0
0
0
0
9999  
9999  
1000  
1
120  
30  
0
Read/Write 1 = 1 second  
Read/Write 1 = 1 second  
Read/Write 1 = 0.1 % output power  
Read/Write 0 = PID Set 1, 1 = PID Set 2  
Read/Write 0 = No; 1 = Yes  
0
1
0
Control Mode Transfer (Auto/Manual)  
Controller Status  
1
0
Read/Write 0 = Automatic (PID), 1 = User (Manual Mode)  
Read/Write 0: Stop, 1: Run  
1
1
Setpoint Select  
1
0
Read/Write 0=SP1, 1=SP2  
SP Ramp Rate  
9999  
0
Read/Write 1 = 1 Display unit/minute  
b0: ALM3, b1: ALM2, b2: F, b3: C, b4: ALM1,  
Read Only  
21  
22  
LED Status  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
b5: OUT2, b6:OUT1, b7: AT  
b1: F2, b2: Down, b3: P, b5: F1, b6: Up, b7: D;  
Read Only  
Pushbutton Status  
0 = Key pressed, 1 = Key not pressed  
23  
24  
25  
Alarm Reset  
0
0
0
7
1
1
0
0
0
Write  
b0: Reset Alm1, b1: Reset Alm2, b3: Reset Alm3  
Setpoint Ramping Disable  
Integral Action Disable  
Read/Write 0 = Enabled, 1 = Disabled  
Read/Write 0 = Enabled, 1 = Disabled  
20  
7.5 mOdule 9 faCTOry serviCe OperaTiOns (9-FS)  
9-FS CNFP  
PARAMETER MENU  
P
CodE  
FACTORY  
SERVICE CODE  
RESTORE FACTORY SETTINGS  
C  
  
