找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

NW6003-XS

型号:

NW6003-XS

描述:

主叫号码ID电路| CMOS |专科| 24PIN |塑料\n[ CALLER NUMBER ID CIRCUIT|CMOS|SOP|24PIN|PLASTIC ]

品牌:

ETC[ ETC ]

页数:

21 页

PDF大小:

147 K

NW6003  
Type II Caller ID Decoder  
Data Sheet, January 2000 (Ver 2.0)  
File No. NW6003DS(L)  
Description  
Features  
1200 baud Bell 202 and ITU-T V.23 Frequency Shift  
Keying (FSK) Demodulation  
Compliant with three specifications:  
Bellcore GR-30-CORE & SR-TSV-002476  
British Telecom (BT) SIN227 & SIN242  
The NW6003 device is a single-chip, 3/5 Volt CMOS caller  
ID and call waiting detection circuit. It can receive signals  
following Bellcore GR-30-CORE & SR-TSV-002476, BT  
SIN227 & SIN242, and CCA TW/P&E/312 specifications.  
Cable Communication Association (CCA) TW/P&E/312 The NW6003 provides 1200 baud Bell 202 and ITU-T V.23  
Bellcore “CPEAlerting Signal (CAS)” and British Telecom FSK demodulation. It allows a microcontroller to extract data  
“Idle State and Loop State Tone Alert Signal” detection from it via a serial interface. In addition, the NW6003 offers  
Ring and line reversal detection  
High sensitivity with -40 dBV input Tone and FSK  
Detection  
Idle State and Loop State Tone Alert Signal and line reversal  
detection capability for BT CLIP, ring burst detection for the  
CCA CLIP, and ring and CAS detection for Bellcore CID.  
Serial data interface to microcontroller  
3 V ±10% or 5 V ±10% operation  
Low power CMOS with powerdown mode  
Operating temperature range: -40 °C to +85 °C  
Packages available:  
The device can be used in feature or cordless phones for BT  
Calling Line Identity Presentation (CLIP), CCA CLIP and  
Bellcore Calling Identity Delivery (CID) systems. It can also  
be used in caller ID boxes, modem, fax machines, answer-  
ing machines, database query systems and Computer Tele-  
phony Integration (CTI) systems.  
NW6003-XS 24 pin SOIC  
(where ‘X’ is the revision ID)  
TRIGIN  
TRIGRC  
TRIGOUT  
OSCIN  
OSCOUT  
Oscillator  
Line Reverse  
and  
Interrupt  
Generator  
INT  
Ring Detector  
3 V/5 V  
Detector  
STD  
Guard Time  
ST/GT  
VREF  
CAP  
PWDN  
Bias  
Generator  
Dual Tone  
Detector  
EST  
CD  
DCLK  
DATA  
DR  
+
-
IN+  
IN-  
FSK  
Demodulator  
Data/Timing  
Recovery  
GS  
FSKEN  
MODE  
Figure-1. Block Diagram  
Integrated Device Technology, Inc.  
NW6003  
Type II Caller ID Decoder  
Pin Information  
VCC  
ST/GT  
EST  
1
IN+  
IN-  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
3
GS  
STD  
4
VREF  
CAP  
INT  
5
CD  
6
TRIGIN  
TRIGRC  
DR  
7
DATA  
DCLK  
FSKEN  
PWDN  
TM  
8
TRIGOUT  
MODE  
9
10  
11  
12  
OSCIN  
OSCOUT  
GND  
Figure-2. Pin Assignment  
Name  
IN+  
Type Pin No.  
Description  
of the gain adjustable op amp.  
I
I
1
2
3
Non-inverting Input  
of the gain adjustable op amp.  
IN-  
Inverting Input  
of the gain adjustable op amp.  
GS  
O
Gain Select Output  
Select the op amp gain byadjusting the resistor ratio in the feed-back resistor network.  
Reference Voltage.  
VREF  
CAP  
O
O
I
4
5
6
7
This output is used to bias the input op amp. It is typically VCC/2.  
Capacitor Connector.  
A 0.1 F decoupling capacitor should be connected between this pin and GND.  
µ
TRIGIN  
TRIGRC  
Trigger Input.  
This is a Schmitt trigger input used for ring detection and line reversal detection.  
Trigger Resistor and Capacitor Connector.  
I/O  
This pin is connected to VCC and GND through resistor and capacitor. The RC value  
decides the time delay from TRIGIN going inactive (low) to TRIGOUT becoming inactive  
(high). See Fig.6 for reference.  
TRIGOUT  
MODE  
O
I
8
9
Trigger Output.  
This is a Schmitt trigger buffer output indicating the detection of line reversal and/or ringing.  
Serial FSK Interface MODE Select.  
Alow level on this pin sets the interface to mode '0', while a high level sets it to mode '1'.  
Oscillator Input.  
