找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

KXTE9

型号:

KXTE9

描述:

Kionix公司:动感传感器加速度传感器三维角度传感器[ kionix:动感传感器 加速度传感器 三维角度传感器 ]

品牌:

ETC[ ETC ]

页数:

26 页

PDF大小:

336 K

PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Product Description  
The KXTE9-2050 is a Tri-axis, silicon micromachined accelerometer  
with a full-scale output range of +/-2g (19.6 m/s/s). The KXTE9  
contains integrated orientation and activity detecting algorithms. The  
sense element is fabricated using Kionix’s proprietary plasma  
micromachining process technology. Acceleration sensing is based  
on the principle of a differential capacitance arising from  
acceleration-induced motion of the sense element, which further  
utilizes common mode cancellation to decrease errors from process  
variation, temperature, and environmental stress. The sense  
element is hermetically sealed at the wafer level by bonding a  
second silicon lid wafer to the device using a glass frit. A separate  
ASIC device packaged with the sense element provides signal  
conditioning, digital communication, and embedded logic for  
orientation and activity detection. The accelerometer is delivered in a 3 x 3 x 0.9 mm LGA plastic  
package operating from a 1.8 – 3.6V DC supply. An I2C interface is used for communication with  
the chip to configure and check updates to the orientation and activity algorithms.  
Functional Diagram  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 1 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Product Specifications  
Table 1. Mechanical  
(specifications are for operation at 3.3V and T = 25C unless stated otherwise)  
Parameters  
Operating Temperature Range  
Zero-g Offset  
Units  
ºC  
Min  
Typical  
Max  
-
-40  
85  
counts  
mg  
32  
0
Zero-g Offset Accuracy  
Zero-g Offset Variation from RT over Temp.  
Sensitivity  
-175  
-10  
+175  
+10  
mg/ºC  
counts/g  
%
0.6  
16  
0
Sensitivity Accuracy  
0.01 (xy)  
0.03 (z)  
0.1  
Sensitivity Variation from RT over Temp.  
%/ºC  
Non-Linearity  
% of FS  
%
Cross Axis Sensitivity  
Resolution  
2
mg  
62.5  
Table 2. Electrical  
(specifications are for operation at 3.3V and T = 25C unless stated otherwise)  
Parameters  
Supply Voltage (Vdd)1 Operating  
I/O Pads Supply Voltage (VIO)1  
Units  
Min  
Typical  
Max  
V
V
1.8  
1.7  
3.3  
3.6  
Vdd  
Operating (full power)  
20  
30  
40  
Current Consumption  
µA  
Standby  
-
0.1  
Output Low Voltage2  
Output High Voltage  
Input Low Voltage  
Input High Voltage  
V
V
-
-
0.3 * Vio  
0.9 * Vio  
-
-
-
V
-
-
0.2 * Vio  
-
V
0.8 * Vio  
Input Pull-down Current  
Power Up Time3  
I2C Communication Rate  
Output Data Rate (ODR)4  
Bandwidth (-3dB)  
0
µA  
ms  
kHz  
Hz  
Hz  
50.5  
400  
40  
1 NaN  
2000  
Notes:  
1. Minimum voltage supply of 1.65V can be used over a reduced operating  
temperature range of 0ºC to 45ºC.  
2. Assuming minimum 1.5Kohm I2C pull-up resistor on SCL and SDA.  
3. Power up time is to Vdd = valid and device is in active mode.  
4. User selectable through I2C.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 2 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Table 3. Environmental  
Parameters  
Units  
V
Min  
-0.3  
-40  
Typical  
Max  
6.0  
Supply Voltage (Vdd) Absolute Limits  
Operating Temperature Range  
Storage Temperature Range  
-
-
-
ºC  
85  
ºC  
-55  
150  
5000 for 0.5ms  
10000 for 0.2ms  
Mech. Shock (powered and unpowered)  
g
-
-
-
-
ESD  
HBM  
V
2000  
Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling  
can cause permanent damage to the device.  
This product conforms to Directive 2002/95/EC of the European Parliament and of the  
Council of the European Union (RoHS). Specifically, this product does not contain lead,  
mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), or  
polybrominated diphenyl ethers (PBDE) above the maximum concentration values  
(MCV) by weight in any of its homogenous materials. Homogenous materials are "of  
uniform composition throughout."  
This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this  
HF product contain a maximum total halogen content of 1500 ppm with less than 900-ppm  
bromine and less than 900-ppm chlorine.  
Soldering  
Soldering recommendations are available upon request or from www.kionix.com.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 3 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Application Schematic  
SDA  
10  
SCL  
INT  
9
8
7
1
2
3
IO Vdd  
KXTE9  
4
6
5
C1  
Vdd  
Table 4. KXTE9 Pin Descriptions  
Pin  
