找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

NX9415

型号:

NX9415

描述:

5A同步降压开关稳压器[ 5A SYNCHRONOUS BUCK SWITCHING REGULATOR ]

品牌:

MICROSEMI[ Microsemi ]

页数:

12 页

PDF大小:

582 K

NX9415  
5A SYNCHRONOUS BUCK SWITCHING REGULATOR  
PRODUCTION DATA SHEET  
Pb Free Product  
FEATURES  
Single supply voltage from 8V to 22V  
Internal 5V regulator  
DESCRIPTION  
The NX9415 is synchronous buck switching converter in  
multi chip module designed for step down DC to DC  
converter applications. It is optimized to convert bus  
voltages from 8V to 22V to as low as 0.8V output volt-  
age. The output current can be up to 5A. An internal  
regulator converts bus voltage to 5V, which provides volt-  
age supply to internal logic and driver circuit. The NX9415  
operates from 200kHz to 2.2MHz and employs loss-less  
current limiting by sensing the Rdson of synchronous  
MOSFET followed by hiccup feature.Feedback under volt-  
age protection triggers hiccup.  
n
n
n Programmable frequency up to 2.2MHz  
n Internal Digital Soft Start Function  
n Internal boost schottky diode  
n Prebias Startup  
n Less than 50 nS adaptive deadband  
n
Current limit triggers hiccup by sensing Rdson of  
Synchronous MOSFET  
n Pb-free and RoHS compliant  
Other features of the device are: internal schottky diode,  
thermal shutdown, 5V gate drive, adaptive deadband con-  
trol, internal digital soft start, 5VREG undervoltage lock  
out and shutdown capability via the comp pin. NX9415  
is available in 4x4 MCM package.  
APPLICATIONS  
n
n
n
n
Low Profile On board DC to DCApplication  
LCD TV  
Hard Disk Drive  
ADSL Modem  
TYPICAL APPLICATION  
0.1uF  
Vin  
BST  
VIN  
D1  
+12V  
2*(10uF/16V/X5R)  
0.1uF  
0.56uH  
S1  
D2  
SW  
Vout1  
+5V,5A  
5VREG  
VCC  
4.7uF  
22uF/6.3V/X5R  
10  
5k  
768  
OCP  
FB  
15.8k  
1uF  
220p  
330p  
15k  
10p  
3.01k  
4.22k  
RT  
COMP  
S2  
GND  
Figure 1 - Typical application of 9415  
ORDERING INFORMATION  
Device  
NX9415CMTR  
Temperature  
0 to 70oC  
Package  
4X4 MCM-24L  
Frequency  
200kHz to 2.2MHz  
Pb-Free  
Yes  
Rev.1.2  
12/28/09  
1
NX9415  
ABSOLUTE MAXIMUM RATINGS  
5VREG,VCC to GND & BST to SW voltage ........ -0.3V to 6.5V  
VIN to GND Voltage ......................................... 25V  
S1 to GND ...................................................... -2V to 30V  
D1 to S1,D2 to S2 ............................................ 30V  
All other pins ................................................... -0.3V to VCC+0.3V or 6.5V  
Storage Temperature Range ............................... -65oC to 150oC  
Operating Junction Temperature Range ............... -40oC to 125oC  
ESD Susceptibility ........................................... 2kV  
Power Dissipation ............................................. Internally Limited by OTP  
CAUTION: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to  
the device. This is a stress only rating and operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied.  
PACKAGE INFORMATION  
24-LEAD PLASTIC MCM 4 x 4  
23 22 21 20  
19  
24  
S1  
S2 1  
18  
PAD2  
PAD1  
2
17 S1  
D2  
3
D1  
16  
15  
14  
D2  
NC  
4
5
6
NC  
PAD3  
5VREG  
OCP  
VCC  