OSCIN  
I
10  
A3.579545 MHzcrystal or ceramic resonator should be connected between this pin and  
the OSCOUT. It can also be driven by an external clock source.  
Oscillator Output.  
OSCOUT  
O
11  
A3.579545 MHzcrystal or ceramic resonator should be connected between this pin and  
and OSCIN. When OSCIN is driven byan external clock, this pin should be left floating.  
Ground.  
GND  
TM  
--  
I
12  
13  
Must be connected to GND for normal operation.  
Test Mode.  
Page-2  
NW6003  
Type II Caller ID Decoder  
Pin Information (Continued)  
Name Type Pin No.  
Description  
PWDN  
I
14 Power Down.  
This is an active high Schmitt trigger input. When active, the device enters a minimal  
power state bydisabling all internal functional circuits except TRIGIN, TRIGRC and TRIGOUT.  
It must be low for normal operation.  
FSKEN  
DCLK  
DATA  
DR  
I
15 FSK Enable.  
When this pin is high, FSK demodulation is enabled. This pin should be set low to disable  
the FSK demodulator from reacting to extraneous signals such as speech, alert signal etc.  
I/NC  
O
16 Data Clock.  
In mode '0' (MODE pin low), this pin is unused. In mode '1' (MODE pin high), this pin is an  
input, Data Clock is provided bymicrocontroller.  
17 Data Output.  
In mode '0', data appears on this pin once demodulated. In mode '1', data is shifted out on the  
rising edge of DCLK, which is supplied bymicrocontroller.  
O/NC  
18 Data Ready Output.  
In mode '0', this pin is unused. In mode '1', this pin indicates to the microcontroller that 8-bit  
data is ready. Microcontroller initializes the DCLK signal to read out the data.  
19 FSK Carrier Detect .  
CD  
O
This is an active low CMOS output signal to indicate the presence of in-band FSK signal.  
20 Interrupt.  
INT  
OD  
This is an active low open drain output. This pin is used to interrupt the microcontroller when  
TRIGOUT or DR is low, or STD is high. It remains low until all three signals become inactive.  
21 Dual Tone Alert Signal Delayed Steering Output.  
STD  
EST  
O
O
An active high signal to indicate the detection of a "guard time qualified" Dual Tone Alert Signal.  
22 Dual Tone Alert Signal Early Steering Output.  
This pin is an active high output to indicate the detection of Dual Tone Alert Signal.  
23 Dual Tone Alert Signal Steering Input/Guard Time.  
ST/GT  
I/O  
It's a CMOS output and an input of voltage comparator. If the voltage at this pin is greater than  
voltage threshold (See Fig-6), STD is asserted high to indicate that a dual tone has been  
detected. Avoltage less than threshold enables the device to accept a new dual tone. External  
RC are connected to EST and VCC pins.  
VCC  
--  
24 3/5 V Power Supply.  
Abbreviation Index  
CAS ----------------------------------------------------------- CPE Alerting Signal  
CDS ----------------------------------------------------------- Caller Display Service  
CID ------------------------------------------------------------ Calling Identity Delivery  
CIDCW ------------------------------------------------------- Calling Identity Delivery on Call Waiting  
CLIP ---------------------------------------------------------- Calling Line Identity Presentation  
CNAM -------------------------------------------------------- Calling Name Delivery  
CND ---------------------------------------------------------- Calling Number Delivery  
CNIC --------------------------------------------------------- Calling Number Identification Circuit  
CO ------------------------------------------------------------- Central Office  
CTI ----------------------------------------------------------- Computer Telephony Integration  
TE -------------------------------------------------------------- Terminal Equipment  
Page-3  
NW6003  
Type II Caller ID Decoder  
Functional Description  
Caller ID Specs Supported  
Block Description  
The NW6003 is a type II Caller ID device with Call Waiting The NW6003 requires a 3.579545 MHz system clock and  
capability. It supports Bellcore, BT and CCA specifications. consists of four major functional blocks: Analog Input Circuit,  
The major differences between above specs are as follows CLIP/CID Call Arrival Detection, Dual Tone Alert Signal  
(refer to Fig. 13, Fig. 14, Fig. 15, Fig. 16 and Fig. 17):  
Dectection, and FSK Demodulation.  
