找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

NX9548CMTR

型号:

NX9548CMTR

描述:

9A单通道手机的PWM开关稳压器[ 9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR ]

品牌:

MICROSEMI[ Microsemi ]

页数:

18 页

PDF大小:

770 K

NX9548  
9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR  
PRELIMINARY DATA SHEET  
Pb Free Product  
FEATURES  
DESCRIPTION  
The NX9548 is buck switching converter in multi chip n Internal Boost Schottky Diode  
module designed for step down DC to DC converter in n Ultrasonic mode operation available  
portable applications. It is optimized to convert single n Bus voltage operation from 4.5V to 24V  
supply up to 24V bus voltage to as low as 0.75V output n Less than 1uA shutdown current with Enable low  
voltage.The output current can be up to 9A. It can be n Excellent dynamic response with constant on time  
selected to operate in synchronous mode or non-syn-  
control  
chronous mode to improve the efficiency at light load. n Selectable between Synchronous CCM mode and  
Constant on time control provides fast response, good  
line regulation and nearly constant frequency under wide  
diode emulation mode to improve efficiency at light  
load  
voltage input range. Over current protection and FB UVLO n Programmable switching frequency  
followed by latch feature. Other features includes: inter- n Current limit and FB UVLO with latch off  
nal boost schottky diode, 5V gate drive capability, power n Over voltage protection with latch off  
good indicator, over current protection, over voltage pro-  
APPLICATIONS  
tection and adaptive dead band control.NX9548 is avail-  
able in 5x5 MCM package.  
n
n
n
UMPC, Notebook PCs and Desknotes  
Tablet PCs/Slates  
On board DC to DC such as  
12V to 3.3V, 2.5V or 1.8V  
Hand-held portable instruments  
n
TYPICAL APPLICATION  
1M  
PGOOD  
PGOOD  
TON  
D1  
1n  
100k  
VIN 8V~22V  
2x10uF  
5V  
PVCC  
VCC  
10  
4.7  
BST  
1u  
1u  
Vout 1.5V/9A  
1u  
3.3uH  
S1  
D2  
2R5TPE330MC  
330uF  
ENSW  
/MODE  
10k  
OCP  
HG  
VOUT  
FB  
330p  
7.5k  
7.5k  
HDRV  
GND  
S2  
Figure 1 - Typical application of 9548  
ORDERING INFORMATION  
Device  
NX9548CMTR  
Temperature  
0 to 70oC  
Package  
5X5 MCM-32L  
Pb-Free  
Yes  
Rev.1.6  
03/06/09  
1
NX9548  
ABSOLUTE MAXIMUM RATINGS  
VCC,PVCC to GND & BST to SW voltage ........... -0.3V to 6.5V  
TON to GND ................................................. .... -0.3V to 28V  
HDRV to SW Voltage ....................................... -0.3V to 6.5V  
D1 to S1and D2 to S2 ........................................ 30V  
All other pins .................................................... -0.3V to VCC+0.3V or 6.5V  
Storage Temperature Range ............................... -65oC to 150oC  
Operating Junction Temperature Range ............... -40oC to 125oC  
ESD Susceptibility ........................................... 2kV  
Power Dissipation ............................................. TBD  
Output Current ...................................................TBD  
CAUTION: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to  
the device. This is a stress only rating and operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied.  
PACKAGE INFORMATION  
32-LEAD PLASTIC MCM 5 x 5  
31 30 29 28  
25  
26  
27  
32  
TON  
S1  
S1  
S1  
D1  
D2  
D2  
D2  
D2  
1
2
3
4
5
6
7
8
24  
23  
22  
VOUT  
D1  
(PAD2)  
GND  
(PAD1)  
ENSW/MODE  
21 GND  
BST  
D2  
20  
19  
D2  