Press and hold B to display C . Press :. The controller will display  
 and then return to C. Press = to return to the Display Loop. This will  
overwrite all user settings with Factory Settings.  
TrOubleshOOTing  
For further technical assistance, contact technical support.  
PROBLEM  
CAUSE  
REMEDIES  
1. Power off.  
2. Brown-out condition.  
3. Loose connection or improperly wired.  
4. Controller not fully seated into case.  
1. Check power.  
NO DISPLAY  
2. Verify power reading.  
3. Check connections.  
4. Check installation.  
1. Incorrect setup parameters.  
2. Stop Mode.  
1. Check setup parameters.  
2. Change to Run mode.  
CONTROLLER NOT  
WORKING  
1. Display value exceeds 4 digit display range.  
2. Defective or miscalibrated cold junction circuit.  
3. Loss of setup parameters.  
1. Check input parameters (Input Type).  
2. Change display resolution/scaling.  
3. Recalibrate controller. (Consult Factory)  
4. Consult Factory  
. . . or . . . IN DISPLAY  
4. Internal malfunction.  
1. Probe disconnected.  
1. Check probe wire/change probe.  
2. Check sensor input type selection.  
3. Perform cold junction calibration. (Consult Factory)  
4. Perform Input calibration. (Consult Factory)  
IN DISPLAY  
2. Broken or burned-out probe.  
3. Corroded or broken terminations.  
4. Excessive process temperature.  
1. Input exceeds range of controller.  
2. Temperature exceeds range of input probe.  
3. Defective or incorrect transmitter or probe.  
4. Excessive high temperature for probe.  
5. Loss of setup parameters.  
1. Check input parameters.  
2. Change to input sensor with a higher temperature range.  
3. Replace transmitter or probe.  
4. Reduce temperature.  
5. Perform input calibration. (Consult Factory)  
IN TOP DISPLAY  
1. Input is below range of controller.  
2. Temperature below range of input probe.  
3. Defective or incorrect transmitter or probe.  
4. Excessive low temperature for probe.  
5. Loss of setup parameters.  
1. Check input parameters.  
2. Change to input sensor with a lower temperature range.  
3. Replace transmitter or probe.  
4. Raise temperature.  
5. Perform input calibration. (Consult Factory)  
IN TOP DISPLAY  
IN DISPLAY  
1. RTD probe shorted.  
1. Check wiring and/or replace RTD probe.  
1. Incorrect PID values.  
2. Incorrect probe location.  
1. See PID control.  
2. Evaluate probe location.  
CONTROLLER SLUGGISH OR  
NOT STABLE  
1. Active User Input, programmed for PLOC.  
2. Incorrect access code entered.  
1. Deactivate User Input.  
2. Enter proper access code at CodE 0 prompt. (111 or -111 =  
universal access code)  
CANNOT ACCESS  
PROGRAMMING  
21  
COnTrOl mOde explanaTiOns  
ON/OFF CONTROL  
ON/OFF CONTROL - HEAT/COOL OUTPUT FIGURES  
In this control mode, the process will constantly oscillate around the setpoint  
value. The On/Off Control Hysteresis (balanced around the setpoint) can be  
used to eliminate output chatter. Output Control Action can be set to reverse for  
heating (output on when below the setpoint) or direct for cooling (output on  
when above the setpoint) applications.  
INPUT  
DEADBAND/OVERLAP (db2) = 0  
SP + 1/2 CHYS  
CHYS  
SP  
ON/OFF CONTROL -  
REVERSE OR DIRECT ACTING FIGURES  
SP - 1/2 CHYS  
INPUT  
REVERSE ACTING  
OFF  
ON  
OFF  
ON  
Output (r) :  
SP + 1/2 CHYS  
SP  
ON  
OFF  
Output (d) :  
INPUT  
SP - 1/2 CHYS  
DEADBAND/OVERLAP (db-2) > 0  
SP + 1/2 (db-2) + 1/2 CHYS  
CHYS  
SP + 1/2 (db-2)  
OFF  
ON  
OFF  
Output (r) :  
SP + 1/2 (db-2) - 1/2 CHYS  
db-2  
SP  
INPUT  
DIRECT ACTING  
SP - 1/2 (db-2) + 1/2 CHYS  
SP - 1/2 (db-2)  
CHYS  
SP - 1/2 (db-2) - 1/2 CHYS  
SP + 1/2 CHYS  
SP  
Output (r) :  
Output (d) :  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
SP - 1/2 CHYS  
INPUT  
DEADBAND/OVERLAP (db-2) < 0  
OFF  
ON  
OFF  
Output (d) :  
SP + 1/2 (db-2) + 1/2 CHYS  
SP + 1/2 (db-2)  
CHYS  
Note: CHYS in the On/Off Control Figures refers to the On/Off Control  
Hysteresis (C) in parameter Module 2.  
SP + 1/2 (db-2) - 1/2 CHYS  
db-2  
SP  
For heat and cool systems, Control Action parameter is used to reverse (r) for  
heating and direct (d) for cooling. The Deadband/Overlap in Cooling sets the  
amount of operational deadband or overlap between the outputs. The setpoint  
and the On/Off Control Hysteresis applies to both OP1 and OP2 outputs. The  
hysteresis is balanced in relationship to the setpoint and deadband value.  
SP - 1/2 (db-2) + 1/2 CHYS  
SP - 1/2 (db-2)  
SP - 1/2 (db-2) - 1/2 CHYS  
CHYS  
Output (r) :  
Output (d) :  
ON  
OFF  
ON  
ON  
OFF  
ON  
PID CONTROL  
TYPICAL PID RESPONSE CURVE  