Bellcore  
Analog Input Circuit  
Bellcore GR-30-CORE and SR-TSV-002476 define the re- The input signal is processed by the Analog Input Circuit  
quirement for the signaling services of Calling Number block, which is comprised of an operational amplifier and a  
Delivery (CND), Calling Name Delivery (CNAM) and Calling bias source (VREF). VREF is the output of a low impedance  
Identity Delivery on Call Waiting (CIDCW).  
voltage source used to bias the input op amp, and is typically  
equal to VCC/2. The gain adjustable op amp is also used to  
In CND or CNAM service, information of the calling party is select the input gain by connecting a feedback resistor  
embedded in the silent interval between the first and second between GS and the IN- pin. Fig. 3 shows the necessary  
ringings. The NW6003 can detect the first ringing and then connections with the A/B line inputs. In single-ended  
demodulate the incoming Bell-202 FSK data. In CIDCW configuration, the gain adjustable op amp is connected as  
service, information about an incoming caller is sent to the shown in Fig. 4.  
subscriber who is engaged in another call. A CPE Alerting  
Signal (CAS) indicates that a CIDCW data is incoming. The  
NW6003 can detect the alerting signal and demodulate the  
incoming FSK information which contains CIDCW data. The  
demodulated data is output onto the serial interface.  
VREF  
NW6003  
R3  
R4  
British Telecom  
C1  
C2  
R1  
R2  
IN+  
IN-  
A
B
BT SIN227 and SIN242 define the signal interface between  
the Central Office (CO) and the Terminal Equipment (TE) for  
the Caller Display Service (CDS). CDS provides CLIP (Calling  
Line Identity Presentation) that delivers to an idle state (on  
hook) TE the identity of an incoming caller before the first  
ring.  
R5  
GS  
Voltage Gain  
Av = R5/R1  
Differential Input Amplifier  
C1=C2  
Input Impedance  
R1=R2 (For unity gain R5=R2)  
R3=(R4R5)/(R4+R5)  
A polarity reversal on the A and B wires (see Fig. 6) indicates  
the arrival of a CDS call. After that comes an Idle State Tone  
Alert Signal, and then Caller ID FSK information transmitted  
in ITU-T V.23 format. When the subscriber is engaged in a  
call, the arrival of information about another incoming call is  
indicated by a Loop State Tone Alert Signal. The NW6003  
can detect the line reversal and tone alert signal, it can  
also demodulate the incoming ITU-T V.23 FSK signals.  
Zin =2R1²+ (1/ωC)²  
Figure-3. Differential Input Gain Control Circuit  
NW6003  
IN+  
C
Rin  
IN-  
Input  
Cable Communication Association  
Rf  
GS  
The CCA caller identity specification TW/P&E/312 defines a  
different CDS TE interface. In this specificaiton, data is  
transmitted after a single burst of ringing rather than before  
the first ringing cycle, as specified in the BT. The Idle State  
Tone Alert Signal is not required in this case. The CCA  
specifies that data can be transmitted in either Bell-202 or  
ITU-T V.23 format. The NW6003 can detect the ring burst,  
and then demodulate either of the FSK format.  
Voltage Gain  
Av = Rf / Rin  
VREF  
Figure-4. Single-ended Input Gain Control Circuit  
Page-4  
NW6003  
Type II Caller ID Decoder  
CLIP/CID Call Arrival Detection  
Fig. 6 shows the typical application circuit to detect the CLIP/  
CID call arrival signals. The diode bridge works for both single  
ended and balanced ring signals. R1 and R2 are used to set  
the maximum loading and must be of some value to achieve  
balanced loading. The ring signal is attenuated by R1, R3  
and R4 resistor devider before being applied to pin TRIGIN.  
The attenuation value is determined by the detection of  
minimal ring voltage and maximum noise tolerance between  
Ring/Tip and ground.  
Ring Signal  
VT+  
VT-  
TRIGIN  
When no signal is applied to telephone line, TRIGIN will be  
at ground and pin TRIGOUT will stay inactive high. If TRIGIN  
increases from ground to VT+ (Schmitt trigger high going  
threshold voltage), C3 gets discharged, TRIGRC becomes  
low and TRIGOUT is asserted. The low going TRIGOUT can  
be used to interrupt or wake up the microcontroller. When  
TRIGIN signal drops below VT- (Schmitt trigger low going  
threshold voltage), C3 will start to charge up through R5C3  
time constant. After TRIGRC pin reaches above the  
threshhold voltage (VT+), TRIGOUT becomes inactive high  
and it stops to interrupt the microcontroller. To ensure the  
minimum TRIGOUT low interval and to filter the ring signal  
to get a smooth envelope output, the RC time constant should  
be greater than the maximum cycle time of the Ring Signal.  
TRIGRC  
VT+  
TRIGOUT  
Figure- 5. TRIGIN, TRIGRC and TRIGOUT Operation  
Line Reversal Detection for BT: British Telecom uses the  
line polarity reverse (+15 V to -15V between the two lines  
slewing in 30 ms) to indicate the arrival of an incoming CDS  
call. When line reverse occurs, TRIGIN increases over VT+  
and TRIGOUT signal becomes active low. When reversal is  
over, TRIGIN falls below VT- and TRIGOUT returns inactive  
high.  
Ring Detection for Bellcore: Bellcore recommends that the  
CID FSK data be transmitted between first and second  
ringings. The circuit in Fig. 6 will generate a ring envelope  
signal at pin TRIGOUT for the ring voltage of 40 Vrms or  
greater. R5 and C3 are used to filter the ring signal to pro-  
vide the envelope output.  