13 BST  
7
8
10 11 12  
9
Rev.1.2  
12/28/09  
2
NX9415  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vin = 12V, and TA = 0 to 70oC. Followings are bypass  
capacitors:CVIN=1uF, C5VREG=4.7uF, all X5R ceramic capacitors. Typical values refer to TA = 25oC. Low duty cycle  
pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.  
PARAMETER  
Reference Voltage  
Ref Voltage  
SYM  
Test Condition  
Min  
TYP  
MAX Units  
VREF  
0.8  
0.4  
V
Ref Voltage line regulation  
Vin=9V to 22V  
%
5VREG  
5VREG Voltage range  
5VREG Line Regulation  
5VREG Max Current  
5
V
4.75  
5.25  
22  
VIN=9V to 22V  
10  
50  
mV  
mA  
Supply Voltage(Vin)  
Vin Voltage Range  
Vin  
V
9
Input Voltage Current(Static)  
Input Voltage Current  
(Dynamic)  
No switching  
Rt=4.22k  
4.8  
10  
mA  
mA  
Vin UVLO  
Vin-Threshold  
Vin_UVLO Vin Rising  
Vin_Hyst Vin Falling  
6.5  
0.6  
V
V
Vin-Hysteresis  
Under Voltage Lockout  
VCC-Threshold  
VCC_UVLO VCC Rising  
VCC_Hyst VCC Falling  
3.9  
0.2  
V
V
VCC-Hysteresis  
SS  
Soft Start time  
Tss  
FS=2.2MHz  
Rt=4.22k  
400  
uS  
Oscillator (Rt)  
Frequency  
FS  
2250  
1.5  
kHz  
V
Ramp-Amplitude Voltage  
Max Duty Cycle  
VRAMP  
FS=2.2MHz  
71  
%
Min Controlable On Time  
Error Amplifiers  
Transconductance  
Input Bias Current  
Comp SD Threshold  
FBUVLO  
150  
nS  
2000  
10  
0.3  
umho  
nA  
V
Ib  
Feedback UVLO threshold  
Over temperature  
Threshold  
0.6  
V
oC  
oC  
150  
20  
Hysteresis  
OCP  
OCP current  
37  
uA  
Internal Schottky Diode  
Forward voltage drop  
Ouput Stage  
forward current=20mA  
350  
mV  
High Side MOSFET RDSON  
31  
31  
5
mohm  
mohm  
A
Low Side MOSFET RDSON  
Output Current  
Rev.1.2  
12/28/09  
3
NX9415  
PIN DESCRIPTIONS  
PIN #  
PIN SYMBOL  
PIN DESCRIPTION  
Source of high side MOSFET and provides return path for the high side driver.  
17-19  
S1  
Drain of low side MOSFET.  
2-3,22,PAD2  
23-24,1  
D2  
S2  
Source of low side MOSFET and needs to be connected to power ground.  
Drain of high side MOSFET.  
21-20,16,PAD1  
5
D1  
An internal 5V regulator.A high frequency 4.7uF/X5R ceramic capacitor must be  
connected from this pin to the GND pin as close as possible.  
5VREG  
Voltage supply for internal analog circuit and driver  
Voltage supply for the internal 5V regulator.  
6
7
8
VCC  
VIN  
RT  
Oscillator's frequency can be set by using an external resistor from this pin to  
GND.  
Ground.  
9
GND  
This pin is the output of the error amplifier and is used to compensate the voltage  
control feedback loop. This pin is also used as a shut down pin. When this pin is  
pulled below 0.3V, both drivers are turned off and internal soft start is reset.  
10  
COMP  
This pin is the error amplifier inverting input. This pin is connected via resistor  
divider to the output of the switching regulator to set the output DC voltage.  
11  
13  
14  
FB  
BST  
OCP  
This pin supplies voltage to the high side driver. A high frequency  
ceramic capacitor of 0.1 to 1uF must be connected from this pin to SW pin.  
This pin is connected to the D2 of the low side MOSFET and is the input of the  
over current protection(OCP) comparator. An fixed internal current flows to the  