In PID Control, the controller processes the input and then calculates a  
control output power value by use of Proportional Band, Integral Time, and  
Derivative Time control algorithm. The system is controlled with the new  
output power value to keep the process at the setpoint. The Control Action for  
PID Control can be set to reverse for heating (output on when below the  
setpoint) or direct for cooling (output on when above the setpoint) applications.  
For heat and cool systems, the heat and cool outputs are both used. The PID  
parameters can be established by using Auto-Tune, or they can be Manually  
tuned to the process.  
P & I  
P & I & D  
INPUT  
SP  
P & D  
P only  
TIME  
22  
TIME PROPORTIONAL PID CONTROL  
In Time Proportional applications, the output power is converted into output  
On time using the Cycle Time. For example, with a four second cycle time and  
75% power, the output will be on for three seconds (4 × 0.75) and off for  
one second.  
AUTOMATIC CONTROL MODE  
In Automatic Control Mode, the percentage of output power is automatically  
determined by PID or On/Off calculations based on the setpoint and process  
feedback. For this reason, PID Control and On/Off Control always imply  
Automatic Control Mode.  
The Cycle Time should be no greater than 1/10 of the natural period of  
oscillation for the process. The natural period is the time it takes for one  
complete oscillation when the process is in a continuously oscillating state.  
MANUAL CONTROL MODE  
In USEr Control Mode, the controller operates as an open loop system, and  
does not use the setpoint or process feedback. The user adjusts the percentage  
of power through the OP1 or OP2 parameter to control the power for each  
Output. The Low and High Output Power limits are ignored when the controller  
is in Manual.  
LINEAR PID CONTROL  
In Linear PID Control applications, OP1 provides a linear output signal that  
is proportional to the calculated OP1 value (% Output Power). The PXU allows  
the user to program the %OP value at which the analog low (An1L) and high  
(An1H) output signal will be produced. The Analog Output will then be  
proportional to the PID calculated % output power. For example, with 0 to 10  
VDC output configured as 0 (An1L) to 100 (An1H) an OP1 value of 75% provides  
an analog output of 7.5 VDC. Cycle Time will determine the update time of the  
linear ouput signal.  
MODE TRANSFER  
When transferring the controller mode between Automatic and User/Manual,  
the controlling outputs remain constant, exercising true “bumpless” transfer.  
When transferring from Manual to Automatic, the power initially remains  
steady, but Integral Action corrects (if necessary) the closed loop power demand  
at a rate proportional to the Integral Time.  
pid Tuning explanaTiOns  
AUTO-TUNE  
Auto-Tune is a user-initiated function that allows the controller to  
automatically determine the Proportional Band, Integral Time, Derivative Time,  
Integration Default, and Relative Gain (Heat/Cool) values based upon the  
process characteristics. The Auto-Tune operation cycles the controlling  
output(s) at the setpoint. The nature of these oscillations determines the settings  
for the controller’s parameters.  
Prior to initiating Auto-Tune, it is important that the controller and system be  
first tested. This can be accomplished in On/Off Control or Manual Control  
Mode. If there is a wiring, system or controller problem, Auto-Tune may give  
incorrect tuning or may never finish. Auto-Tune may be initiated at start-up,  
from setpoint or at any other process point. However, ensure normal process  
conditions (example: minimize unusual external load disturbances) as they will  
have an effect on the PID calculations.  
The controller should automatically stop Auto-Tune and store the calculated  
values when the four cycles are complete. If the controller remains in Auto-Tune  
unusually long, there may be a process problem. Auto-Tune may be stopped by  
entering  in .  
Start Auto-Tune  
Below are the parameters and factory settings that affect Auto-Tune. If these  
setting are acceptable then Auto-Tune can be started just by performing three  
steps. If changes are needed, then they must be made before starting Auto-Tune.  
FACTORY  
SETTING  
AUTO-TUNE OPERATION  
(REVERSE ACTING)  
DISPLAY  
PARAMETER  
MODULE  
t-j  
Curr  
Input Type  
tYpE  
OPAC  
CHYS  
tUNE  
1-IN  
2-OP  
2-OP  
3-LC  
INPUT  
Output Control Action  
On/Off Control Hysteresis  
Auto-Tune Access  
SETPOINT  
(temp)  
20 (temp)  
HIdE  
AUTO-TUNE COMPLETE, PID  
SETTINGS ARE CALCULATED  