(PAD3)  
18 HDRV  
17  
NC  
15 16  
12  
13 14  
9
10  
11  
Rev.1.6  
03/06/09  
2
NX9548  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc = 5V, VIN = 12V and TA= 0 to 70oC. Typical values  
refer to TA = 25oC. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the  
ambient temperature.  
PARAMETER  
SYM  
Test Condition  
Min  
TYP  
MAX Units  
VIN  
V
recommended voltage range  
Shut down current  
4.5  
24  
uA  
ENSW=GND  
1
VCC,PVCC Supply  
Vin  
Input voltage range  
4.5  
5.5  
V
Operating quiescent current  
FB=0.85V, ENSW=5V  
ENSW=GND  
1.8  
1
mA  
uA  
Shut down current  
VCC UVLO  
Under-voltage Lockout  
VCC_UVLO  
threshold  
4.1  
3.9  
V
V
Falling VCC threshold  
ON and OFF time  
TON operating current  
VIN=15V, Rton=1Mohm  
VIN=9V,VOUT=0.75V,Rton=  
1Mohm  
15  
uA  
ON -time  
Minimum off time  
FB voltage  
390  
590  
ns  
ns  
Internal FB voltage  
Input bias current  
Line regulation  
OUTPUT voltage  
Output range  
VOUT shut down discharge  
resistance  
Soft start time  
PGOOD  
Vref  
0.75  
V
nA  
%
200  
1
VCC from 4.5V to 5.5V  
ENSW/MODE=GND  
-1  
0.75  
3.3  
V
30  
1.5  
ohm  
ms  
PGOOD high rising threshold  
PGOOD delay after softstart  
PGOOD propagation delay  
filter  
PGOOD hysteresis  
PGOOD output switch  
impedance  
PGOOD leakage current  
ENSW/MODE threshold and  
bias current  
90  
1.6  
% Vref  
ms  
NOTE1  
NOTE1  
2
5
us  
%
13  
1
ohm  
uA  
80%  
VCC  
60%  
VCC  
VCC+0  
.3V  
PFM/Non Synchronous Mode  
Ultrasonic Mode  
V
V
80%  
VCC  
60%  
VCC  
0.8  
Leave it open or use limits in  
spec  
Synchronous Mode  
Shutdown mode  
2
0
V
V
ENSW/MODE=VCC  
ENSW/MODE=GND  
5
-5  
uA  
uA  
Input bias current  
Rev.1.6  
03/06/09  
3
NX9548  
PARAMETER  
SW zero cross comparator  
Offset voltage  
SYM  
Test Condition  
Min  
TYP  
5
MAX Units  
mV  
uA  
Current Limit  
Ocset setting current  
Over temperature  
Threshold  
24  
oC  
oC  
NOTE1  
155  
15  
Hysteresis  
Under voltage  
FB threshold  
Over voltage  
70  
%Vref  
%Vref  
mV  
Over voltage tripp point  
125  
500  
Internal Schottky Diode  
Forward voltage drop  
Ouput Stage  
forward current=50mA  
High Side MOSFET RDSON  
Low Side MOSFET RDSON  
Output Current  
20  
17  
9
mohm  
mohm  
A
NOTE1: This parameter is guaranteed by design but not tested in production(GBNT).  
Rev.1.6  
03/06/09  
4
NX9548  
PIN DESCRIPTIONS  
PIN # PIN SYMBOL  
PIN DESCRIPTION  
S1  
Source of high side MOSFET.These pins must be connected directly to the drain of  
low side MOSFET via a plane connection.  
1-3  
D1  
Drain of high side MOSFET.  
4,30-32  
PAD2  
D2  
Drain of low side MOSFET and the controller pin out SW.  
5-8,19,  
PAD3  
S2  
Source of low side MOSFET and need to be directly connected to power ground via  
multiple vias.  
9-14  
PVCC  
OCP  
This pin provides the voltage supply to the lower MOSFET drivers. Place a high  
frequency decoupling capacitor 1uF X5R from this pin to GND.  
15  
This pin is connected to the drain of the external low side MOSFET via resistor and  
is the input of the over current protection(OCP) comparator.An internal current source  
is flown from this pin to the external resistor which sets the OCP voltage across the  
Rdson of the low side MOSFET. Current limit point is this voltage divided by the Rds-  
on. Once this threshold is reached the chip is latched out.  
16  
NC  
Not used.  
17  
18  
HDRV  