Ring Burst Detection for CCA: The CCA requires the TE to  
detect a single burst of ringing followed by the FSK data.  
The ring pulse may varies from 30 to 75 Vrms with pulse  
duration 200 - 450 ms.  
Note:  
C1= 0.1  
µ
F
R1 = 500K  
Minimal triggerable ring voltage  
(peak to peak) is:  
Tip/A  
NW6003  
R3 = 200K  
Vpp(max ring)=  
TRIGIN  
2(VT+(max)(R1+R3+R4)/R4+0.7)  
R4 = 300K  
R5 = 330K  
R2 = 500K  
C2= 0.1 µF  
Tolerance to noise between  
Ring/B  
Tip/Ring and Vss is:  
TRIGRC  
Vmax noise=  
VT+(min)(R1+R3+R4)/R4+0.7  
N
C3 = 0.22  
µ
F
Suggested RC component  
value:  
10K < R5 < 500K .  
47 nF < C3 < 0.68 µF  
TRIGOUT  
Time constant is:  
To Microcontroller  
T=R5×C3×In(VCC/(VCC-VT+))  
VT+(min) = 0.7 VCC  
VT+(max) = 0.5 VCC  
Figure-6. CLIP/CID Call Arrival Detection Circuit  
Page-5  
NW6003  
Type II Caller ID Decoder  
Dual Tone Alert Signal Detection  
Fig. 7 shows the operation of the guard time circuit and Fig.  
8 shows the waveform of the EST, ST/GT and STD pins.  
The total recognition time is tREC = tDP + tGP, where tDP is the  
tone present detection time and tGP is the tone present guard  
time. The total absent time is tABS = tDA + tGA, where tDA is the  
tone absent detection time and tGA is the tone absent guard  
time. The guard time is the RC time constant for the capaci-  
tor charge to VCC or discharge to GND. To get the unequal  
present and absent guard time, a diode can be connected  
as shown in Fig. 9 to provide different RC time constant (vary-  
ing resistance value) during charging and discharging.  
BT specifies a Dual Tone Alert Signal in both idle (on-hook)  
state and loop (off-hook) state, while Bellcore specifies a  
similar Dual Tone Alert Signal called CPE Alerting Signal  
(CAS) in off-hook state. The low and high tone frequencies  
of two different systems are as follows:  
BT  
Bellcore  
2130 Hz ± 0.5%  
Low Tone  
Frequency  
High Tone  
Frequency  
2130 Hz ± 1.1%  
2750 Hz ± 1.1%  
2750 Hz ± 0.5%  
The incoming Alert Signal goes through anti-alias filter and  
then is separated into high band and low band by two  
bandpass filters. The tone detection algorithm examines the  
filter outputs to validate the arrival of the Dual Tone Alert  
Signal. The EST pin becomes active when both tones are  
detected. The EST is only the preliminary indication, it must  
be qualified by the “guard time” as required by Bellcore and  
BT (a minimum duration for valid signals). STD is the guard  
time qualified CAS/Dual Tone Alert Signal detection output,  
it indicates the correct detection.  
tGP < tGA  
VCC  
C
tGP=RPCIn((VCC-Vd(RP/R2))/  
(VCC-VTGT-Vd(RP/R2)))  
tGA=R1CIn(VCC/VTGT)  
RP=R1R2/(R1+R2)  
ST/GT  
R1  
Vd=diode forward voltage  
R2  
EST  
VCC  
tGP > tGA  
C
tGP=R1CIn(VCC/(VCC-VTGT))  
tGA=RPCIn((VCC-Vd(RP/R2))/  
(VTGT-Vd(RP/R2)))  
RP=R1R2/(R1+R2)  
Vd=diode forward voltage  
VCC  
VCC  
Q1  
NW6003  
ST/GT  
Dual tone detected  
R1  
R2  
P
EST  
+
-
ST/GT  
VTGT  
Figure-9. Guard Time Circuits with Unequal Present  
and Absent Times  
Comparator  
Q2  
N
EST  
STD  
Figure-7. Guard Time Circuit of Dual Tone Alert Signal  
Detection  
Tip/  
Alerting Signal  
Ring  
tDP  
tDA  
EST  
ST/GT  
STD  
tGP  
tGA  
VTGT  
VTGT  
tABS  
tREC  
Q1  
Switch  
Q2  
ON  
ON  
ON  
Switch  
Figure-8. Guard Time Waveform  
Page-6  
NW6003  
Type II Caller ID Decoder  
to external devices. This interface provides the mechanism  
to extract the 8-bit data words in the demodulated FSK bit  
stream. Two modes are selectable via control of the device’s  
MODE pin: Mode ‘0’ (MODE pin is low), where data transfer  
is initiated by the NW6003; Mode ‘1’ (MODE pin is high),  
where the data transfer is initiated by an external  
microcontroller.  