AND LOADED INTO MEMORY  
AUTO-TUNE  
START  
1. Enter the Setpoint value in the Display Loop.  
TIME  
2. Set the On/Off Control Hysteresis (CHYS) to a value that is appropriate for the  
process.  
PHASE  
Aut1  
Aut2  
Aut3  
Aut4  
3. Initiate Auto-Tune by changing  to  in the Hidden Loop, and then  
press :.  
OFF  
OFF  
OUTPUT (r) :  
ON  
ON  
Auto-Tune Progress  
The controller will oscillate the controlling output(s) for four cycles. The AT  
annunciator will flash during this time. Parameter viewing is permitted during  
Auto-Tune. The time to complete the Auto-Tune cycles is process dependent.  
23  
PID Adjustments  
MANUAL TUNING  
In some applications, it may be necessary to fine tune the Auto-Tune  
calculated PID parameters. To do this, a chart recorder or data logging device is  
needed to provide a visual means of analyzing the process. Compare the actual  
process response to the PID response figures with a step change to the process.  
Make changes to the PID parameters in no more than 20% increments from the  
starting value and allow the process sufficient time to stabilize before evaluating  
the effects of the new parameter settings.  
A chart recorder or data logging device is necessary to measure the time  
between process cycles. This procedure is an alternative to the controller’s Auto-  
Tune function. It will not provide acceptable results if system problems exist.  
1. Set the Proportional Band () to 10.0% of the input range for temperature  
inputs and 100.0% for process inputs.  
2. Set both the Integral Time (I) and Derivative Time () to 0 seconds.  
3. Set the Output Cycle Time in Output Module to no higher than one-tenth  
of the process time constant (when applicable).  
4. Place the controller in Manual () Control Mode () and adjust the %  
Power to drive the process value to the Setpoint value. Allow the process to  
stabilize after setting the % Power. Note:  must be set to  in  
Parameter Lockouts Module 3C.  
In some unusual cases, the Auto-Tune function may not yield acceptable  
control results or induced oscillations may cause system problems. In these  
applications, Manual Tuning is an alternative.  
PROCESS RESPONSE EXTREMES  
5. Place the controller in Automatic () Control Mode (). Place the value  
of % power into the Output Power Offset (OPOF). If the process will not  
stabilize and starts to oscillate, set the Proportional Band two times higher  
and go back to Step 4. Also put Output Power Offset (OPOF) back to zero.  
6. If the process is stable, decrease Proportional Band setting by two times and  
change the Setpoint value a small amount to excite the process. Continue  
with this step until the process oscillates in a continuous nature.  
7. Set the Proportional Band to three times the setting that caused the oscillation  
in Step 6.  
OVERSHOOT AND OSCILLATIONS  
INPUT  
SP  
8. Set the Integral Time to two times the period of the oscillation.  
9. Set the Derivative Time to 1/8 (0.125) of the Integral Time.  
DIGITAL POTENTIOMETER  
A PXU with an analog type Control Output 1 can be used as a digital  
potentiometer. To use the PXU as a digital pot, configure the PXU for Manual  
control mode. Also configure OP1 parameter to be displayed and adjusted on  
display line 2. OP1 output terminals provide the analog output (digital pot)  
signal. The OP1 parameter displayed on line 2 is viewed in units of % output  
(0.0 to 100.0) only. If desired, the PXU line 1 display can be wired and  
configured to display the output signal level in engineering units. To do this,  
wire the OP1 output signal (in series for current signals and parallel for voltage  
signals) to the PXU’s input and scale the input display for the desired  
Engineering units. For more detailed information regarding using a PXU as a  
digital potentiometer, see the “Digital Pot” Tech Note at www.redlion.net.  
TIME  
TO DAMPEN RESPONSE:  
- INCREASE PROPORTIONAL BAND.  
- INCREASE INTEGRAL TIME.  
- USE SETPOINT RAMPING.  
- USE OUTPUT POWER LIMITS.  
- INCREASE DERIVATIVE TIME.  
- CHECK CYCLE TIME.  
SLOW RESPONSE  
INPUT  
SP  
TIME  
TO QUICKEN RESPONSE:  
- DECREASE PROPORTIONAL BAND.  
- DECREASE INTEGRAL TIME.  
- INCREASE OR DEFEAT SETPOINT RAMPING.  
- EXTEND OUTPUT POWER LIMITS.  
- DECREASE DERIVATIVE TIME.  
24  
PARAMETER VALUE CHART  
Programmer:______________________Date:_________  
Controller Number:_______ Security Code:_______  
INPUT MODULE (I)  
ALARM MODULE (4)  
FACTORY  
FACTORY  
DISPLAY  
PARAMETER  
USER SETTING  
USER SETTING  
USER SETTING  
DISPLAY  
PARAMETER  
USER SETTING  
SETTING  
t-J  
°F  
SETTING  
NONE  
