找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

NX2155H

型号:

NX2155H

描述:

单电源同步PWM控制器[ SINGLE POWER SUPPLY SYNCHRONOUS PWM CONTROLLER ]

品牌:

MICROSEMI[ Microsemi ]

页数:

17 页

PDF大小:

770 K

NX2155H  
SINGLE POWER SUPPLY SYNCHRONOUS PWM CONTROLLER  
ADVANCED DATA SHEET  
Pb Free Product  
FEATURES  
DESCRIPTION  
The NX2155H controller IC is a single input supply syn-  
chronous Buck controller IC designed for step down DC  
to DC converter applications. NX2155H is optimized to  
convert bus voltages from 8V to 22V to output as low as  
0.8V voltage. An internal regulator converts bus voltage  
to 5V, which provides voltage supply to internal logic  
and driver circuit. The NX2155H can operates at pro-  
grammable frequency of 2MHz and employs loss-less  
current limiting by sensing the Rdson of synchronous  
MOSFET followed by hiccup feature.Feedback under  
voltage triggers Hiccup.  
n
n
Single supply voltage from 8V to 22V  
Internal 5V regulator  
n Programmable operational frequency of 2MHz  
n Internal Digital Soft Start Function  
n Less than 50 nS adaptive deadband  
n
Current limit triggers hiccup by sensing Rdson of  
Synchronous MOSFET  
n Pb-free and RoHS compliant  
APPLICATIONS  
n
n
n
n
LCD TV  
Graphic Card on board converters  
Memory Vddq Supply in mother board applications  
On board DC to DC such as  
12V to 3.3V, 2.5V or 1.8V  
Hard Disk Drive  
Other features of the device are: Internal schottky di-  
ode, thermal shutdown, 5V gate drive, adaptive  
deadband control, internal digital soft start, 5VREG  
undervoltage lock out and Shutdown capability via the  
comp pin.  
n
n
Set Top Box  
TYPICAL APPLICATION  
VIN  
+12V  
10u  
6
3
2
VIN  
BST  
0.1u  
0.1u  
M1  
AO6800  
HDRV  
5
5VREG  
1u  
4.7u  
VOUT  
1
SW  
+5V@2A  
6k  
10  
4
300  
OCP  
2 x (10uF,10V,X5R)  
4.22k  
7
RT  
LDRV  
49.9k  
9.53k  
180p  
9
8
FB  
COMP  
GND(PAD)  
15k  
1n  
10p  
Figure1 - Typical application of 2155H  
ORDERING INFORMATION  
Device  
NX2155HCUPTR  
Temperature  
0 to 70o C  
Package  
MSOP-EP-10L  
Package Marking  
NX155HXXX  
Pb-Free  
Yes  
Note: XXX is date code. For example, 841 means that this NX2155H is packaged in the 41th week of  
2008  
Rev.1.1  
04/16/09  
1
NX2155H  
ABSOLUTE MAXIMUM RATINGS(NOTE1)  
VCC to GND & BST to SW voltage ................... 6.5V  
BST to GND Voltage ...................................... 30V  
VIN to GND Voltage ........................................ 25V  
SW to GND .................................................... -2V to 35V  
All other pins .................................................. -0.3V to 6.5V  
Storage Temperature Range ............................. -65oC to 150oC  
Operating Junction Temperature Range ............. -40oC to 125oC  
NOTE1: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to  
the device. This is a stress only rating and operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied.  
PACKAGE INFORMATION  
10-LEAD PLASTIC MSOP-EP  
qJA » 46oC/W  
SW  
1
10  
9
OCP  
FB  
HDRV 2  
GND  
(PAD)  
BST  
LDRV  
8
3
4
5
COMP  
RT  
7
6
5VREG  