High side gate driver output which needs to be connected to high side MOSFET gate  
HG pin.A small value resistor may be placed between two pins to slow down the high  
side MOSFET, reducing the ringing on SW nodes.  
BST  
This pin supplies voltage to high side FET driver. A minimum high freq 0.47uF ce-  
ramic capacitor is placed as close as possible to and connected to this pin and  
respected pin 19.A 4.7ohm resister is recommended in series with this capacitor.  
20  
22  
ENSW/  
MODE  
Switching converter enable input. Connect to VCC for PFM/Non synchronous mode,  
connected to an external resistor divider equals to 70%VCC for ultrasonic, con-  
nected to GND for shutdown mode, floating or connected to 2V for the synchronous  
mode.  
VOUT  
TON  
VCC  
FB  
This pin is directly connected to the output of the switching regulator and senses the  
VOUT voltage. An internal MOSFET discharges the output during turn off.  
23  
24  
25  
26  
VIN sensing input. A resistor connects from this pin to VIN will set the frequency. A  
1nF capacitor from this pin to GND is recommended to ensure the proper operation.  
This pin supplies the internal 5V bias circuit. A 1uF X7R ceramic capacitor is  
placed as close as possible to this pin and ground pin.  
This pin is the error amplifiers inverting input. This pin is connected via resistor  
divider to the output of the switching regulator to set the output DC voltage from  
0.75V to 3.3V.  
PGOOD  
PGOOD indicator for switching regulator. It requires a pull up resistor to Vcc or  
lower voltage. When FB pin reaches 90% of the reference voltage PGOOD transi-  
tions from LO to HI state.  
27  
GND  
HG  
Ground pin.  
21,28  
PAD1  
High side MOSFET gate.  
29  
Rev.1.6  
03/06/09  
5
NX9548  
BLOCK DIAGRAM  
BST  
D1  
HG  
HDRV  
VCC  
Bias  
4.3/4.1  
Disable_B  
POR  
ODB  
Thermal  
shutdown  
TON  
start  
ON time  
pulse  
genearation  
HD  
VOUT  
FET Driver  
HD_IN  
R
Q
S
S1  
D2  
FB  
Mini offtime  
400ns  
OCP_COMP  
S2  
VREF=0.75V  
start  
POR  
FBUVLO_latch  
HD  
Diode  
emulation  
soft start  
PVCC  
VCC  
1M  
ENSW  
/MODE  
Disable  
PFM_nonultrasonic  
Sync  
MODE  
1M  
SELECTION  
OCP  
FB  
1.25*Vref/0.7VREF  
OVP  
OCP_COMP  
GND  
FB  
FBUVLO_latch  
0.7*Vref  
VOUT  
VOUT  
SS_finished  
PGOOD  
start  
0.9*Vref  
Figure 2 - Simplified block diagram of the NX9548  
Rev.1.6  
03/06/09  
6
NX9548  
Demoboard design and waveforms  
sdfd  
R1 1M  
27  
24  
PGOOD  
PGOOD  
TON  
D1  
C3  
1n  
R6  
10k  
VIN 8V~22V  
4,30-32,PAD2  
C1  
C2  
10uF,25V,X5R  
15  
25  
5V  
PVCC  
VCC  
2 x 4.7uF,25V,X5R  
R5 10  
R6 4.7  
20  
BST  
C6  
1u  
C7  
1u  
C4  
1u  
DO5010H-332MLD  
Vout 1.5V/9A  
L1 3.3uH  
1-3  
S1  
D2  
5-8,19,PAD3  
2R5TPE330MC  
C5 330uF  
R2  
10k  
ENSW  
/MODE  
22  
16  
OCP  
29  
18  
23  
26  
HG  
VOUT  
FB  
C8  
330p  
R3  
7.5k  
HDRV  
GND  
R4  
7.5k  
S2  
9-14  
21,28,PAD1  
Figure 3 - Demoboard schematic of NX9548  
Rev.1.6  
03/06/09  
7
NX9548  
Bill of Materials  
Item  
1
Quantity  
Reference  
Part  
4.7uF,25V,X5R  
10uF,25V,X5R  
1nF,50V,X7R  
1uF,10V,X7R  
2R5TPE330MC  
330pF  
1MEG  
10k  
7.5k  
10  
Manufacturer  
SANYO  
2
1
1
3
1
1
1
2
2
1
1
1
1
C1  
C2  
C3  
C4,C6,C7  
C5  
C8  
R1  
R2,R6  
R3,R4  
R5  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
R6  
L1  
U1  
4.7  
DO5010H-332MLD  
NX9548  
COILCRAFT  
NEXSEM INC.  
Rev.1.6  
03/06/09  
8
NX9548  
Demoboard Waveforms  