nor  
Auto  
NO  
100  
OFF  
NONE  
nor  
Auto  
NO  
200  
OFF  
NONE  
nor  
Auto  
NO  
300  
OFF  
1
typE  
SCAL  
dCPt  
FLtr  
bANd  
SHFt  
dSP1  
dSP2  
SPLO  
SPHI  
CJC  
Input Type  
ACt1  
Lit1  
rSt1  
Stb1  
AL-1  
IFA1  
ACt2  
Lit2  
rSt2  
Stb2  
AL-2  
IFA2  
ACt3  
Lit3  
rSt3  
Stb3  
AL-3  
IFA3  
AHYS  
Colr  
Alarm 1 Action  
Temperature Scale  
Decimal Resolution  
Digital Filtering  
Alarm 1 Annunciator  
Alarm 1 Reset Mode  
Alarm 1 Standby  
0
1
0
Input Filter Band  
Alarm 1 Value  
Shift/Offset  
Alarm 1 Input Fail Action  
Alarm 2 Action  
Display Value Scaling Point 1  
Display Value Scaling Point 2  
Setpoint Low Limit  
Setpoint High Limit  
Cold Juction Compensation  
User1 Function  
0
1000  
-14  
212  
On  
NONE  
NONE  
NONE  
NONE  
Alarm 2 Annunciator  
Alarm 2 Reset Mode  
Alarm 2 Standby  
Alarm 2 Value  
USr1  
USr2  
F1In  
F2In  
Alarm 2 Input Fail Action  
Alarm 3 Action  
User2 Function  
F1 Key Function  
Alarm 3 Annunciator  
Alarm 3 Reset  
F2 Key Function  
Alarm 3 Standby  
Alarm 3 Value  
OUTPUT MODULE ()  
Alarm 3 Input Fail Action  
Alarm Hysteresis  
Change Display Color  
FACTORY  
SETTING  
DISPLAY  
PARAMETER  
OFF  
OPAC  
CtrL  
CYC1  
OP1L  
OP1H  
IF01  
An1L  
An1H  
CYC2  
OP2L  
OP2H  
IF02  
gAN2  
db-2  
CHYS  
Control Action  
r1r2  
PId  
2.0  
Auto Control Mode  
OP1 Cycle Time  
SERIAL COMMUNICATIONS MODULE (7C)  
OP 1 Power Low Limit  
OP 1 Power High Limit  
Input Fail OP1 Power Level  
Analog Low  
0.0  
FACTORY  
DISPLAY  
PARAMETER  
USER SETTING  
SETTING  
rtV  
3K4  
NO  
247  
100.0  
0.0  
0.0  
100.0  
2.0  
0.0  
100.0  
0.0  
1.00  
2
tYPE  
bAUd  
dAtA  
PArb  
Addr  
Communications Type  
Baud Rate  
Data Bit  
Analog High  
Parity Bit  
OP2 Cycle Time  
Unit Address  
OP 2 Power Low Limit  
OP 2 Power High Limit  
Input Fail OP2 Power Level  
Relative Gain  
Deadband/Overlap  
On/Off Control Hysteresis  
2
LOCKOUT MODULE (3C)  
FACTORY  
SETTING  
DISPLAY  
PARAMETER  
SP  
OP1  
OP2  
SPrP  
PId  
r-S  
OPOF  
ProP  
Intt  
dErt  
dInt  
AL-1  
AL-2  
AL-3  
ALrS  
SPSL  
tUNE  
CtrL  
trnf  
dEv  
Setpoint  
dISP  
PArA  
PArA  
PArA  
PArA  
dISP  
PArA  
PArA  
PArA  
PArA  
LOC  
PArA  
PArA  
PArA  
PArA  
PArA  
HIdE  
HIdE  
HIdE  
dISP  
0
Output 1 Power  
Output 2 Power  
Setpoint Ramp Rate  
PID Group  
Controller Status  
Output Power Offset  
Proportional Band  
Integral Time  
Derivative Time  
Integration Default  
Alarm 1 Value  
Alarm 2 Value  
Alarm 3 Value  
Alarm Reset  
Setpoint Select  
Auto-Tune Code  
Auto Control Mode  
Control Mode Transfer  
Deviation Value  
Access Code  
CodE  
25  
pxu prOgramming QuiCK OvervieW  
26  
27  
LIMITED WARRANTY  
(a) Red Lion Controls Inc., Sixnet Inc., N-Tron Corporation, or Blue Tree Wireless Data, Inc. (the “Company”)  
warrants that all Products shall be free from defects in material and workmanship under normal use for the period of  
time provided in “Statement of Warranty Periods” (available at www.redlion.net) current at the time of shipment of  
the Products (the “Warranty Period”). EXCEPT FOR THE ABOVE-STATED WARRANTY, COMPANY MAKES NO  
WARRANTY WHATSOEVER WITH RESPECT TO THE PRODUCTS, INCLUDING ANY (A) WARRANTY OF  
MERCHANTABILITY; (B) WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE; OR (C) WARRANTY  
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY; WHETHER  
EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE  
OR OTHERWISE. Customer shall be responsible for determining that a Product is suitable for Customer’s use and  
that such use complies with any applicable local, state or federal law.  
(b) The Company shall not be liable for a breach of the warranty set forth in paragraph (a) if (i) the defect is a result  
of Customer’s failure to store, install, commission or maintain the Product according to specifications; (ii) Customer  
alters or repairs such Product without the prior written consent of Company.  
(c) Subject to paragraph (b), with respect to any such Product during the Warranty Period, Company shall, in its  
sole discretion, either (i) repair or replace the Product; or (ii) credit or refund the price of Product provided that, if  
Company so requests, Customer shall, at Company’s expense, return such Product to Company.  
(d) THE REMEDIES SET FORTH IN PARAGRAPH (c) SHALL BE THE CUSTOMER’S SOLE AND EXCLUSIVE  
REMEDY AND COMPANY’S ENTIRE LIABILITY FOR ANY BREACH OF THE LIMITED WARRANTY SET FORTH  
IN PARAGRAPH (a).  
Red Lion Controls  
China  
Red Lion Controls  
Headquarters  
20 Willow Springs Circle  
York PA 17406  
Tel +1 (717) 767-6511  
Fax +1 (717) 764-0839  