VIN  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vin = 12V, and TA = 0 to 70oC. Followings are bypass  
capacitors:CVIN=1uF, C5VREG=4.7uF, all X5R ceramic capacitors. Typical values refer to TA = 25oC. Low duty cycle  
pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.  
PARAMETER  
Reference Voltage  
Ref Voltage  
SYM  
Test Condition  
Min  
TYP  
MAX Units  
VREF  
0.8  
0.4  
V
0.784  
0.816  
Ref Voltage line regulation  
5VREG  
Vin=8V to 22V  
%
5VREG Voltage range  
5VREG UVLO  
5
V
V
4.75  
20  
5.25  
4.4  
5V REG rising  
VIN=9V to 22V  
3.9  
0.2  
10  
50  
5VREG UVLO Hysteresis  
5VREG Line Regulation  
5VREG Max Current  
V
mV  
mA  
20  
Supply Voltage(Vin)  
Vin Voltage Range  
Vin  
V
8
22  
Input Voltage Current(Static)  
Input Voltage Current  
(Dynamic)  
No switching  
Switching with HDRV and  
LDRV open @2.2MHz  
3.7  
4.8  
8
6.5  
mA  
5.4  
11  
mA  
Rev.1.1  
04/16/09  
2
NX2155H  
PARAMETER  
Vin UVLO  
SYM  
Test Condition  
Min  
TYP  
MAX Units  
Vin-Threshold  
Vin_UVLO Vin Rising  
6.5  
0.6  
V
V
6
7.5  
Vin-Hysteresis  
Vin_Hyst  
Tss  
Vin Falling  
FS=2.2MHz  
Rt=4.22k  
SS  
Soft Start time  
400  
uS  
Oscillator (Rt)  
Frequency  
FS  
2250  
1.5  
kHz  
V
Ramp-Amplitude Voltage  
Max Duty Cycle  
Min Controlable On Time  
Error Amplifiers  
Transconductance  
Input Bias Current  
Comp SD Threshold  
VRAMP  
1.4  
62  
1.9  
80  
FS=2.2MHz  
71  
%
nS  
150  
1500  
2000  
10  
2500 umho  
nA  
Ib  
0.24  
0.54  
0.3  
0.36  
V
FBUVLO  
Feedback UVLO threshold  
High Side Driver(CL=2200pF)  
0.6  
0.66  
V
Output Impedance , Sourcing  
Output Impedance , Sinking  
Rsource(Hdrv)  
I=200mA  
I=200mA  
1.9  
1.7  
ohm  
ohm  
Rsink(Hdrv)  
THdrv(Rise)  
THdrv(Fall)  
Rise Time  
14  
17  
30  
ns  
ns  
ns  
Fall Time  
Deadband Time  
Tdead(L to Ldrv going Low to Hdrv  
21  
39  
H)  
going High, 10%-10%  
Low Side Driver (CL=2200pF)  
Output Impedance, Sourcing  
Current  
Output Impedance, Sinking  
Rise Time  
Fall Time  
Deadband Time  
Rsource(Ldrv)  
I=200mA  
I=200mA  
1.9  
ohm  
Rsink(Ldrv)  
TLdrv(Rise)  
TLdrv(Fall)  
Tdead(H to SW going Low to Ldrv  
L) going High, 10% to 10%  
1
ohm  
ns  
ns  
13  
12  
10  
7
13  
45  
ns  
OCP  
OCP current  
Over temperature  
Threshold  
30  
37  
uA  
oC  
oC  
150  
20  
Hysteresis  
Internal Schottky Diode  
Forward voltage drop  
forward current=20mA  
350  
500  
mV  
Rev.1.1  
04/16/09  
3
NX2155H  
PIN DESCRIPTIONS  
PIN #  
PIN SYMBOL  
PIN DESCRIPTION  
An internal 5V regulator provides supply voltage for the low side fet driver, BST  
and internal logic circuit. A high frequency 4.7uF X5R ceramic capacitor must  
be connected from this pin to the GND pin as close as possible.  
5
5VREG  
Voltage supply for the internal 5V regulator. A high freuqncy 0.1uF ceramic ca-  
pacitor must be connected from this pin to GND.  
6
9
VIN  
FB  
This pin is the error amplifier inverting input. This pin is also connected to the  
output UVLO comparator. When this pin falls below threshold, both HDRV and  
LDRV outputs are in hiccup.  