Fig.4 Startup when 5V is present and 12V bus is  
started up, output load current is at 1.5A.  
Fig.5 Startup when 12V bus is present and 5V is  
started up.  
Fig.6 Shutdown when 12V bus is present and 5V is  
shuted down.  
Fig.7Output ripple (VIN=15V IOUT=1.2A)  
Fig.9 5A step response(VIN=20V)  
Fig.8 5A step response(VIN=5V)  
Rev.1.6  
03/06/09  
9
NX9548  
Demoboard Waveforms(Cont')  
VIN=12V, VOUT=1.5V  
92.00%  
90.00%  
88.00%  
86.00%  
84.00%  
82.00%  
80.00%  
78.00%  
10  
100  
1000  
10000  
OUTPUT CURRENT(mA)  
Fig.10 Output efficiency at different load  
IOUT=10A, VOUT=1.5V  
79.00%  
78.60%  
78.20%  
77.80%  
77.40%  
77.00%  
0
5
10  
15  
20  
25  
VIN(V)  
Fig.11 Output efficiency at different VIN bus voltage  
Rev.1.6  
03/06/09  
10  
NX9548  
is around 220kHz.  
APPLICATION INFORMATION  
Symbol Used In Application Information:  
Output Inductor Selection  
VIN  
- Input voltage  
- Output voltage  
- Output current  
The value of inductor is decided by inductor ripple  
current and working frequency. Larger inductor value nor-  
mally means smaller ripple current. However if the in-  
ductance is chosen too large, it brings slow response  
and lower efficiency. The ripple current is a design free-  
dom which can be decided by design engineer accord-  
ing to various application requirements. The inductor value  
can be calculated by using the following equations:  
VOUT  
IOUT  
VRIPPLE - Output voltage ripple  
- Working frequency  
FS  
IRIPPLE - Inductor current ripple  
Design Example  
The following is typical application for NX9548, the  
schematic is figure 1.  
VIN = 8 to 22V  
V -V  
´ T  
ON  
(
)
IN  
OUT  
LOUT  
=
IRIPPLE  
...(3)  
IRIPPLE =k ´ IOUTPUT  
VOUT=1.5V  
FS=220kHz  
where k is percentage of output current.  
In this example, inductor from COILCRAFT  
DO5010H-332 with L=3.3uH is chosen.  
IOUT=9A  
VRIPPLE <=60mV  
Current Ripple is recalculated as below:  
VDROOP<=60mV @ 3A step  
(V -VOUT )´ TON  
IN  
On_Time and Frequency Calculation  
The constant on time control technique used in  
NX9548 delivers high efficiency, excellent transient dy-  
namic response, make it a good candidate for step down  
notebook applications.  
IRIPPLE  
=
=
LOUT  
(22V-1.5V)´ 310nS  
3.3uH  
=1.925A  
...(4)  
An internal one shot timer turns on the high side  
driver with an on time which is proportional to the input  
supply VIN as well inversely proportional to the output  
voltage VOUT. During this time, the output inductor charges  
the output cap increasing the output voltage by the  
amount equal to the output ripple. Once the timer turns  
off, the Hdrv turns off and cause the output voltage to  
decrease until reaching the internal FB voltage of 0.75V  
on the PFM comparator. At this point the comparator  
trips causing the cycle to repeat itself. A minimum off  
time of 400nS is internally set.  
Output Capacitor Selection  
Output capacitor is basically decided by the  
amount of the output voltage ripple allowed during steady  
state(DC) load condition as well as specification for the  
load transient. The optimum design may require a couple  
of iterations to satisfy both conditions.  
Based on DC Load Condition  
The amount of voltage ripple during the DC load  
condition is determined by equation(5).  
DIRIPPLE  
DVRIPPLE = ESR´ DIRIPPLE  
+
...(5)  
8´ F ´ COUT  
S
The equation setting the On Time is as follows:  
Where ESR is the output capacitors' equivalent  