Red Lion Controls  
Europe  
Softwareweg 9  
Red Lion Controls  
India  
201-B, 2nd Floor, Park Centra  
Opp 32 Mile Stone, Sector-30  
Gurgaon-122002 Haryana, India  
Tel +91 984 487 0503  
Unit 1102, XinMao Plaza  
Building 9, No.99 Tianzhou Road  
ShangHai, P.R. China 200223  
Tel +86 21 6113 3688  
Fax +86 21 6113 3683  
NL - 3821 BN Amersfoort  
Tel +31 (0) 334 723 225  
Fax +31 (0) 334 893 793  
PXU MODBUS REGISTER TABLE  
09/04/2015  
The following is an example of the necessary query and corresponding response for holding register 2. In this example register 2 is the decimal value 123.  
Query: 01 03 00 01 00 01 D5 CA  
Response: 01 03 02 00 7B F8 67  
Notes:  
1. The PXU registers can be read as holding (4x) or input (3x) registers.  
2. The PXU should not be powered down while parameters are being changed. Doing so may result in an in-complete write to the non-volatile memory and produce  
checksum errors.  
REGISTER  
(4x)  
FACTORY  
SETTING  
REGISTER NAME  
LOW LIMIT  
HIGH LIMIT  
ACCESS  
COMMENTS  
FREQUENTLY USED REGISTERS  
Process Value (PV)  
Active Setpoint (SP)  
Setpoint 1 (SP1)  
Setpoint 2 (SP2)  
Setpoint Deviation  
Alarm 1 Value  
1
2
N/A  
-999  
-999  
-999  
N/A  
-999  
-999  
-999  
0
N/A  
9999  
9999  
9999  
N/A  
N/A  
0
Read Only 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read Only 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
Read/Write 1 = 1 Display unit  
3
0
4
0
5
N/A  
100  
200  
300  
0
6
9999  
9999  
9999  
1000  
1000  
7
Alarm 2 Value  
8
Alarm 3 Value  
9
Output Power 1  
Read/Write 1 = 0.1%; writable when in manual mode only.  
Read/Write 1 = 0.1%; writable when in manual mode only.  
10  
Output Power 2  
0
0
999(.9)° or  
9999 (process)  
11  
PB Proportional band (Active)  
1
70  
Read/Write 1 = 1 Display unit  
12  
13  
14  
15  
16  
17  
18  
19  
Integral time (Active)  
0
0
0
0
0
0
0
0
9999  
120  
30  
0
Read/Write 1 = 1 second  
Derivative time (Active)  
Integration default (Active)  
PID parameter set selection  
Auto-Tune Start  
9999  
Read/Write 1 = 1 second  
1000  
Read/Write 1 = 0.1 % output power  
Read/Write 0 = PID Set 1, 1 = PID Set 2  
Read/Write 0 = No; 1 = Yes  
1
1
1
1
1
0
0
Control Mode Transfer (Auto/Manual)  
Controller Status  
0
Read/Write 0 = Automatic (PID), 1 = User (Manual Mode)  
Read/Write 0: Stop, 1: Run  
1
Setpoint Select  
0
Read/Write 0 = SP1, 1 = SP2  
999(.9)° or  
9999 (process)  
20  
21  
SP Ramp Rate  
LED Status  
0
0
Read/Write 1 = 1 Display unit/minute; 0 = Ramping disabled  
Bit State: 0 = Off, 1 = On  
Read Only b7: AT, b6:OUT1, b5: OUT2, b4: ALM1, b3: °C, b2:  
°F, b1: ALM2, b0: ALM3  
N/A  
N/A  
N/A  
7
N/A  
Bit State: 0 = Key pressed, 1 = Key not pressed  
Read Only b7: D, b6: Up, b5: F1, b4: N/A, b3: P, b2: Down, b1:  
F2, b0: N/A  
22  
23  
Pushbutton Status  
Alarm Reset  
N/A  
0
N/A  
0
Bit State: 1 = reset alarm, bit is returned to zero  
Read/Write following reset  
b3: Reset Alm3, b1: Reset Alm2, b0: Reset Alm1  
24  
25  
Setpoint Ramping Disable  
Integral Action Disable  
PID PARAMETERS  
0
0
1
1
0
0
Read/Write 0 = Enabled, 1 = Disabled  
Read/Write 0 = Enabled, 1 = Disabled  
999(.9)° or  
9999 (process)  
33  
Proportional band 1  
1
70  
Read/Write 1 = 1 Display unit  
34  
35  
36  
Integral time 1  
0
0
0
9999  
9999  
1000  
120  
30  
0
Read/Write 1 = 1 second  
Read/Write 1 = 1 second  
Read/Write 1 = 0.1 %  
Derivative time 1  
Integration default 1  
999(.9)° or  
9999 (process)  
37  
Proportional band 2  
1
70  
Read/Write 1 = 1 Display unit  
38  
39  
40  
41  
Integral time 2  
0
0
0
0
9999  
9999  
1000  
1000  
120  
30  
Read/Write 1 = 1 second  
Read/Write 1 = 1 second  
Read/Write 1 = 0.1 %  
Derivative time 2  
Integration default 2  
Output Power Offset  
0
500  
Read/Write 1 = 0.1 % output power  
29  
REGISTER  
(4x)  
FACTORY  
SETTING  
REGISTER NAME  
LOW LIMIT  
HIGH LIMIT  
ACCESS  
COMMENTS  
INPUT PARAMETERS  
0 = tc-K  
5 = tc-r  
1 = tc-J 2 = tc-t  
6 = tc-S 7 = tc-b  
3 = tc-E 4 = tc-N  
8 = tc-L 9 = tc-U  
51  
Input Type  
0
19  
1
Read/Write 10 = tc-txk 11 = r392 12 = r385 13 = n1  
14 = cu50 15 = 5v 16 = 10v 17 = 0-20mA  
18 = 4-20mA  
19 = 0.05v  
52  
53  
Temperature Scale  
Decimal Resolution  
0
0
1
3
0
0
Read/Write 0 = °F, 1 = °C  
0 = 0 (No decimal place) 1 = 0.0, 2 = 0.00,  
3 = 0.000. Temperature inputs are limited to 1  
decimal point except for the thermocouple B,S,R  
types, which display in whole units only (0)  
Read/Write  
54  
55  
Digital Filtering  
0
0
50  
8
1
Read/Write 0 = least, 50 = most  
Read/Write 1 = 1 Display unit  
25(.0)° or  
250 (process)  