external resistor which sets the OCP voltage across the Rdson of the low side  
MOSFET. Current limit point is this voltage divided by the Rds-on.  
Not used pin. Connecting these pins to ground is recommended.  
4,12,15, PAD3  
NC  
Rev.1.2  
12/28/09  
4
NX9415  
BLOCK DIAGRAM  
5VREG  
BST  
D1  
5V  
Regulator  
VIN  
VCC  
1.25V  
0.8V  
Bias  
Generator  
UVLO  
POR  
START  
COMP  
0.3V  
S1  
RT  
OC  
SW  
Control  
Logic  
START  
0.8V  
PWM  
OSC  
ramp  
PVCC  
D2  
S2  
Digital  
start Up  
Thermal  
Shutdown  
S
R
Q
Hiccup Logic  
FB  
SS_done  
0.6V  
CLAMP  
70%*Vp  
1.3V  
CLAMP  
COMP  
FB  
START  
OCP  
GND  
VCC  
START  
Figure 2 - Simplified block diagram of the NX9415  
Rev.1.2  
12/28/09  
5
NX9415  
TYPICAL APPLICATION  
Input Voltage=12V  
Output Voltage=5V@5A  
Working Frequency=2.2MHz  
C2  
0.1uF  
U1  
Vin  
+12V  
BST  
VIN  
D1  
CIN  
C3  
L1  
0.56uH  
2*(10uF/16V/X5R)  
0.1uF  
S1  
D2  
SW  
Vout1  
+5V,5A  
5VREG  
COUT  
C4  
4.7uF  
22uF/6.3V/X5R  
R1  
10  
R7  
5k  
R4  
768  
R5  
15.8k  
OCP  
FB  
C1  
1uF  
VCC  
C5  
220p  
C6  
330p  
R6  
3.01k  
10p  
R3  
15k  
R2  
4.22k  
RT  
COMP  
S2  
GND  
Figure 3- Demo board schematic  
Rev.1.2  
12/28/09  
6
NX9415  
Bill of Materials  
Item  
1
2
3
4
5
6
7
8
Quantity  
Reference  
Value  
Manufacturer  
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
C1  
C2,C3  
C4  
C5  
C6  
CIN  
COUT  
L1  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
U1  
1u  
0.1u  
4.7u/6.3V/X5R  
220p  
330p  
10u/16V/X5R  
22u/6.3V/X5R  
DO1813P-561HC  
10  
Coilcraft  
9
10  
11  
12  
13  
14  
15  
16  
4.22k  
15k  
768  
15.8k  
3.01k  
5k  
NX9415CMTR  
NEXSEM INC.  
Rev.1.2  
12/28/09  
7
NX9415  
Demoboard waveforms  
Figure 5 - Output voltage transient response ( CH2 VOUT  
AC 50mV/DIV, CH4 OUTPUT CURRENT 5A/DIV)  
Figure 4 - Output ripple (CH1 SW 10V/DIV, CH2 VOUT  
AC 50mV/DIV, CH4 OUTPUT CURRENT 5A/DIV)  
Figure 6 - Over current protection(CH4 OUTPUT  
CURRENT 5A/DIV)  
Figure 7 - Startup(CH2 VOUT 2V/DIV, CH4 OUTPUT  
CURRENT 2A/DIV)  
Figure 8 - Output Efficiency @VOUT=5V,VIN=12V  
Rev.1.2  
12/28/09  
8
NX9415  
Compensator Design  
APPLICATION INFORMATION  
Symbol Used In Application Information:  
Due to the double pole generated by LC filter of the  
power stage, the power system has 180o phase shift ,  
and therefore, is unstable by itself. In order to achieve  
accurate output voltage and fast transient response,  
compensator is employed to provide highest possible  
bandwidth and enough phase margin.Ideally,the Bode  
plot of the closed loop system has crossover frequency  
between1/10 and 1/5 of the switching frequency, phase  
margin greater than 50o and the gain crossing 0dB with -  
20dB/decade. Power stage output capacitors usually  
decide the compensator type. If electrolytic capacitors  
are chosen as output capacitors, type II compensator  
can be used to compensate the system, because the  
zero caused by output capacitor ESR is lower than cross-  
over frequency. Otherwise type III compensator should  
be chosen.  
VIN  
- Input voltage  
- Output voltage  
- Output current  
VOUT  