series resistance,COUT is the value of output capacitors.  
Typically POSCAP is recommended to use in  
NX9548's applications. The amount of the output voltage  
ripple is dominated by the first term in equation(5) and  
the second term can be neglected.  
4.45´ 10- 12 ´ RTON ´ VOUT  
TON =  
...(1)  
...(2)  
V - 0.5V  
IN  
VOUT  
V ´ TON  
F =  
S
IN  
In this application example, the RTON is chosen  
to be 1Mohm, when VIN=22V, the TON is 310nS and FS  
For this example, one POSCAP 2R5TPE330MC  
Rev.1.6  
03/06/09  
11  
NX9548  
is chosen as output capacitor, the ESR and inductor in parallel.  
current typically determines the output voltage ripple. The above equation shows that if the selected out-  
When VIN reach maximum voltage, the output voltage put inductor is smaller than the critical inductance, the  
ripple is in the worst case.  
DV  
voltage droop or overshoot is only dependent on the ESR  
of output capacitor. For low frequency capacitor such  
as electrolytic capacitor, the product of ESR and ca-  
30mV  
RIPPLE  
ESRdesire  
=
=
=15.5mW  
...(6)  
DIRIPPLE 1.925A  
pacitance is high and L £ Lcrit is true. In that case, the  
transient spec is mostly like to dependent on the ESR  
of capacitor.  
If low ESR is required, for most applications, mul-  
tiple capacitors in parallel are needed. The number of  
output capacitor can be calculate as the following:  
Most case, the output capacitor is multiple capaci-  
tor in parallel. The number of capacitor can be calcu-  
lated by the following  
E S R E ´ DIR IPPLE  
N =  
...(7)  
D VR IPPLE  
12mW´ 1.925A  
ESRE ´ DIstep  
N=  
VOUT  
N =  
+
´ t 2  
30mV  
...(11)  
DV  
2´ L´ CE ´ DV  
tran  
tran  
N =0.77  
where  
The number of capacitor has to be round up to a  
integer. Choose N =1.  
0
if L £ Lcrit  
ì
ï
L´ DI  
t =  
í
step  
...(12)  
- ESRE ´ CE  
if L ³ Lcrit  
ï
Based On Transient Requirement  
Typically, the output voltage droop during transient  
is specified as  
VOUT  
î
For example, assume voltage droop during tran-  
sient is 60mV for 3A load step.  
DV  
< DV  
@step load I  
tran  
droop  
STEP  
During the transient, the voltage droop during the  
transient is composed of two sections. One section is  
dependent on the ESR of capacitor, the other section is  
a function of the inductor, output capacitance as well as  
input, output voltage. For example, for the overshoot  
when load from high load to light load with a DISTEP tran-  
sient load, if assuming the bandwidth of system is high  
enough, the overshoot can be estimated as the following  
equation.  
If one POSCAP 2R5TPE330MC(330uF, 12mohm  
ESR) is used, the crticial inductance is given as  
ESRE ´ CE ´ V  
OUT  
Lcrit  
=
=
DIstep  
12mW´ 3300mF´ 1.8V  
= 23.76mH  
3A  
The selected inductor is 3.3uH which is smaller  
than critical inductance. In that case, the output voltage  
transient mainly dependent on the ESR.  
VOUT  
DVovershoot = ESR ´ DIstep  
+
´ t 2  
number of capacitor is  
...(8)  
2´ L´ COUT  
where is the a function of capacitor,etc.  
ESRE ´ DIstep  
N =  
t
DV  
tran  
0
if L £ Lcrit  
ì
ï
12m4.5A  
L´ DI  
t =  
í
=
step  
...(9  
- ESR ´ COUT  
if L ³ Lcrit  
60mV  
ï
î
VOUT  
= 0.9  
where  
ESR ´ COUT ´ VOUT ESRE ´ CE ´ VOUT  
Choose N=1.  
Lcrit  
=
=
...(10)  
DIstep  
DIstep  
Based On Stability Requirement  
where ESRE and CE represents ESR and capaci-  
ESR of the output capacitor can not be chosen too  