FSK Demodulation  
The key part among the functions offered by NW6003 is  
FSK demodulation. This function is implemented by several  
stages: first, the carrier detector provides an indication of  
the presence of signal at the bandpass filter output; second,  
the device’s dual mode serial interface allows convenient  
extraction of the 8-bit data words in the demodulated FSK  
bit stream.  
Mode ‘0’  
In this mode, data transfer is initiated by the NW6003. The  
device demodulates the incoming FSK signal, and output  
the data directly to the DATA pin. Fig. 24 shows the timing  
diagram of Mode ‘0’ operation.  
The FSK characteristics are different in BT and Bellcore speci-  
fications. The BT’s signal frequencies correspond to ITU-T  
V.23; the Bellcore frequencies correspond to Bell 202. The  
CCA requires that TE be able to receive both ITU-T V.23 and  
Bell 202 signals. The NW6003 is compatible with both for-  
mats. It also meets the signal characteristics by setting the  
input op amp at unity gain in 5 V operation.  
Mode ‘1’  
In this mode, the microcontroller supplies read pulses (DCLK)  
to shift the 8-bit data words out of the NW6003, onto the  
DATA pin. The NW6003 asserts DR to denote the word  
boundary and indicate to the microprocessor that a new word  
has become available. Internal to the device, the demodu-  
lated data bits are sampled and stored. After the 8th bit, the  
word is parallelly loaded into an 8-bit shift register and DR  
goes low. The contents of shift register are shifted out to DATA  
pin on DCLK’s rising edge with LSB (Least Significant Bit)  
out first. If DCLK begins while DR is low, DR will return to  
high upon the first DCLK. This feature allows the associated  
interrupt to be cleared by the first read pulse. Otherwise, DR  
stays low for half a nominal bit time (1/2400 sec) and then  
returns to high. After the last bit (Most Significant Bit) has  
been read, additional DCLKs are ignored. Fig. 22 shows the  
timing diagram of Mode ‘1’ operation.  
ITU-T V.23  
1300 Hz ± 1.5%  
Bell 202  
1200 Hz ± 1%  
Mark Freq.  
(‘1’)  
Space Freq.  
(‘0’)  
2100 Hz ± 1.5%  
2200 Hz ± 1%  
The Dual Tone Alert Signal, speech and DTMF tones are in  
the same frequency band as FSK, they will be demodulated  
and generate false data. To avoid it, FSKEN pin is used to  
disable the FSK modulation when FSK signal is not expected.  
FSK Carrier Detection  
The carrier detector provides an indication of the presence  
of a signal in the FSK frequency band. It detects the presence  
of a signal of sufficient amplitude at the output of the FSK  
bandpass filter. If the signal is qualified by a digital algorithm,  
the CD output becomes low to indicate carrier detection. An  
8 ms hysteresis is provided to allow for momentary signal  
drop out once CD has been activated. And when there is no  
activity at the FSK bandpass filter output for 8 ms, CD is  
released.  
When CD is inactive (high), the raw output of the FSK de-  
modulator is ignored by the FSK data output interface. In  
mode ‘0’, the DATA pin is forced high. In mode ‘1’, the inter-  
nal shift register is not updated. No DR is generated. If  
DCLK is clocked, DATA is undefined.  
Serial FSK interface  
The three wire DATA, DCLK and DR form the data interface  
of the FSK demodulation. The DATA pin is the serial data pin  
that outputs data to external devices. The DCLK pin is the  
data clock which is generated by an external device. The DR  
pin is the data ready signal, also an output from the NW6003  
Page-7  
NW6003  
Type II Caller ID Decoder  
Other Functions  
Power-down Mode  
When the system is first powered up, TRIGOUT will be low  
(C3 at TRIGRC has no initial charge) and STD will be high if  
PWDN is low (no charge across the capacitor at ST/GT pin  
in Fig. 7), interrupt signal will be generated. The  
microcontroller should ignore interrupts from these sources  
on the initial power up until there is sufficient time to charge  
the capacitors. Also, by asserting PWDN high immediately  
after system power up, STD will become low and no interrupt  
will be generated. In power-down mode, EST and compara-  
tor output are forced low, the charging switch will turn on,  
and the capacitor at ST/GT pin will charge up more rapidly.  
The device provides the power down feature to reduce the  
power consumption. By activating the PWDN pin (high), the  
gain adjustable op amp, oscillator and all other internal cir-  
cuits besides the ring detection circuit are all disabled. The  
TRIGIN, TRIGRC and TRIGOUT pins are not affected, the  
device can still react to call arrival indicator and activate the  
interrupt to wake up the microcontroller.  