This pin is the output of the error amplifier and together with FB pin is used to  
compensate the voltage control feedback loop. This pin is also used as a shut  
down pin. When this pin is pulled below 0.3V, both drivers are turned off and  
internal soft start is reset.  
8
COMP  
This pin supplies voltage to the high side driver. A high frequency  
3
BST  
ceramic capacitor of 0.1 to 1 uF must be connected from this pin to SW pin.  
This pin is connected to the drain of the external low side MOSFET and is the  
input of the over current protection(OCP) comparator.An internal current source  
is flown to the external resistor which sets the OCP voltage across the Rdson  
of the low side MOSFET. Current limit point is this voltage divided by the Rds-  
on.  
10  
OCP  
This pin is connected to the source of the high side MOSFET and provides return  
path for the high side driver.  
1
SW  
High side MOSFET gate driver.  
Ground pin.  
2
PAD  
4
HDRV  
GND  
LDRV  
RT  
Low side MOSFET gate driver.  
Oscillator's frequency can be set by using an external resistor from this pin to  
GND.  
7
Rev.1.1  
04/16/09  
4
NX2155H  
BLOCK DIAGRAM  
5V  
Regulator  
VIN  
5VREG  
UVLO  
UVLO  
1.25V  
0.8V  
Bias  
Generator  
BST  
POR  
START  
HDRV  
SW  
COMP  
0.3V  
RT  
OC  
OVP  
Control  
Logic  
Latch  
PWM  
START  
0.8V  
VCC  
OSC  
ramp  
Digital  
start Up  
Thermal  
Shutdown  
S
R
LDRV  
Q
Hiccup Logic  
FB  
SS_done  
0.6V  
CLAMP  
0.6V  
FB  
1.3V  
CLAMP  
COMP  
START  
OCP  
GND  
VCC  
START  
Figure 2 - Simplified block diagram of the NX2155H  
Rev.1.1  
04/16/09  
5
NX2155H  
Demoboard Design(VIN=12V, VOUT= 5V/2A, FREUQNCY=2.2MHz)  
sdfd  
BUS  
C1  
CIN2  
CIN1  
0.1uF  
0.1u  
10uF,16V  
3
2
BST  
5
VCC  
C3  
0.1u  
M1B  
AO6800  
C2  
4.7u  
R8  
HDRV  
3
HDRV  
0
U1  
L1  
SW  
OUT  
1
VOUT  
SW  
BRL3225T1R0M  
7
R2  
6k  
RT  
10  
OCP  
R1  
4.22k  
R3  
COUT1  
COUT2  
10uF,16V  
R7  
10  
300  
10uF,16V  
R4  
M1A  
AO6800  
49.9k  
LDRV  
4
1
GND  
LDRV  
C7  
470p  
C4  
GND  
180p  
9
8
FB  
R6  
15k  
C6  
10p  
R5  
9.53k  
C5  
1n  
COMP  
* R7 and C7 are optional.  
Figure 3 - Simplified demoboard schematic of NX2155H  
Rev.1.1  
04/16/09  
6
NX2155H  
Bill of Materials  
Item  
1
Quantity  
Reference  
C1,C3,CIN1  
Part  
Manufacturer  
3
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
0.1u  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C2  
C4  
C5  
C6  
4.7uF,6.3V,X5R  
180p  
1n  
10p  
470p  
10uF,16V,X5R  
10uF,10V,X5R  
BRL3225T1R0M  
C7  
CIN2  
COUT1,COUT2  
L1  
TAIYO YUDEN  
AOS  
M1  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
U1  
AO6800  
4.22k  
6k  
300  
49.9k  
9.53k  
15k  
10  
0
NX2155H/MSOP-EP10 NEXSEM INC.  
Rev.1.1  
04/16/09  
7
NX2155H  
Demoboard Waveforms  
Fig.5 Startup( CH1 VOUT 2V/DIV)  
Fig.4 Output ripple(CH1 VOUTAC 50mV/DIV, CH2  
SW 10V/DIV, CH4 OUTPUT CURRENT 2A/DIV)  
Fig.6 OCP protection during output short(CH1 VOUT  
2V/DIV, CH4 OUTPUT CURRENT 5A/DIV)  
Fig.7 Output dynamic response(CH1 VOUTAC  
200mV/DIV, CH4 OUTPUT CURRENT 500mA/DIV)  
100.00%  
90.00%  
80.00%  
70.00%  
60.00%  
50.00%  
40.00%  