low which will cause system unstable. The zero caused  
tance of each capacitor if multiple capacitors are used  
Rev.1.6  
03/06/09  
12  
NX9548  
by output capacitor's ESR must satisfy the requirement  
as below:  
Vout  
F
1
SW  
F
=
£
ESR  
...(13)  
R2  
2´ p ´ ESR´ COUT  
4
Fb  
Besides that, ESR has to be bigger enough so  
that the output voltage ripple can provide enough voltage  
ramp to error amplifier through FB pin. If ESR is too  
small, the error amplifier can not correctly dectect the  
ramp, high side MOSFET will be only turned off for mini-  
mum time 400nS. Double pulsing and bigger output ripple  
will be observed. In summary, the ESR of output capaci-  
tor has to be big enough to make the system stable, but  
also has to be small enough to satify the transient and  
DC ripple requirements.  
R1  
Vref  
Figure 12 - Voltage Divider  
R 2 ´ VREF  
R1=  
...(15)  
VOUT -VREF  
where R2 is part of the compensator, and the value  
of R1 value can be set by voltage divider.  
Input Capacitor Selection  
Input capacitors are usually a mix of high frequency  
ceramic capacitors and bulk capacitors. Ceramic ca-  
pacitors bypass the high frequency noise, and bulk ca-  
pacitors supply switching current to the MOSFETs. Usu-  
ally 1uF ceramic capacitor is chosen to decouple the  
high frequency noise.The bulk input capacitors are de-  
cided by voltage rating and RMS current rating. The RMS  
current in the input capacitors can be calculated as:  
Mode Selection  
NX9548 can be operated in PFM mode, ultrasonic  
PFM mode, CCM mode and shutdown mode by apply-  
ing different voltage on ENSW/MODE pin.  
When VCC applied to ENSW/MODE pin, NX9548  
is In PFM mode. The low side MOSFET emulates the  
function of diode when discontinuous continuous mode  
happens, often in light load condition. During that time,  
the inductor current crosses the zero ampere border and  
becomes negative current. When the inductor current  
reaches negative territory, the low side MOSFET is  
turned off and it takes longer time for the output voltage  
to drop, the high side MOSFET waits longer to be turned  
on. At the same time, no matter light load and heavy  
load, the on time of high side MOSFET keeps the same.  
Therefore the lightier load, the lower the switching fre-  
quency will be. In ultrosonic PFM mode, the lowest fre-  
quency is set to be 25kHz to avoid audio frequency  
modulation. This kind of reduction of frequency keeps  
the system running at light light with high efficiency.  
In CCM mode, inductor current zero-crossing sens-  
ing is disabled, low side MOSFET keeps on even when  
inductor current becomes negative. In this way the effi-  
ciency is lower compared with PFM mode at light load,  
but frequency will be kept constant.  
IRMS = IOUT  
´ D ´ 1-D  
...(14)  
D = TON ´ FS  
When VIN = 22V, VOUT=1.5V, IOUT=9A, the result of  
input RMS current is 2.3A.  
For higher efficiency, low ESR capacitors are  
recommended. One 10uF/X5R/25V and two 4.7uF/X5R  
/25V ceramic capacitors are chosen as input capaci-  
tors.  
Output Voltage Calculation  
Output voltage is set by reference voltage and ex-  
ternal voltage divider. The reference voltage is fixed at  
0.75V. The divider consists of two ratioed resistors so  
that the output voltage applied at the Fb pin is 0.75V  
when the output voltage is at the desired value.  
The following equation applies to figure 12, which  