Crystal Oscillator  
A 3.579545 MHz crystal oscillator or other external clock  
source is required for NW6003. The crystal can be directly  
connected between OSCIN and OSCOUT pins without any  
external component. If an external clock source is used,  
OSCIN pin should be driven by the clock source and OSCOUT  
pin is left floating or is used to drive other devices. Fig. 10  
shows some applications.  
Bias Voltage Generator  
The bias voltage generator provides a low impedance volt-  
age source equal to VCC/2 on pin VREF and is used to bias  
the op amp. To reduce the noise, a 0.1 µF capacitor should  
be connected between CAP and GND pins.  
(a) Connection of One Device with Crystal Oscillator  
NW6003  
OSCIN  
OSCOUT  
3.579545MHz  
(b) Common Crystal Connection of Several Devices Sharing  
One Timing Source  
NW6003  
OSCIN OSCOUT  
NW6003  
OSCIN  
NW6003  
OSCIN  
OSCOUT  
OSCOUT  
to the next device  
3.579545MHz  
Figure-10. Applicaiton of Clock Driven Circuit  
Interrupt  
The NW6003 provides an open drain interrupt output INT to  
interrupt the microcontroller. Either TRIGOUT low, STD high  
or DR low will activate the INT and it will remain active ‘low’  
until all of these three pins return to an inactive state. The  
microcontroller should read these pins through input ports  
to detect the interrupt type (TRIGOUT, STD or DR) and to  
make the correspondent response.  
Page-8  
NW6003  
Type II Caller ID Decoder  
data transmission, and Fig. 14 shows Bellcore off-hook data  
transmission. The BT operations are shown in Fig. 15 and  
Fig. 16, and the CCA operation in Fig. 17.  
Application Information  
Application Circuits  
1.0  
Fig. 11 shows the typical NW6003 application circuit. For 5 V  
operation, the gain ratio of the op amp is set to unity to  
optimize the electrical characteristics. As the power supply  
voltage drops, the threshold of tone and FSK detectors will  
be lower. To meet the BT and Bellcore tone reject level  
requirements, the gain of the op amp should be adjusted  
according to the graph in Fig. 12.  
0.9  
0.8  
0.7  
0.678  
It should be noted that the glitch with sufficient amplitude  
appears on the tip and ring interface will be falsely detected.  
One way to avoid such false detection is to use the photo-  
coupler LED between the diode bridge and TRIGIN pin.  
0.6  
0.5  
3
4
5
Nominal VCC(Volts)  
6
2
7
Bellcore/BT/CCA Applications  
464kΩ  
R1 + R4  
Gain Ratio of op amp =  
The NW6003 supports three specifications: Bellcore, BT and  
CCA. Fig. 13 shows the timing diagram of Bellcore on-hook  
Figure-12. Gain Ratio as a Function of Nominal VCC  
VCC  
VCC  
22 nF 5%  
R1 1%  
R4 1%  
Tip/A  
NW6003  
0.1 µF  
C
VCC  
ST/GT  
EST  
IN+  
VCC  
VCC  
R4' 1%  
IN-  
GS  
464K 1%  
60K4  
1%  
22 nF 5%  
R1' 1%  
Ring/B  
100K  
R3 R2  
53K6  
1%  
VREF  
CAP  
STD  
0.1 µF  
INT  
CD  
DR  
VCC  
TRIGIN  
VCC  
0.1  
0.1  
µ
µ
F 5%  
500K  
330K  
TRIGRC  
200K  
DATA  
DCLK  
TRIGOUT  
MODE  
0.22  
µ
F
300K  
F 5%  
500K  
FSKEN  
OSCIN  
OSCOUT  
PWDN  
TM  
For VCC = 5V ±10%, R1 = R1’ = 430 k, R4 = R4’ = 34 kΩ.  
For VCC = 3V ±10%, R1 = R1’ = 620 k, R4 = R4’ = 63 k4.  
GND  
Resistor tolerance 5% and capacitor tolerance 10% unless  
otherwise specified.  
Crystal frequency 3.579545 MHz with 0.1%tolerance.  
For BT application, C = 0.1 µF ±5%, R2 = R3 = 422K ±1%.  
For Bellcore application, C = 0.1 µF ±5%, R2 = 266K ±1%,  
R3= 825K ±1%.  
Figure-11. Typical Application Circuit  
Page-9  
NW6003  
Type II Caller ID Decoder  
1st Ringing  
Ch. Seizure  
Mark  
Message  
2nd Ringing  
Note 1  
A/B Wires  
A
B
C
D
E
F
TRIGOUT  
INT  
...  
...  
Note 4  
Note 2  
PWDN  
Note 2  
Note 5  
Note 3  
FSKEN  
CD  
DR  
...  
...  
DCLK  
DATA  
..101010..  
Data  
Figure-13. Bellcore On-hook Data Transmission Timing Diagram  
Notes:  
1) A= 2 sec typ., B= 250 - 500 ms, C= 250 ms, D= 150ms, E depends on data length, Max C+D+E = 2.9 - 3.7 sec, F 200 ms.  