IOUT  
VRIPPLE - Output voltage ripple  
- Working frequency  
FS  
IRIPPLE - Inductor current ripple  
Output Inductor Selection  
The selection of inductor value is based on induc-  
tor ripple current, power rating, working frequency and  
efficiency. Larger inductor value normally means smaller  
ripple current. However if the inductance is chosen too  
large, it brings slow response and lower efficiency. Usu-  
ally the ripple current ranges from 20% to 40% of the  
output current. This is a design freedom which can be  
decided by design engineer according to various appli-  
cation requirements. The inductor value can be calcu-  
lated by using the following equations:  
A. Type III compensator design  
For low ESR output capacitors, typically such as  
Sanyo oscap and poscap, the frequency of ESR zero  
caused by output capacitors is higher than the cross-  
over frequency. In this case, it is necessary to compen-  
sate the system with type III compensator. The follow-  
ing figures and equations show how to realize the type III  
compensator by transconductance amplifier.  
V -VOUT VOUT  
1
IN  
LOUT  
=
´
´
DIRIPPLE  
V
F
S
IN  
...(1)  
IRIPPLE =k ´ IOUTPUT  
where k is between 0.2 to 0.4.  
Output Capacitor Selection  
1
Output capacitor is basically decided by the  
amount of the output voltage ripple allowed during steady  
state(DC) load condition as well as specification for the  
load transient. The optimum design may require a couple  
of iterations to satisfy both condition.  
FZ1  
FZ2  
=
=
=
=
...(3)  
...(4)  
...(5)  
...(6)  
2´ p ´ R4 ´ C2  
1
2´ p ´ (R2 + R3 )´ C3  
1
F
P1  
2´ p ´ R3 ´ C3  
The amount of voltage ripple during the DC load  
condition is determined by equation(2).  
1
F
P2  
C1 ´ C2  
2´ p ´ R4 ´  
DIRIPPLE  
C1 + C2  
DVRIPPLE = ESR´ DIRIPPLE  
+
...(2)  
8´ F ´ COUT  
S
Where ESR is the output capacitors' equivalent  
series resistance,COUT is the value of output capacitors.  
Typically when ceramic capacitors are selected as  
output capacitors, DC ripple spec is easy to be met, but  
mutiple ceramic capacitors are required at the output to  
meet transient requirement.  
where FZ1,FZ2,FP1 and FP2 are poles and zeros in  
the compensator. Their locations are shown in figure 10.  
The transfer function of type III compensator for  
transconductance amplifier is given by:  
Ve  
1- gm ´ Zf  
=
VOUT  
1+ gm ´ Zin + Zin /R1  
Rev.1.2  
12/28/09  
9
NX9415  
For the voltage amplifier, the transfer function of  
compensator is  
B. Type II compensator design  
Type II compensator can be realized by simple RC  
circuit without feedback as shown in figure 12. R3 and C1  
introduce a zero to cancel the double pole effect. C2  
introduces a pole to suppress the switching noise. The  
following equations show the compensator pole zero lo-  
cation and constant gain.  
Ve  
- Zf  
=
VOUT  
Zin  
To achieve the same effect as voltage amplifier,  
the compensator of transconductance amplifier must  
satisfythiscondition: R4>>2/gm. And it would be desir-  
able if R1||R2||R3>>1/gm can be met at the same time.  
R1  
Gain=gm ´  
´ R3  
... (7)  
... (8)  
... (9)  
R1+R2  
1
Fz =  
Zf  
Vout  