30.00%  
20.00%  
10.00%  
0.00%  
0
500  
1000  
1500  
2000  
2500  
Iout (mA)  
Fig.8 Output efficiency  
Rev.1.1  
04/16/09  
8
NX2155H  
Demoboard Layout  
Figure 9 Top layer  
Figure 10 Ground layer  
Rev.1.1  
04/16/09  
9
NX2155H  
Figure 11 Power layer  
Figure 12 Bottom layer  
Rev.1.1  
04/16/09  
10  
NX2155H  
Demoboard Design( (VIN=12V, VOUT= 5V/10A,  
FREUQNCY=400kHz)  
BUS  
BUS  
1
C18  
100u/16v  
C3  
0.1u  
3
BST  
C9  
C10  
5
VCC  
22u/25V 22u/25V  
C4  
0.1u  
C5  
4.7u  
M1  
U1  
HDRV  
2
1
4
HDRV  
SW  
7
RT  
VOUT  
GND  
L1  
DO5010H-222MLD  
SW  
VOUT  
1
2
R3  
30k  
SW  
C14  
C15  
C19  
47uF/6.3V/X5R  
47uF/6.3V/X5R 47uF/6.3V/X5R  
R1  
3k  
10  
4
OCP  
M2  
R17  
2.15  
LDRV  
4
LDRV  
C13  
1000p  
100k  
R9  
9
8
FB  
R7  
R8  
C23  
R10  
30k  
19.1k  
C22  
33p  
C21  
1n  
750  
220p  
COMP  
Figure 13 - Simplified demoboard schematic of NX2155H  
Rev.1.1  
04/16/09  
11  
NX2155H  
Bill of Materials  
Item  
1
Quantity Reference  
Part  
0.1u  
4.7u  
22u/25V/X5R  
1000p  
47uF/6.3V/X5R  
100u/16v  
1n  
33p  
220p  
DO5010H-222MLD  
BSC119N03S  
BSC029N025S  
3k  
30k  
750  
Manufacturer  
2
1
2
1
3
1
1
1
1
1
1
1
1
2
1
1
1
1
1
C3,C4  
C5  
C9,C10  
C13  
C14,C15,C19  
C18  
C21  
C22  
C23  
L1  
M1  
M2  
R1  
R3,R7  
R8  
R9  
R10  
R17  
U1  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
COILCRAFT  
INFINEON  
INFINEON  
100k  
19.1k  
2.15  
NX2155/MSOP-EP10  
NEXSEM INC.  
Rev.1.1  
04/16/09  
12  
NX2155H  
Demoboard Waveforms  
Fig.15 Startup( CH1 VOUT 2V/DIV, CH4 INDUCTOR  
CURRENT 5A/DIV)  
Fig.14 Output ripple(CH1 SW 10V/DIV, CH2 VOUTAC  
50mV/DIV, CH4 INDUCTOR CURRENT 5A/DIV)  
Fig.16 OCP protection during output short(CH2  
VOUT 2V/DIV, CH4 OUTPUT CURRENT 5A/DIV)  
Fig.17 Output dynamic response(CH2 VOUTAC  
200mV/DIV, CH4 OUTPUT CURRENT 5A/DIV)  
Fig.18 Output efficiency  
Rev.1.1  
04/16/09  
13  
NX2155H  
Compensator Design  
APPLICATION INFORMATION  
Symbol Used In Application Information:  
Due to the double pole generated by LC filter of the  
power stage, the power system has 180o phase shift ,  
and therefore, is unstable by itself. In order to achieve  
accurate output voltage and fast transient response,  
compensator is employed to provide highest possible  
bandwidth and enough phase margin.Ideally,the Bode  
plot of the closed loop system has crossover frequency  
between1/10 and 1/5 of the switching frequency, phase  
margin greater than 50o and the gain crossing 0dB with -  
20dB/decade. Power stage output capacitors usually  
decide the compensator type. If electrolytic capacitors  
are chosen as output capacitors, type II compensator  
can be used to compensate the system, because the  
zero caused by output capacitor ESR is lower than cross-  
over frequency. Otherwise type III compensator should  
be chosen.  
VIN  
- Input voltage  
- Output voltage  
- Output current  
VOUT  
IOUT  
VRIPPLE - Output voltage ripple  
- Working frequency  
FS  
IRIPPLE - Inductor current ripple  
Output Inductor Selection  
The selection of inductor value is based on induc-  