Name  
Description  
IO Vdd  
The power supply input for the digital communication bus  
Not Connected internally – may be connected to Vdd or GND  
Not Connected internally – may be connected to Vdd or GND  
Ground  
1
2
NC  
NC  
3
4
GND  
5
The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.  
Not Connected internally – may be connected to Vdd or GND  
Interrupt pin (Reports user-defined state changes)  
Vdd  
NC  
6
7
INT  
NC  
8
Not Connected internally – may be connected to Vdd or GND  
I2C Serial Clock (requires 1.5kpull-up resistor)  
9
SCL  
SDA  
I2C Serial Data (requires 1.5kpull-up resistor)  
10  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 4 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Test Specifications  
!
Special Characteristics:  
These characteristics have been identified as being critical to the customer. Every part is tested to verify  
its conformance to specification prior to shipment.  
Table 5. Test Specifications  
Parameter  
Zero-g Offset @ RT  
Sensitivity @ RT  
Specification  
32 +/- 2.8 counts  
Test Conditions  
25C, Vdd = 3.3 V  
16 +/- 1.6 counts/g 25C, Vdd = 3.3 V  
Current Consumption -- Operating 20 <= Idd <= 40 uA 25C, Vdd = 3.3 V  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 5 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Package Dimensions and Orientation  
3 x 3 x 0.9 mm LGA  
All dimensions and tolerances conform to ASME Y14.5M-1994  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 6 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Orientation  
+Y  
Pin 1  
+X  
+Z  
When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
Up State  
(Y+)  
Right State Down State  
(X+) (Y-)  
Left State  
(X-)  
Face-Up  
State (Z+)  
Face-Down  
State (Z-)  
Position  
Position  
1
2
3
4
5
6
Diagram  
Top  
Bottom  
Bottom  
Top  
X
Y
Z
32 counts 48 counts 32 counts 16 counts 32 counts 32 counts  
48 counts 32 counts 16 counts 32 counts 32 counts 32 counts  
32 counts 32 counts 32 counts 32 counts 48 counts 16 counts  
X-Polarity  
Y-Polarity  
Z-Polarity  
0
+
0
+
0
0
0
-
0
-
0
0
0
0
+
0
0
-
(1-g)  
Earth’s Surface  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 7 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
KXTE9 Digital Interface  
The Kionix KXTE9 digital accelerometer has the ability to communicate over an I2C digital serial interface  
bus. This flexibility eases system integration by eliminating analog-to-digital converter requirements and by  
providing direct communication with system micro-controllers.  
The serial interface terms and descriptions indicated in Table 6 below will be observed throughout this  
document.  
Term  
Transmitter  
Receiver  
Master  
Description  
The device that transmits data to the bus.  
The device that receives data from the bus.  
The device that initiates a transfer, generates clock signals and terminates a transfer.  
The device addressed by the Master.  
Slave  
Table 6. Serial Interface Terminologies  
I2C Serial Interface  
The KXTE9 has the ability to communicate on an I2C bus. I2C is primarily used for synchronous serial  
communication between a Master device and one or more Slave devices. The Master, typically a micro  
controller, provides the serial clock signal and addresses Slave devices on the bus. The KXTE9 always  
operates as a Slave device during standard Master-Slave I2C operation.  
I2C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL  
is a serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master  
into a wait condition. SDA is a bi-directional line used to transmit and receive data to and from the  
interface. Data is transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of  
bytes transmitted per transfer is unlimited. The I2C bus is considered free when both lines are high.  
I2C Operation  
Transactions on the I2C bus begin after the Master transmits a start condition (S), which is defined as a  
high-to-low transition on the data line while the SCL line is held high. The bus is considered busy after this  
condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in  
the seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be  
receiving data ‘1’ from the Slave or transmitting data ‘0’ to the Slave. When a Slave Address is sent, each  
device on the bus compares the seven MSBs with its internally-stored address. If they match, the device  
considers itself addressed by the Master. The Slave Address associated with the KXTE9 is 0001111.  
It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter  