2´ p ´ R3 ´ C1  
Zin  
R3  
C1  
1
F »  
p
2´ p ´ R3 ´ C2  
C2  
R4  
R2  
R1  
For this type of compensator, FO has to satisfy  
FLC<FESR<<FO<=1/10~1/5Fs.  
C3  
Fb  
Ve  
gm  
power stage  
Vref  
40dB/decade  
Figure 9 - Type III compensator using  
transconductance amplifier  
loop gain  
20dB/decade  
power stage  
LC  
F
40dB/decade  
compensator  
Gain  
loop gain  
20dB/decade  
P
F
F
F
Z
LCFESR  
FO  
ESR  
F
FO  
Figure 11 - Bode plot of Type II compensator  
compensator  
F
P2 FP1  
S
F
FZ1  
FZ2  
Figure 10 - Bode plot of Type III compensator  
Rev.1.2  
12/28/09  
10  
NX9415  
Over Current Protection  
Over current protection is achieved by sensing cur-  
rent through the low side MOSFET. A typical internal  
current source of 37uA flowing through an external resis-  
tor connected from OCP pin to SW node sets the over  
current protection threshold. When synchronous FET is  
on, the voltage at node SW is given as  
Vout  
R2  
Fb  
Ve  
R3  
gm  
R1  
Vref  
C2  
VSW =-IL ´ RDSON  
C1  
The voltage at pin OCP is given as  
I
OCP ´ ROCP +VSW  
When the voltage is below zero, the over current  
occurs.  
Figure 12 - Type II compensator with  
transconductance amplifier  
vbus  
I
OCP  
Output Voltage Calculation  
OCP  
R
SW  
Output voltage is set by reference voltage and ex-  
ternal voltage divider. The reference voltage is fixed at  
0.8V. The divider consists of two ratioed resistors so  
that the output voltage applied at the Fb pin is 0.8V when  
the output voltage is at the desired value. The following  
equation and picture show the relationship between  
VOUT , VREF and voltage divider.  
OCP  
OCP  
comparator  
Figure 14 - Over current protection  
The over current limit can be set by the following  
equation  
R 2 ´ VREF  
I
OCP ´ ROCP  
R1=  
ISET  
=
...(10)  
VOUT -VREF  
K ´ RDSON  
where R2 is part of the compensator, and the value  
of R1 value can be set by voltage divider.  
Frequency Selection  
The frequency can be set by external Rt resistor.  
The relationship between frequency and RT pin is shown  
as follows.  
See compensator design for R1 and R2 selection.  
Vout  
NX9415 Frequency vs Rt  
R2  
Fb  
2500  
2000  
1500  
1000  
500  
R1  
Vref  
Voltage divider  
Figure 13 - Voltage divider  
0
3
13  
23  
33  
Rt(kohm)  
Figure 15 - Frequency versus Rt resistor  
Rev.1.2  
12/28/09  
11  
NX9415  
MCM 24 PIN 4 x 4 PACKAGE OUTLINE DIMENSIONS  
NOTE:ALL DIMENSIONSARE DISPLAYED IN MILLIMETERS.  
Rev.1.2  
12/28/09  
12  
厂商 型号 描述 页数 下载

MICROSEMI

NX9415CM [ Switching Regulator ] 17 页

MICROSEMI

NX9415CMTR 5A同步降压开关稳压器[ 5A SYNCHRONOUS BUCK SWITCHING REGULATOR ] 12 页

MICROSEMI

NX9511B 9A同步降压开关REGULATORWITH 1MHz的工作频率[ 9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz OPERATION FREQUENCY ] 16 页

MICROSEMI

NX9511BCMTR 9A同步降压开关REGULATORWITH 1MHz的工作频率[ 9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz OPERATION FREQUENCY ] 16 页

MICROSEMI

NX9548 9A单通道手机的PWM开关稳压器[ 9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR ] 18 页

MICROSEMI

NX9548CMTR 9A单通道手机的PWM开关稳压器[ 9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR ] 18 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.204851s