Input Filter Band  
-99(.9)° or  
999 (process)  
99(.9)° or  
999 (process)  
56  
57  
58  
59  
Shift/Offset  
0
Read/Write 1 = 1 Display unit  
1 = 1 Display unit; Value associated with lower  
range of input signal (0V, 0mA or 4mA)  
Display Value Scaling Point 1  
Display Value Scaling Point 2  
Setpoint Low Limit  
-999  
-999  
9999  
9999  
0
Read/Write  
Read/Write  
1 = 1 Display unit; Value associated with upper limit  
of input signal (50mV, 5V, 10V, or 20mA)  
1000  
-148  
depending on  
sensor type  
Upper-limit of  
temperature range  
Read/Write 1 = 1 Display unit  
Lower-limit of  
temperature  
range  
Depends on  
sensor type  
60  
61  
Setpoint High Limit  
2192  
0
Read/Write 1 = 1 Display unit  
Read/Write 0 = ON, 1 = OFF  
Cold Junction Compensation  
0
1
0 = NONE, 1 = Run/Stop, 2 = Setpoint 1/2 select,  
3 = Auto/Manual control, 4 = PLOC, 5 = Integral  
Lock, 6 = SP Ramp Disable, 7 = Reset Alarms,  
8 = Rst Alm1, 9 = Rst Alm2, 10 = Rst Alm3  
62  
63  
User Input 1 Function  
0
9 or 10  
0
0
Read/Write  
Read/Write  
0 = NONE, 1 = Run/Stop, 2 = Setpoint 1/2 select,  
3 = Auto/Manual control, 4 = PLOC, 5 = Integral  
Lock, 6 = SP Ramp Disable, 7 = Reset Alarms,  
8 = Rst Alm1, 9 = Rst Alm2, 10 = Rst Alm3  
User Input 2 Function  
F1 Key Function  
0
9 or 10  
0 = NONE, 1 = Run/Stop, 2 = Setpoint 1/2 select,  
Read/Write 3 = Auto/Manual control, 4 = Reset Alarms,  
5 = Rst Alm1 , 6 = Rst Alm2 , 7 = Rst Alm3  
64  
65  
0
0
6 or 7  
6 or 7  
0
0
0 = NONE, 1 = Run/Stop, 2 = Setpoint 1/2 select,  
Read/Write 3 = Auto/Manual control, 4 = Reset Alarms,  
5 = Rst Alm1 , 6 = Rst Alm2 , 7 = Rst Alm3  
F2 Key Function  
OUTPUT PARAMETERS  
Single Output Model: 0 = r1, 1 = d1;  
Dual Output Model: 0 = r1r2, 1 = d1r2, 2 = r1d2,  
Read/Write 3 = d1d2, 4 = r1A2, 5 = d1A2  
r = reverse acting, d = direct acting, A = Alarm 3,  
numeric value indicates OP1 or OP2,  
81  
Output Action  
0
1 or 5  
0
82  
83  
Auto Control Mode  
Output 1 Cycle Time  
0
0
1
0
Read/Write 0 = PID, 1 = On-Off  
250  
20  
Read/Write 1 = 0.1 sec; A setting of zero will keep output off.  
Output 1 Power  
High Limit  
84  
85  
Output 1 Power Lower Limit  
Output 1 Power High Limit  
0
0
Read/Write 1 = 0.1 %  
Read/Write 1 = 0.1 %  
Output 1 Power  
Lower Limit  
1000  
1000  
86  
87  
88  
89  
90  
91  
Input Fail OP1 Power Level  
Analog Out 1 Low Scaling Value  
Analog Out 1 High Scaling Value  
Reserved  
0
1000  
9999  
9999  
0
0
Read/Write 1 = 0.1 %  
Read/Write 1 = 0.1 %  
Read/Write 1 = 0.1 %  
-999  
-999  
1000  
0
Reserved  
0
Output 2 Cycle Time  
0
0
250  
20  
Read/Write 1 = 0.1 sec; A setting of zero will keep output off.  
Read/Write 1 = 0.1 %  
Output 2 Power  
High Limit  
92  
Output 2 Power Lower Limit  
0
Output 2 Power  
Lower Limit  
93  
94  
95  
Output 2 Power High Limit  
Input Fail OP2 Power Level  
Relative Gain  
1000  
1000  
9999  
1000  
0
Read/Write 1 = 0.1 %  
Read/Write 1 = 0.1 %  
0
1
1 = 0.01; In combination Reverse(r) and Direct(d)  
Read/Write  
100  
modes, this defines the gain of OP2 relative to OP1.  
30  
REGISTER  
(4x)  
FACTORY  
SETTING  
REGISTER NAME  
LOW LIMIT  
HIGH LIMIT  
ACCESS  
COMMENTS  
1 = 1 Display unit; In combination Reverse(r) and  
Direct(d) modes, this defines the overlap area in  
Read/Write which both OP1 and OP2 are active  
(negative value) or the deadband area (positive  
value).  
-99(.9) or  
-999 (process)  
999(.9)° or  
9999 (process)  
96  
97  
Deadband/Overlap  
2
2
250(.0)° or 2500  
(process)  
On/Off Control Hysteresis  
2
Read/Write 1 = 1 Display unit  
LOCKOUT PARAMETERS  
Setpoint Access  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
0
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
1
1
1
1
0
1
1
1
1
3
1
1
1
1
1
2
2
2
0
Read/Write 0 = dISP, 1 = ParA, 2 = HIdE, 3 = LOC, 4 = dSPr  
Read/Write 0 = dISP, 1 = ParA, 2 = HIdE, 3 = LOC, 4 = dSPr  
Read/Write 0 = dISP, 1 = ParA, 2 = HIdE, 3 = LOC, 4 = dSPr  
Read/Write 0 = dISP, 1 = ParA, 2 = HIdE, 3 = LOC, 4 = dSPr  
Read/Write 0 = dISP, 1 = ParA, 2 = HIdE, 3 = LOC, 4 = dSPr  
Read/Write 0 = dISP, 1 = ParA, 2 = HIdE, 3 = LOC, 4 = dSPr  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 1 = ParA, 2 = HIdE, 3 = LOC  
Read/Write 2 = HIdE, 3 = LOC  
Output 1 Power Access  
Output 2 Power Access  
Setpoint Ramp Rate Access  
PID Group Access  
Controller Status (Run/Stop) Access  
Output Power Offset Access  
Proportional band Access  
Integral time Access  
Derivative time Access  
Integration Default Access  
Alarm 1 Value Access  
Alarm 2 Value Access  
Alarm 3 Value Access  
Alarm Reset Access  
Setpoint Select Access  