must release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it  
remains stable low during the high period of the ACK clock pulse. A receiver that has been addressed,  
whether it is Master or Slave, is obliged to generate an ACK after each byte of data has been received. To  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091104-02  
www.kionix.com - info@kionix.com  
Page 8 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
conclude a transaction, the Master must transmit a stop condition (P) by transitioning the SDA line from low  
to high while SCL is high. The I2C bus is now free.  
Writing to a KXTE9 8-bit Register  
Upon power up, the Master must write to the KXTE9’s control registers to set its operational mode.  
Therefore, when writing to a control register on the I2C bus, as shown Sequence 1 on the following page,  
the following protocol must be observed: After a start condition, SAD+W transmission, and the KXTE9  
ACK has been returned, an 8-bit Register Address (RA) command is transmitted by the Master. This  
command is telling the KXTE9 to which 8-bit register the Master will be writing the data. Since this is I2C  
mode, the MSB of the RA command should always be zero (0). The KXTE9 acknowledges the RA and the  
Master transmits the data to be stored in the 8-bit register. The KXTE9 acknowledges that it has received  
the data and the Master transmits a stop condition (P) to end the data transfer. The data sent to the  
KXTE9 is now stored in the appropriate register. The KXTE9 automatically increments the received RA  
commands and, therefore, multiple bytes of data can be written to sequential registers after each Slave  
ACK as shown in Sequence 2 on the following page.  
Reading from a KXTE9 8-bit Register  
When reading data from a KXTE9 8-bit register on the I2C bus, as shown in Sequence 3 on the next page,  
the following protocol must be observed: The Master first transmits a start condition (S) and the  
appropriate Slave Address (SAD) with the LSB set at ‘0’ to write. The KXTE9 acknowledges and the  
Master transmits the 8-bit RA of the register it wants to read. The KXTE9 again acknowledges, and the  
Master transmits a repeated start condition (Sr). After the repeated start condition, the Master addresses  
the KXTE9 with a ‘1’ in the LSB (SAD+R) to read from the previously selected register. The Slave then  
acknowledges and transmits the data from the requested register. The Master does not acknowledge  
(NACK) it received the transmitted data, but transmits a stop condition to end the data transfer. Note that  
the KXTE9 automatically increments through its sequential registers, allowing data to be read from multiple  
registers following a single SAD+R command as shown below in Sequence 4 on the following page.  
If a receiver cannot transmit or receive another complete byte of data until it has performed some other  
function, it can hold SCL low to force the transmitter into a wait state. Data transfer only continues when  
the receiver is ready for another byte and releases SCL.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091104-02  
www.kionix.com - info@kionix.com  
Page 9 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Data Transfer Sequences  
The following information clearly illustrates the variety of data transfers that can occur on the I2C bus and  
how the Master and Slave interact during these transfers. Table 7 defines the I2C terms used during the  
data transfers.  
Term  
S
Definition  
Start Condition  
Sr  
Repeated Start Condition  
Slave Address  
SAD  
W
Write Bit  
R
Read Bit  
ACK  
NACK  
RA  
Acknowledge  
Not Acknowledge  
Register Address  
Transmitted/Received Data  
Stop Condition  
Data  
P
Table 7. I2C Terms  
Sequence 1. The Master is writing one byte to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
P
ACK  
ACK  
ACK  
Sequence 2. The Master is writing multiple bytes to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Sequence 3. The Master is receiving one byte of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
NACK  
P
ACK  
ACK  
ACK DATA  
Sequence 4. The Master is receiving multiple bytes of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
ACK  
NACK  
P
ACK  
ACK  
ACK DATA  
DATA  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 10 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
KXTE9 Embedded Registers  
The KXTE9’s 23 embedded 8-bit registers that are accessible via I2C are listed in Table 8.  
Type  
Address  
Register Name  
CT_RESP  