2) In a battery operated CPE, NW6003 may be enabled only after the end of ringing to conserve power.  
3) The microcontroller in the CPE powers down the NW6003 after CD goes inactive.  
4) The microcontroller times out if CD is not activated on the 2nd ring and puts the device into Power-down mode.  
5) FSKEN may be set always high while the CPE is on-hook. To prevent the FSK demodulator from reacting to other inband signals such  
as speech, CAS or DTMT tones. The designer may choose to set FSKEN low during the period that FSK signal is not expected.  
Page-10  
NW6003  
Type II Caller ID Decoder  
CPE mutes handset  
and disable keypad  
CPE unmutes handset  
and enable keypad  
CPE off-hook  
CPE sends  
ACK  
Note 2  
Message  
CAS  
Mark  
A/B wires  
Note 1  
A
B
C
D
E
F
G
Note 3  
PWDN  
Note 5  
Note 6  
Note 4  
FSKEN  
STD  
INT  
...  
CD  
DR  
...  
DCLK  
DATA  
Data  
Figure-14. Bellcore Off-hook Data Transmission Timing Diagram  
Notes:  
1) A= 75 - 85 ms, B= 0 -100 ms, C= 55 - 65 ms, D= 0 - 500 ms, E= 58 - 75ms, F depends on data length, G50 ms.  
2) If AC power is not available, the designer may use the line power when the CPE goes off-hook and use battery power while on-hook. The  
CPE should also be CID (on-hook) capable .  
3) If the end office fails to send the FSK signal, the CPE should disable FSKEN to unmute the handset and enable the keypad after this  
interval.  
4) When FSK signal is not expected, the FSKEN pin should be set low to disable the FSK demodulator.  
5) FSKEN should be high as soon as the CPE has finished sending the acknowledgement signal ACK.  
6) FSKEN should be low when CD become inactive.  
Page-11  
NW6003  
Type II Caller ID Decoder  
Line Reversal  
Alerting  
Signal  
Ch. Seizure  
Mark  
Message  
Ring  
A/B Wires  
A
B
C
D
E
F
G
Note 1  
TRIGOUT  
INT  
...  
...  
PWDN  
STD  
15 ±1 ms  
Current Wetting Pulse  
< 0.5 mA (optional)  
50 - 150 ms  
TE DC  
load  
<120  
µ
A
20 ±5 ms  
Note 2  
Note 3  
Note 4  
TE AC  
load  
Zss  
FSKEN  
CD  
DR  
...  
...  
DCLK  
DATA  
..101010..  
Data  
Figure-15. BT Idle State (on-hook) Data Transmission Timing Diagram  
Notes:  
1) A100ms, B=88 - 110 ms, C45 ms (up to 5 sec), D= 80 -262 ms, E= 45 - 75 ms, F2.5 sec (typ. 500 ms), G200 ms.  
2) By choosing tGA=15 ms, tABS will be 15-25 ms (refer to Fig. 8). Current wetting pulse and AC/DC load should be applied right after the  
STD falling edge.  
3) AC and DC loads should be removed between 50-150 ms after the end of the FSK signal. The NW6003 may go to power down mode  
to save power.  
4) FSKEN should be set low to disable the FSK demodulator, when the FSK signal is not expected.  
Page-12  
NW6003  
Type II Caller ID Decoder  
TE in loop state (off-hook)  
Start Point  
Speech path disabled  
ACK  
Speech path restored  
Alert  
Note 2  
Message  
Mark  
Signal  
A/B wires  
A
B
D
C
E
F
G
H
Note 1  
Note 3  
PWDN  
Note 5  
Note 4  
Note 6  
FSKEN  
STD  
INT  
...  
CD  
DR  
...  
DCLK  
DATA  
Data  
Figure-16. BT Loop State (Off-hook) Data Transmission Timing Diagram  
Notes:  
1) A= 40 - 50 ms, B= 80 - 85 ms, C100 ms, D= 65 - 75 ms, E= 5- 100ms, F = 45 - 75 ms, G depends on data length, H 100 ms.  
2) If AC power is not available, the designer may use the line power when the TE goes into loop state (off-hook) and use battery power while  
on-hook.  
3) If the end office fails to send the FSK signal, the TE should disable FSKEN to unmute the handset and enable the keypad after this  
interval.  
4) When FSK signal is not expected, the FSKEN pin should be set low to disable the FSK demodulator.  
5) FSKEN should be high as soon as the TE has finished sending the acknowledgement signal ACK.  
6) FSKEN should be low when CD become inactive.  