tor ripple current, power rating, working frequency and  
efficiency. Larger inductor value normally means smaller  
ripple current. However if the inductance is chosen too  
large, it brings slow response and lower efficiency. Usu-  
ally the ripple current ranges from 20% to 40% of the  
output current. This is a design freedom which can be  
decided by design engineer according to various appli-  
cation requirements. The inductor value can be calcu-  
lated by using the following equations:  
A. Type III compensator design  
For low ESR output capacitors, typically such as  
Sanyo oscap and poscap, the frequency of ESR zero  
caused by output capacitors is higher than the cross-  
over frequency. In this case, it is necessary to compen-  
sate the system with type III compensator. The follow-  
ing figures and equations show how to realize the type III  
compensator by transconductance amplifier.  
V -VOUT VOUT  
1
IN  
LOUT  
=
´
´
DIRIPPLE  
V
F
S
IN  
...(1)  
IRIPPLE =k ´ IOUTPUT  
where k is between 0.2 to 0.4.  
Output Capacitor Selection  
1
Output capacitor is basically decided by the  
amount of the output voltage ripple allowed during steady  
state(DC) load condition as well as specification for the  
load transient. The optimum design may require a couple  
of iterations to satisfy both condition.  
FZ1  
FZ2  
=
=
=
=
...(3)  
...(4)  
...(5)  
...(6)  
2´ p ´ R4 ´ C2  
1
2´ p ´ (R2 + R3 )´ C3  
1
F
P1  
2´ p ´ R3 ´ C3  
The amount of voltage ripple during the DC load  
condition is determined by equation(2).  
1
F
P2  
C1 ´ C2  
2´ p ´ R4 ´  
DIRIPPLE  
C1 + C2  
DVRIPPLE = ESR´ DIRIPPLE  
+
...(2)  
8´ F ´ COUT  
S
Where ESR is the output capacitors' equivalent  
series resistance,COUT is the value of output capacitors.  
Typically when ceramic capacitors are selected as  
output capacitors, DC ripple spec is easy to be met, but  
mutiple ceramic capacitors are required at the output to  
meet transient requirement.  
where FZ1,FZ2,FP1 and FP2 are poles and zeros in  
the compensator. Their locations are shown in figure 20.  
The transfer function of type III compensator for  
transconductance amplifier is given by:  
Ve  
1- gm ´ Zf  
=
VOUT  
1+ gm ´ Zin + Zin /R1  
Rev.1.1  
04/16/09  
14  
NX2155H  
For the voltage amplifier, the transfer function of  
compensator is  
B. Type II compensator design  
Type II compensator can be realized by simple RC  
circuit without feedback as shown in figure 22. R3 and C1  
introduce a zero to cancel the double pole effect. C2  
introduces a pole to suppress the switching noise. The  
following equations show the compensator pole zero lo-  
cation and constant gain.  
Ve  
- Zf  
=
VOUT  
Zin  
To achieve the same effect as voltage amplifier,  
the compensator of transconductance amplifier must  
satisfythiscondition: R4>>2/gm. And it would be desir-  
able if R1||R2||R3>>1/gm can be met at the same time.  
R1  
Gain=gm ´  
´ R3  
... (7)  
... (8)  
... (9)  
R1+R2  
1
Fz =  
Zf  
Vout  
2´ p ´ R3 ´ C1  
Zin  
R3  
C1  
1
F »  
p
2´ p ´ R3 ´ C2  
C2  
R4  
R2  
R1  
For this type of compensator, FO has to satisfy  