Read/Write  
Hex  
0x0C  
Binary  
R
-
0000 1100  
0000 1101  
0000 1110  
0000 1111  
0001 0000  
0001 0001  
0001 0010  
0001 0011  
0001 0100  
0001 0101  
0001 0110  
0001 0111  
0001 1000  
0001 1001  
0001 1010  
0001 1011  
0001 1100  
0001 1101  
0001 1110  
0001 1111  
-
Reserved  
0x0D  
Reserved  
-
0x0E  
WHO_AM_I  
TILT_POS_CUR  
TILT_POS_PRE  
XOUT  
R
0x0F  
R
0x10  
R
0x11  
R
0x12  
YOUT  
R
0x13  
ZOUT  
R
0x14  
Not Used  
-
0x15  
INT_SRC_REG1  
INT_SRC_REG2  
STATUS_REG  
Not Used  
R
0x16  
R
0x17  
R
0x18  
-
0x19  
INT_REL  
R
0x1A  
CTRL_REG1  
CTRL_REG2  
CTRL_REG3  
INT_CTRL_REG1  
INT_CTRL_REG2  
Not Used  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20 – 0x27  
0x28  
TILT_TIMER  
WUF_TIMER  
B2S_TIMER  
Reserved  
R/W  
R/W  
R/W  
-
0010 1000  
0010 1001  
0010 1010  
-
0x29  
0x2A  
0x2B – 0x59  
0x5A  
WUF_THRESH  
B2S_THRESH  
TILT_ANGLE  
Reserved  
R/W  
R/W  
R/W  
-
0101 1010  
0101 1011  
0101 1010  
-
0x5B  
0x5C  
0x5D – 0x5E  
0x5F  
HYST_SET  
R/W  
0101 1111  
Table 8. KXTE9 Register Map  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 11 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
KXTE9 Register Descriptions  
CT_RESP  
This register has a byte value of 0x55h except when the CTC bit in CTRL_REG3 is set, this value is  
set to 0xAAh. The byte value is returned to 0x55h after each reading.  
R
R
R
R
R
R
R
R
STR7  
Bit7  
STR6  
Bit6  
STR5  
Bit5  
STR4  
Bit4  
STR3  
Bit3  
STR2  
Bit2  
STR1  
Bit1  
I2C Address: 0x0Ch  
STR0  
Bit0  
Reset Value  
01010101  
WHO_AM_I  
This register can be used for supplier recognition, as it can be factory written to a known byte value.  
The default value is 0x00h.  
R
R
R
R
R
R
R
R
WIA7  
Bit7  
WIA6  
Bit6  
WIA5  
Bit5  
WIA4  
Bit4  
WIA3  
Bit3  
WIA2  
Bit2  
WIA1  
Bit1  
I2C Address: 0x0Fh  
WIA0  
Bit0  
Reset Value  
00000000  
Tilt Position Registers  
These two registers report previous and current position data that is updated at the user-defined  
ODR frequency and is protected during register read. Table 9 describes the reported position for  
each bit value  
TILT_POS_CUR  
Current tilt position register  
R
0
R
0
R
R
RI  
R
R
R
R
Reset Value  
00100000  
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
I2C Address: 0x10h  
TILT_POS_PRE  
Previous tilt position register  
R
0
R
0
R
R
RI  
R
R
R
R
Reset Value  
00100000  
LE  
Bit5  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Bit7  
Bit6  
Bit4  
I2C Address: 0x11h  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 12 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Bit  
LE  
RI  
Description  
Left State (X-)  
Right State (X+)  
Down State (Y-)  
Up State (Y+)  
DO  
UP  
FD  
FU  
Face-Down State (Z-)  
Face-Up State (Z+)  
Table 9. KXTE9 Tilt Position  
Accelerometer Outputs  
These registers contain 6-bits of valid acceleration data for each axis. The data is updated every  
ODR period and can be converted from digital counts to acceleration (g) using Equation 1.  
Acceleration (g) = (Output (counts) – 0g Offset (counts)) / Sensitivity (counts/g)  
Equation 1. Acceleration (g) Calculation  
XOUT  
X-axis acceleration output (6-bit valid and updated every ODR period)  
R
R
R
R
R
R
R
X
R
X
XOUTD5 XOUTD4 XOUTD3 XOUTD2 XOUTD1 XOUTD0  
Bit7  
YOUT  
R
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x12h  
Y-axis acceleration output (6-bit valid and updated every ODR period)  
R
R
R
R
R
R
X
R
X
YOUTD5 YOUTD4 YOUTD3 YOUTD2 YOUTD1 YOUTD0  
Bit7  
ZOUT  
R
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x13h  
Z-axis acceleration output (6-bit valid and updated every ODR period)  
R
R
R
R
R
R
X
R
X
ZOUTD5 ZOUTD4 ZOUTD3 ZOUTD2 ZOUTD1 ZOUTD0  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2  
Bit1  
Bit0  
I2C Address: 0x14h  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 13 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Interrupt Source Registers  
These two registers report function state changes. Data may be updated at every ODR period.  
INT_SRC_REG1  
This register reports which function caused an interrupt.  
R
0
R
0
R
0
R
0
R
0
R
R
R
B2SS  
Bit2  
WUFS  
Bit1  
TPS  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
I2C Address: 0x16h  
B2SS reflects the status of the inactivity/back to sleep function.  
B2SS = 0 – activity state has not changed to inactive  
B2SS = 1 – activity state has changed to inactive  
WUFS reflects the status of the activity/wake up function.  
WUFS = 0 – activity state has not changed to active  
WUFS = 1 – activity state has changed to active  