Auto-Tune Start Access  
Auto Control Mode Access  
Control Mode Transfer Access  
Deviation Value Access  
Read/Write 2 = HIdE, 3 = LOC  
Read/Write 2 = HIdE, 3 = LOC  
Read/Write 0 = dISP, 3 = LOC  
0 = Full access to display, parameter, hidden, and  
configuration loops; -1 to -125 = Code necessary to  
access configuration loop only; 1 to 125 = Code  
121  
Access Code  
-125  
125  
0
Read/Write  
necessary to access hidden and configuration loops  
ALARM PARAMETERS  
Alarm 1 Action  
0 = No, 1 = AbHI, 2 = AbLO, 3 = AUHI, 4 = AULO,  
5 = d-HI, 6 = d-Lo, 7 = b-In, 8 = b-ot, 9 = InPt,  
Read/Write  
131  
0
18  
0
10 = Ct1, 11 = Ct2, 12 = SOAK, 13 = r-UP,  
14 = r-dn, 15 = rUn, 16 = HoLd, 17 = StoP, 18 = End  
Read/Write 0 = Normal, 1 = Reverse  
Read/Write 0 = Automatic, 1 = Latched  
Read/Write 0 = No, 1 = Yes  
132  
133  
134  
135  
136  
Alarm 1 Annunciator  
Alarm 1 Reset Mode  
Alarm 1 Standby  
0
0
1
1
0
0
0
1
0
Alarm 1 Value  
-999  
0
9999  
1
100  
0
Read/Write 1 = 1 Display unit  
Input Fail Alarm 1 Action  
Read/Write 0 = Off; 1 = On  
0 = No, 1 = AbHI, 2 = AbLO, 3 = AUHI, 4 = AULO,  
5 = d-HI, 6 = d-Lo, 7 = b-In, 8 = b-ot, 9 = InPt,  
10 = Ct1, 11 = Ct2, 12 = SOAK, 13 = r-UP,  
137  
Alarm 2 Action  
0
18  
0
Read/Write  
14 = r-dn, 15 = rUn, 16 = HoLd, 17 = StoP, 18 = End  
Read/Write 0 = Normal, 1 = Reverse  
Read/Write 0 = Automatic, 1 = Latched  
Read/Write 0 = No, 1 = Yes  
138  
139  
140  
141  
142  
Alarm 2 Annunciator  
Alarm 2 Reset Mode  
Alarm 2 Standby  
0
0
1
1
0
0
0
1
0
Alarm 2 Value  
-999  
0
9999  
1
200  
0
Read/Write 1 = 1 Display unit  
Input Fail Alarm 2 Action  
Read/Write 0 = Off; 1 = On  
0 = No, 1 = AbHI, 2 = AbLO, 3 = AUHI, 4 = AULO,  
5 = d-HI, 6 = d-Lo, 7 = b-In, 8 = b-ot, 9 = InPt,  
10 = Ct1, 11 = Ct2, 12 = SOAK, 13 = r-UP,  
143  
Alarm 3 Action  
0
18  
0
Read/Write  
14 = r-dn, 15 = rUn, 16 = HoLd, 17 = StoP, 18 = End  
Read/Write 0 = Normal, 1 = Reverse  
Read/Write 0 = Automatic, 1 = Latched  
Read/Write 0 = No, 1 = Yes  
144  
145  
146  
147  
Alarm 3 Annunciator  
Alarm 3 Reset Mode  
Alarm 3 Standby  
Alarm 3 Value  
0
0
1
1
0
0
0
1
0
-999  
9999  
300  
Read/Write 1 = 1 Display unit  
31  
REGISTER  
(4x)  
FACTORY  
SETTING  
REGISTER NAME  
Input Fail Alarm 3 Action  
Alarm Hysteresis  
LOW LIMIT  
HIGH LIMIT  
ACCESS  
COMMENTS  
148  
149  
0
0
1
0
0
Read/Write 0 = Off; 1 = On  
250(.0)° or  
2500 (process)  
1 = 1 Display unit; The same value applies to all  
alarms.  
Read/Write  
Read/Write  
0 = OFF, 1 = Any Alarm, 2 = AL-1, 3 = AL-2,  
4 = AL-3  
150  
Change Color Intensity  
0
4
0
SERIAL COMMUNICATION PARAMETERS  
211  
212  
213  
214  
215  
Communications Type  
Baud Rate  
0
0
7
0
1
1
4
1
4
Read/Write 0 = ASCII, 1 = rtU  
Read/Write 0 = 2400, 1 = 4800, 2 = 9600, 3 = 19200, 4 = 38400  
Read/Write 0 = 7,1 = 8  
Data Bit  
8
1
Parity Bit  
2
0
Read/Write 0 = No, 1 = Even, 2 = Odd  
Read/Write  
Unit Address  
247  
247  
0 = No change, 1 = Load Serial Settings; * - will  
216  
Load Serial Settings  
0
1
0
Write *  
read 0  
SLAVE ID  
0x524C  
(“RL”)  
1001  
1002  
1003  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Read Only 0x524C (“RL”)  
Read Only 0x432D (“C-”)  
Read Only 0x5058 (“PX”)  
0x432D  
(“C-”)  
0x5058  
(“PX”)  
0x55<n> (“Un”) ‘n’ - 1st output;  
Read Only ‘0’(0x30) = No Card installed,  
‘x’ (0x78) = any output option card installed  
model  
dependent  
1004  
1005  
N/A  
N/A  
N/A  
N/A  
0x<b><c>  
<b>(2nd Output): ‘0’ (0x30) = No Card installed,  
Read Only ‘x’ (0x78) = any output option card installed  
<c>(Options): ‘9’ = RS485/No User Inputs,  
‘A’ = RS485/2 User Inputs  
model  
dependent  
0x2020  
(“ “)  
1006  
1007  
N/A  
N/A  
N/A  
N/A  
Read Only 0x2020 (“ “)  
0x0100 = Software database version number in  
Read Only  
BCD (0x0100 = 1.00)  
1008  
1009  
1010  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x10  
0x10  
0
Read Only 0x10 = 16 reads  
Read Only 0x10 = 16 writes  
Read Only  
32  
厂商 型号 描述 页数 下载

ETC

PXU-20.024 中继处理转换器\n[ RELAY PROCESS CONVERTER ] 2 页

ETC

PXU-20.115 中继处理转换器\n[ RELAY PROCESS CONVERTER ] 2 页

ETC

PXU-20.230 中继处理转换器\n[ RELAY PROCESS CONVERTER ] 2 页

REDLION

PXU10020 [ PXU PID Controller ] 3 页

REDLION

PXU10030 [ PXU PID Controller ] 3 页

REDLION

PXU100B0 [ PXU PID Controller ] 3 页

REDLION

PXU100C0 [ PXU PID Controller ] 3 页

REDLION

PXU11A30 [ MODEL PXU - TEMPERATURE/PROCESS CONTROLLERS ] 32 页

REDLION

PXU11AB0 [ MODEL PXU - TEMPERATURE/PROCESS CONTROLLERS ] 32 页

REDLION

PXU11AC0 [ MODEL PXU - TEMPERATURE/PROCESS CONTROLLERS ] 32 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.197142s