shows the relationship between VOUT , VREF and volt-  
age divider.  
Rev.1.6  
03/06/09  
13  
NX9548  
Over Current Protection  
reset VCC or EN is necessary.  
Over current protection for NX9548 is achieved by  
sensing current through the low side MOSFET. An typi-  
cal internal current source of 24uA flows through an ex-  
ternal resistor connected from OCSET pin to SW node  
sets the over current protection threshold. When syn-  
chronous FET is on, the voltage at node SW is given as  
VSW =-IL ´ RDSON  
Under Output Voltage Protection  
Typically when the FB pin voltage is under 70% of  
VREF, the high side and low side MOSFET will be turned  
off. To resume the switching operation, VCC or ENSW  
has to be reset.  
The voltage at pin OCSET is given as  
IOCP ´ ROCP +VSW  
When the voltage is below zero, the over current  
occurs as shown in figure below.  
vbus  
I
OCP  
24uA  
OCP  
R
SW  
OCP  
OCP  
comparator  
Figure 13 - Over Voltage Protection  
The over current limit can be set by the following  
equation.  
ISET = IOCP ´ ROCP/RDSON  
The low side MOSFET RDSON is 24mW at the OCP  
occuring moment, and the current limit is set at 10A,  
then  
I
SET ´ RDSON 10A ´ 24mW  
ROCP  
=
=
= 10kW  
IOCP  
24uA  
Choose ROCP=10kW  
Power Good Output  
Power good output is open drain output, a pull up  
resistor is needed. Typically when softstart is finised  
and FB pin voltage is over 90% of VREF, the PGOOD  
pin is pulled to high after a 1.6ms delay.  
Over Output Voltage Protection  
Typically when the FB pin voltage is over 125% of  
VREF, the high side MOSFET will be turned off and the  
low side MOSFET will be latched to be on to discharge  
the output voltage. To resume the switching operation,  
Rev.1.6  
03/06/09  
14  
NX9548  
Demoboard Schematic  
R18  
7.5k  
R16  
7.5k  
C19  
R3  
1M  
VBUS  
330p  
5V  
C10  
1n  
PGOOD  
R17  
100k  
29  
27  
HG  
PGOOD  
5V  
5V  
15  
PVCC  
18  
20  
HDRV  
BST  
C17  
1u  
R5  
10  
U1  
R8  
4.7  
28  
G
GND2  
25  
VCC  
GND(PAD1)  
C2  
1u  
C11  
1u  
19  
16  
D2-5  
OCP  
NX9548 MLPQ32  
14  
13  
12  
11  
10  
9
R7  
6k  
S2-6  
S2-5  
S2-4  
S2-3  
S2-2  
S2-1  
VSW  
D1  
30  
31  
32  
D1(PAD2)  
D1-1  
VBUS  
D1-2  
VIN  
D1-3  
VOUT  
L2  
DO5010H-332HC  
VOUT  
VSW  
2
1
R13  
10  
CO2  
4.7u  
CO1  
2R5TPE330MC  
GND  
CIN1  
CIN2  
CIN3  
10u/25V 4.7u/25V 4.7u/25V  
C24  
470p  
Figure 14 - NX9548 schematic for the demoboard layout  
Rev.1.6  
03/06/09  
15  
NX9548  
Demoboard Layout  
Figure 15 Top layer  
Figure 16 Ground layer  
Rev.1.6  
03/06/09  
16  
NX9548  
Figure 17 Power layer  
Figure 18 Bottom layer  
Rev.1.6  
03/06/09  
17  
NX9548  
MCM 32 PIN 5 x 5 PACKAGE OUTLINE DIMENSIONS  
NOTE:ALL DIMENSIONSARE DISPLAYED IN MILLIMETERS.  
Rev.1.6  
03/06/09  
18  
厂商 型号 描述 页数 下载

MICROSEMI

NX9415 5A同步降压开关稳压器[ 5A SYNCHRONOUS BUCK SWITCHING REGULATOR ] 12 页

MICROSEMI

NX9415CM [ Switching Regulator ] 17 页

MICROSEMI

NX9415CMTR 5A同步降压开关稳压器[ 5A SYNCHRONOUS BUCK SWITCHING REGULATOR ] 12 页

MICROSEMI

NX9511B 9A同步降压开关REGULATORWITH 1MHz的工作频率[ 9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz OPERATION FREQUENCY ] 16 页

MICROSEMI

NX9511BCMTR 9A同步降压开关REGULATORWITH 1MHz的工作频率[ 9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz OPERATION FREQUENCY ] 16 页

MICROSEMI

NX9548 9A单通道手机的PWM开关稳压器[ 9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR ] 18 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.168779s