TPS reflects the status of the tilt position function.  
TPS = 0 – tilt position state has not changed  
TPS = 1 - tilt position state has changed  
INT_SRC_REG2  
This register reports which axis and direction caused the activity state to transition from  
inactive to active per Table 10.  
R
0
R
0
R
R
R
R
R
R
ALE  
Bit5  
ARI  
Bit4  
ADO  
Bit3  
AUP  
Bit2  
AFD  
Bit1  
AFU  
Bit0  
Bit7  
Bit6  
I2C Address: 0x17h  
Bit  
Description  
ALE  
ARI  
X Negative (X-) Reported  
X Positive (X+) Reported  
Y Negative (Y-) Reported  
Y Positive (Y+) Reported  
Z Negative (Z-) Reported  
Z Positive (Z+) Reported  
ADO  
AUP  
AFD  
AFU  
Table 10. KXTE9 Activity Reporting  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 14 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
STATUS_REG  
This register reports the state of the interrupt and the status of information pertaining to the ODR  
setting.  
R
0
R
0
R
R
R
R
R
0
R
0
DOR  
Bit5  
INT  
Bit4  
SODRA SODRB  
Bit3 Bit2  
Bit7  
Bit6  
Bit1  
Bit0  
I2C Address: 0x18h  
DOR (output data overrun) bit is released after the next output data register read  
DOR = 0 – no data overrun  
DOR = 1 – data is overrun  
INT reports the combined interrupt information of all enabled functions. This bit is  
released to 0 when the interrupt release register (1Ah) is read.  
INT = 0 – no interrupt event  
INT = 1 – interrupt event has occurred  
SODRA reports the status of the current ODRA setting that is being used.  
SODRB reports the status of the current ODRB setting that is being used.  
INT_REL  
Latched interrupt source information is cleared and the physical interrupt latched pin (7) is set to the  
inactive state when this register is read.  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x1Ah  
CTRL_REG1  
Read/write control register that controls the main feature set.  
R/W  
PC1  
Bit7  
R/W  
0
R/W  
0
R/W  
ODRA  
Bit4  
R/W  
ODRB  
Bit3  
R/W  
B2SE  
Bit2  
R/W  
WUFE  
Bit1  
R/W  
TPE  
Bit0  
Reset Value  
00000000  
Bit6  
Bit5  
I2C Address: 0x1Bh  
PC1 controls the operating mode of the KXTE9.  
PC1 = 0 - stand-by mode  
PC1 = 1 - operating mode  
ODRA sets the initial output data rate per Table 11.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 15 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
ODRB sets the initial output data rate per Table 11.  
ODRA  
ODRB  
Output Data Rate  
0
0
1
1
0
1
0
1
1Hz  
3Hz  
10Hz  
40Hz  
Table 11. Initial Output Data Rate  
B2SE enables the Back To Sleep function that will detect a transition from active mode to  
inactive mode.  
B2SE = 0 - disable  
B2SE = 1- enable  
WUFE enables the Wake Up function that will detect a transition from inactive mode to  
active mode.  
WUFE = 0 - disable  
WUFE = 1- enable  
TPE enables the Tilt Position function that will detect changes in device orientation.  
TPE = 0 - disable  
TPE = 1- enable  
CTRL_REG2  
Read/write control register that controls tilt position state masking. Per Table 12, if a state’s bit is  
set to one (1), the state change will generate an interrupt. If it is set to zero (0), the state change  
will not generate an interrupt.  
R/W  
0
R/W  
0
R/W  
LEM  
Bit5  
R/W  
RIM  
Bit4  
R/W  
DOM  
Bit3  
R/W  
UPM  
Bit2  
R/W  
FDM  
Bit1  
R/W  
FUM  
Bit0  
Reset Value  
00111111  
Bit7  
Bit6  
I2C Address: 0x1Ch  
Bit  
Description  
Left State Mask  
Right State Mask  
Down State Mask  
Up State Mask  
LEM  
RIM  
DOM  
UPM  
FDM  
FUM  
Face-Down State Mask  
Face-Up State Mask  
Table 12. Tilt Position State Mask  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 16 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
CTRL_REG3  
Read/write control register that provides more feature set control.  
R/W  
SRST  
Bit7  
R/W  
0
R/W  
0
R/W  
CTC  
Bit4  
R/W  
OB2SA OB2SB OWUFA OWUFB  
Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x1Dh  
R/W  
R/W  
R/W  
Reset Value  
00000110  
Bit6  
Bit5  
SRST initiates software reset, which returns the internal RAM to Kionix default values.  
This bit will remain high (1) for approximately 50 ms until the RAM load is finished.  
SRST = 0 - no action or software reset has finished  
SRST = 1 - start software reset  
CTC initiates the communication-test function.  
CTC = 0 - no action  
CTC = 1 - sets CT_RESP register to 0xAAh and when CT_RESP is read, sets this  
bit to 0 and sets CT_RESP to 0x55h  
OB2SA sets the output data rate when in the inactive mode per Table 13.  
OB2SB sets the output data rate when in the inactive mode per Table 13.  