FLC<FESR<<FO<=1/10~1/5Fs.  
C3  
Fb  
Ve  
gm  
power stage  
Vref  
40dB/decade  
Figure 19 - Type III compensator using  
transconductance amplifier  
loop gain  
power stage  
20dB/decade  
LC  
F
40dB/decade  
compensator  
Gain  
loop gain  
20dB/decade  
P
F
F
F
Z
LCFESR  
FO  
ESR  
F
FO  
Figure 21 - Bode plot of Type II compensator  
compensator  
F
P2 FP1  
S
F
FZ1  
FZ2  
Figure 20 - Bode plot of Type III compensator  
Rev.1.1  
04/16/09  
15  
NX2155H  
Over Current Protection  
Over current protection is achieved by sensing cur-  
rent through the low side MOSFET. A typical internal  
current source of 37uA flowing through an external resis-  
tor connected from OCP pin to SW node sets the over  
current protection threshold. When synchronous FET is  
on, the voltage at node SW is given as  
Vout  
R2  
Fb  
Ve  
R3  
gm  
R1  
Vref  
C2  
VSW =-IL ´ RDSON  
C1  
The voltage at pin OCP is given as  
I
OCP ´ ROCP +VSW  
When the voltage is below zero, the over current  
occurs.  
Figure 22 - Type II compensator with  
transconductance amplifier  
vbus  
I
OCP  
Output Voltage Calculation  
OCP  
R
SW  
Output voltage is set by reference voltage and ex-  
ternal voltage divider. The reference voltage is fixed at  
0.8V. The divider consists of two ratioed resistors so  
that the output voltage applied at the Fb pin is 0.8V when  
the output voltage is at the desired value. The following  
equation and picture show the relationship between  
VOUT , VREF and voltage divider.  
OCP  
OCP  
comparator  
Figure 24 - Over current protection  
The over current limit can be set by the following  
equation  
R 2 ´ VREF  
I
OCP ´ ROCP  
R1=  
ISET  
=
...(10)  
VOUT -VREF  
K ´ RDSON  
where R2 is part of the compensator, and the value  
of R1 value can be set by voltage divider.  
Frequency Selection  
The frequency can be set by external Rt resistor.  
The relationship between frequency and RT pin is shown  
as follows.  
See compensator design for R1 and R2 selection.  
Vout  
NX2155H Frequency vs Rt  
R2  
Fb  
2500  
2000  
1500  
1000  
500  
0
R1  
Vref  
Voltage divider  
Figure 23 - Voltage divider  
3
8
13  
18  
23  
28  
33  
38  
Rt(kohm)  
Figure 25 - Frequency versus Rt resistor  
Rev.1.1  
04/16/09  
16  
NX2155H  
MSOP 10 PIN WITH EXPOSED PAD OUTLINE DIMENSIONS  
NOTE: ALL DIMENSIONS ARE DISPLAYED IN INCHES.  
Rev.1.1  
04/16/09  
17  
厂商 型号 描述 页数 下载

ETC

NX2 P CLIP黑包100 Inhalt亲Packung : 100 Stk阅读。\n[ P CLIP BLACK PACK 100 Inhalt pro Packung: 100 Stk. ] 1 页

AMPHENOL

NX2000C000J0G [ Barrier Strip Terminal Block ] 1 页

ETC

NX200105 [ SynJet ZFlow 90 Outdoor Cooler ] 2 页

ETC

NX200106 [ SynJet ZFlow 90 Outdoor Cooler ] 2 页

ETC

NX200107 [ SynJet ZFlow 90 Outdoor Cooler ] 2 页

ETC

NX200108 [ SynJet ZFlow 90 Outdoor Cooler ] 2 页

NDK

NX2012SA 晶单元, OA / AV /移动通信[ Crystal Units, For OA / AV / Mobile Communications ] 1 页

NDK

NX2016AA 水晶单位对于OA / AV /短距离无线[ Crystal Units For OA / AV/ Short-range Wireless ] 1 页

NDK

NX2016AB 晶体单元[ Crystal Units ] 1 页

NDK

NX2016GC [ For Automotive ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.188162s