OB2SA  
OB2SB  
Output Data Rate  
0
0
1
1
0
1
0
1
1Hz  
3Hz  
10Hz  
40Hz  
Table 13. Inactive Mode Output Data Rate  
OWUFA sets the output data rate when in the active mode per Table 14.  
OWUFB sets the output data rate when in the active mode per Table 14.  
OWUFA  
OWUFB  
Output Data Rate  
0
0
1
1
0
1
0
1
1Hz  
3Hz  
10Hz  
40Hz  
Table 14. Active Mode Output Data Rate  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 17 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
INT_CTRL_REG1  
This register controls the settings for the physical interrupt pin (7).  
R/W  
0
R/W  
0
R/W  
0
R/W  
IEN  
Bit4  
R/W  
IEA  
Bit3  
R/W  
IEL  
R/W  
0
R/W  
0
Reset Value  
00001000  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
I2C Address: 0x1Eh  
IEN enables/disables the physical interrupt pin (7)  
IEN = 0 - physical interrupt pin (7) is disabled  
IEN = 1 - physical interrupt pin (7) is enabled  
IEA sets the polarity of the physical interrupt pin (7)  
IEA = 0 - polarity of the physical interrupt pin (7) is active low  
IEA = 1 - polarity of the physical interrupt pin (7) is active high  
IEL sets the response of the physical interrupt pin (7)  
IEL = 0 - the physical interrupt pin (7) latches until it is cleared by reading INT_REL  
IEL = 1 - the physical interrupt pin (7) will transmit one pulse with a period of 0.05 ms  
INT_CTRL_REG2  
This register controls activity/inactivity state masking. Per Table 15, if a state’s bit is set to one (1),  
the state change will generate an interrupt. If it is set to zero (0), the state change will not generate  
an interrupt.  
R/W  
XBW  
Bit7  
R/W  
YBW  
Bit6  
R/W  
ZBW  
Bit5  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Reset Value  
11100000  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x1Fh  
Bit  
Description  
XBW  
YBW  
ZBW  
X-Axis State Mask  
Y-Axis State Mask  
Z-Axis State Mask  
Table 15. Activity/Inactivity State Mask  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 18 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
TILT_TIMER  
This register is the programmable count register for the tilt position state timer (0 to 255 counts).  
Every count is calculated as 1/ODR delay period. A new state must be valid as many measurement  
periods before the change is accepted.  
R/W  
TSC7  
Bit7  
R/W  
TSC6  
Bit6  
R/W  
TSC5  
Bit5  
R/W  
TSC4  
Bit4  
R/W  
TSC3  
Bit3  
R/W  
TSC2  
Bit2  
R/W  
TSC1  
Bit1  
R/W  
TSC0  
Bit0  
Reset Value  
00000000  
I2C Address: 0x28h  
WUF_TIMER  
This register is the programmable count register for the inactivity to activity timer (0 to 255 counts).  
Every count is calculated as 1/ODR delay period. A new state must be valid as many measurement  
periods before the change is accepted.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
WUFC7 WUFC6 WUFC5 WUFC4 WUFC3 WUFC2 WUFC1 WUFC0  
Bit2  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit1  
Bit0  
I2C Address: 0x29h  
B2S_TIMER  
This register is the programmable count register for the activity to inactivity timer (0 to 255 counts).  
Every count is calculated as 16*(1/ODR) delay period. A new state must be valid as many  
measurement periods before the change is accepted.  
R/W  
B2SC7 B2SC6 B2SC5 B2SC4 B2SC3 B2SC2 B2SC1 B2SC0  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x2Ah  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
WUF_THRESH  
This register sets the WUF Threshold that is used to detect the transition from inactivity to activity.  
The KXTE9 ships from the factory with WUF_THRESH set to a change in acceleration of 0.5g.  
R/W  
WUFTH7 WUFTH6 WUFTH5 WUFTH4 WUFTH3 WUFTH2 WUFTH1 WUFTH0  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x5Ah  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00100000  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 19 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
B2S_THRESH  
This register sets the B2S Threshold that is used to detect the transition from activity to inactivity.  
The KXTE9 ships from the factory with B2S_THRESH set to a change in acceleration of 1.5g.  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
R/W  
Reset Value  
01100000  
B2STH7 B2STH6 B2STH5 B2STH4 B2STH3 B2STH2 B2STH1 B2STH0  
Bit7  
Bit1  
Bit0  
I2C Address: 0x5Bh  
TILT_ANGLE  
This register sets the tilt angle that is used to detect the transition from Face-up/Face-down states  
to Screen Rotation states. The KXTE9 ships from the factory with tilt angle set to a low threshold of  
26°from horizontal. A different default tilt angle can be requested from the factory. Note that the  
minimum suggested tilt angle is 10°.  
R/W  
TA7  
Bit7  
R/W  
TA6  
Bit6  
R/W  
TA5  
Bit5  
R/W  
TA4  
Bit4  
R/W  
TA3  
Bit3  
R/W  
TA2  
Bit2  
R/W  
TA1  
Bit1  
R/W  
TA0  
Bit0  
Reset Value  
00011100  
I2C Address: 0x5Ch  
HYST_SET  
This register sets the Hysteresis that is placed in between the Screen Rotation states. The KXTE9  
ships from the factory with HYST_SET set to +/-15°of hysteresis. A different default hysteresis can  
be requested from the factory. Note that when writing a new value to this register the current  
values of RES0 and RES1 must be preserved. These values are set at the factory and must not  
change.  
R/W  
RES1  
Bit7  
R/W  
RES0  
Bit6  
R/W  
0
R/W  
0
R/W  
HYST3  
Bit3  
R/W  
HYST2  
Bit2  
R/W  
HYST1  
Bit1  
R/W  
HYST0  
Bit0  
Reset Value  
--001000  
Bit5  
Bit4  
I2C Address: 0x5Fh  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 20 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
KXTE9 Embedded Applications  
Orientation Detection Feature  
The orientation detection feature of the KXTE9 will report changes in face up, face down, vertical and  
horizontal orientation. This intelligent embedded algorithm considers very important factors that provide  
accurate orientation detection from low cost tri-axis accelerometers. Factors such as: hysteresis, device  
orientation angle and delay time are described below as these techniques are utilized inside the KXTE9.  
Hysteresis  
A 45° tilt angle threshold seems like a good choice because it is halfway between 0° and 90°.  
However, a problem arises when the user holds the device near 45°. Slight vibrations, noise and  
inherent sensor error will cause the acceleration to go above and below the threshold rapidly and  
randomly, so the screen will quickly flip back and forth between the 0° and the 90° orientations.  
This problem is avoided in the KXTE9 by choosing a hysteresis angle. With a 15° hysteresis  
angle, the screen will not rotate from 0°to 90°until the device is tilted to 60°(45°+15°). To rotate  
back to 0°, the user must tilt back to 30°(45°-15°), thus avoiding the screen flipping problem. Table  
16 shows the acceleration limits implemented for 15° of hysteresis in between the four screen  
rotation states.  
Orientation X Acceleration (g) Y Acceleration (g)  
0°/360°  
90°  
180°  
270°  
-0.5 < ax < 0.5  
ax > 0.866  
-0.5 < ax < 0.5  
ax < -0.866  
ay > 0.866  
-0.5 < ay < 0.5  
ay < -0.866  
-0.5 < ay < 0.5  
Table 16. Acceleration at the four orientations with 15°of hysteresis  
The KXTE9 allows the user to change the amount of hysteresis in between the four screen rotation states.  
By simply writing to the HYST_SET register, the user can adjust the amount of hysteresis from 3°to 30°.  
The plot in Figure 1 shows the typical amount of hysteresis applied for a given digital count value.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091104-02  
www.kionix.com - info@kionix.com  
Page 21 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
HYST_SET vs Hysteresis  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
+/- Hysteresis  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
HYST_SET Value (counts)  
Figure 1. Hysteresis vs. HYST_SET value  
Device Orientation Angle (aka Tilt Angle)  
To ensure that horizontal and vertical device orientation changes are detected, even when it isn’t in  
the ideal vertical orientation – where the angle  
orientation angle in its algorithm.  
θ in Figure 2 is 90°, the KXTE9 considers device  
Angle  
θ
Figure 2. Device Orientation Angle  
As the angle in Figure 2 is decreased, the maximum gravitational acceleration on the X-axis or Y-  
axis will also decrease. Therefore, when the angle becomes small enough, the user will not be able  
to make the screen orientation change. When the device orientation angle approaches 0°(device  
is flat on a desk or table), ax = ay = 0g, az = +1g, and there is no way to determine which way the  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 22 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
screen should be oriented, the internal algorithm determines that the device is in either the face-up  
or face-down orientation, depending on the sign of the z-axis. The KXTE9 will only change the  
screen orientation when the orientation angle is above the factory-defaulted/user-defined threshold  
set in the TILT_ANGLE register. Equation 2 can be used to determine what value to write to the  
TILT_ANGLE register to set the device orientation angle.  
TILT_ANGLE (counts) = sin θ * (Sensitivity (counts/g) * 4)  
Equation 2. Device Orientation Angle (aka Tilt Angle)  
Tilt Timer  
The 8-bit register, TILT_TIMER can be used to qualify changes in orientation. The KXTE9 does  
this by incrementing a counter with a size that is specified by the value in TILT_TIMER for each set  
of acceleration samples to verify that a change to a new orientation state is maintained. A user  
defined output data rate (ODR) determines the time period for each sample. Equation 3 shows how  
to calculate the TILT_TIMER register value for a desired delay time.  
TILT_TIMER (counts) = Delay Time (sec) x ODR (Hz)  
Equation 3. Tilt Position Delay Time  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 23 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Active/Inactive Feature Description  
The Active/Inactive feature of the KXTE9 reports qualified changes in acceleration based Wake Up (WUF)  
and Back to Sleep (B2S) thresholds. If the change in acceleration on any axis is greater than the user-  
defined wake up threshold (WUF_THRESH), the device has transitioned from an inactive state to an active  
state. Equation 4 shows how to calculate the WUF_THRESH register value for a desired wake up  
threshold.  
WUF_THRESH (counts) = 4 x (Wake Up Threshold (g) x Sensitivity (counts/g))  
Equation 4. Wake Up Threshold  
If the change in acceleration on any axis is less than the user-defined back to sleep threshold  
(B2S_THRESH), the device has transitioned from an active state to an inactive state. Equation 5 shows  
how to calculate the B2S_THRESH register value for a desired wake up threshold.  
B2S_THRESH (counts) = 4 x (Back to Sleep Threshold (g) x Sensitivity (counts/g))  
Equation 5. Back to Sleep Threshold  
Separate WUF (WUF_TIMER) and B2S (B2S_TIMER) 8-bit raw unsigned values represent counters that  
permit the user to qualify each active/inactive state change. Note that each WUF Timer count qualifies 1  
(one) user-defined ODR period (OB2S) and each B2S Timer count qualifies 16 (sixteen) user-defined  
periods (initial ODR or OWUF). Equation 6 shows how to calculate the WUF_TIMER register value for a  
desired wake up delay time.  
WUF_TIMER (counts) = Wake Up Delay Time (sec) x OB2S (Hz)  
Equation 6. Wake Up Delay Time  
Equation 7 shows how to calculate the B2S_TIMER register value for a desired back to sleep delay time.  
B2S_TIMER (counts) = (Back to Sleep Delay Time (sec) x OWUF (Hz)) / 16  
Equation 7. Back to Sleep Delay Time  
Figure 3 shows the response of the Active/Inactive algorithm with WUF Timer = 10 counts and B2S Timer  
= 10 counts.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091104-02  
www.kionix.com - info@kionix.com  
Page 24 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Typical Active/Inactive Interrupt Example  
Max Delta Acceleration  
B2S Threshold  
WUF Threshold  
0g  
10  
B2S Timer  
WUF Timer  
Ex: Delay Counter = 10  
Active  
Inactive  
Figure 3. KXTE9 Inactive/Active Transitions  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091104-02  
Page 25 of 26  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTE9-2050  
Rev. 3  
Nov-2009  
Revision History  
REVISION DESCRIPTION  
DATE  
1
2
3
Initial release 09-Apr-2009  
Updated thermal performance 14-Aug-2009  
Corrected typographical errors and clarified some confusing definitions 05-Nov-2009  
"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or  
otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not  
assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior  
notice. This publication supersedes and replaces all information previously supplied.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091104-02  
www.kionix.com - info@kionix.com  
Page 26 of 26  
厂商 型号 描述 页数 下载

CK-COMPONENTS

KXT [ Ultra Low Profile Top Actuated ] 2 页

CK-COMPONENTS

KXT111LHS [ Ultra Low Profile Top Actuated ] 2 页

CK-COMPONENTS

KXT121LHS [ Ultra Low Profile Top Actuated ] 2 页

CK-COMPONENTS

KXT131LHS [ Ultra Low Profile Top Actuated ] 2 页

CK-COMPONENTS

KXT2 [ Double Action Ultra Low Profile Top Actuated ] 2 页

CK-COMPONENTS

KXT211LHS [ Double Action Ultra Low Profile Top Actuated ] 2 页

CK-COMPONENTS

KXT3 [ High number of cycle ] 2 页

CK-COMPONENTS

KXT311LHS [ High number of cycle ] 2 页

CK-COMPONENTS

KXT321LHS [ High number of cycle ] 2 页

CK-COMPONENTS

KXT331LHS [ High number of cycle ] 2 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.292846s