Page-13  
NW6003  
Type II Caller ID Decoder  
1st Ring  
Ring Burst  
Ch. Seizure  
Mark  
Data Packet  
A/B Wires  
TRIGOUT  
INT  
A
B
C
D
E
F
Note 2  
Note 1  
Note 2  
PWDN  
50 - 150 ms  
250 - 400 ms  
TE DC  
load  
Note 3  
Note 4  
TE AC  
load  
< 25 ms  
FSKEN  
CD  
> 8 ms  
DR  
...  
...  
DCLK  
DATA  
..100110..  
Data  
Figure-17. CCA Caller Display Service Timing Diagram  
Notes:  
1) A = 200 - 450 ms, B 500 ms, C= 80 - 262 ms, D= 45 -262 ms, E2.5 s (typ. 500 ms), F 200 ms.  
2) TRIGout indicates the ring envelope.  
3) AC and DC loads should be applied between 250 - 400 ms after the ring burst and should be removed between 50 to 150 ms after the  
end of FSK signal  
4) FSKEN should be set low when FSK signal is not expected.  
Page-14  
NW6003  
Type II Caller ID Decoder  
Maximum Rating - Exceeding the following listed values may cause permament damage.  
Power Supply Voltage: -0.3 V to 7 V  
Voltage on any pin other than supplies: GND - 0.3 V to VCC + 1 V  
Current at any pin other than supplies: 20 mA  
Storage Temperature: -65 °C to +150 °C  
Recommended Operating Conditions  
Operating Temperature: -40 °C to +85 °C  
Power Supply Voltage: 3 V ± 10% or 5 V ± 10%  
Clock Frequency: 3.579545 MHz ± 0.1%  
Input Voltage: 0 V to VCC  
Crystal Specifications  
Frequency: 3.579545 MHz  
Resonancy tolerance: ± 0.1%( -40°C to +85°C)  
Resonance mode: Parallel  
Load capacitance: 18 pF  
Maximum series resistance: 150 Ω  
Maximum drive level(mW): 2 mW  
DC Electrical Characteristics  
Parameter  
Pin  
Description  
Power Supply  
Min  
Typ  
Max  
Units  
Test  
Conditions  
Test 1  
0.5  
10  
ICCS  
µA  
Standby Current  
Operating Supply  
Current  
Test2  
ICC  
VCC  
2.5  
1.8  
3.8  
2.7  
mA  
mA  
VCC = 5 V ± 10%  
VCC = 3 V ± 10%  
Schmitt Trigger Input  
High Threshold  
Schmitt Trigger Input  
Low Threshold  
0.5VCC  
0.3VCC  
0.7VCC  
V
VT+  
VT-  
TRIGIN  
TRIGRC  
PWDN  
0.5VCC  
V
Schmitt Hysteresis  
CMOS Input High  
Voltage  
CMOS Input Low  
Voltage  
0.2  
0.7VCC  
V
V
VHYS  
VIH  
VCC  
DCLK  
MODE  
FSKEN  
GND  
-0.8  
0.3VCC  
V
VIL  
IOH  
Output High Sourcing  
Current  
mA  
VOH=0.9VCC  
TRIGOUT, DCLK  
DATA, DR, CD, STD  
EST, ST/GT  
Test 1: All inputs are VCC/GND except for oscillator pins. No analog input. Output unloaded. PWDN = VCC.  
Test 2: All inputs are VCC/GND except for oscillator pins. No analog input. Ouput unloaded. PWDN = GND, FEKEN = VCC.  
Page-15  
NW6003  
Type II Caller ID Decoder  
DC Electrical Characteristics (Continued)  
Parameter  
Pin  
Description  
Output Low Sinking  
Current  
Min  
2
Typ  
Max  
Units  
mA  
Test Conditions  
VOL = 0.1VCC  
IOL  
TRIGOUT, DCLK  
DATA, DR, CD  
STD, EST, ST/GT  
TRIGRC, INT  
IN+, IN-, TRIGIN  
PWDN, DCLK  
MODE, FSKEN  
TRIGRC  
Input Current  
Input Current  
1
10  
Iin1  
Iin2  
µA  
µA  
Vin = VCC to GND  
Output High  
Impedance  
Current  
1
IOZ1  
µA  
5
10  
0.5VCC+  
0.05  
Vout = VCC to GND  
IOZ  
2
ST/GT  
INT  
VREF  
µA  
µA  
V
IOZ  
3
Output Voltage  
0.5VCC-  
0.05  
No Load  
VREF  
Output Resistance  
Comparator  
Threshold Voltage  
2
RREF  
VTGT  
kΩ  
V
0.5VCC-  
0.05  
0.5VCC+  
0.05  
ST/GT  
AC Electrical Characteristics  
Dual Tone Alert Signal Detection  
Parameter  
Description  
Low Tone Frequency  
High Tone Frequency  
Min  
Typ  
2130  
2750  
Max  
Units  
Hz  
Hz  
Notes  
Nominal frequency  
Nominal frequency  
FL  
FH  
Frequency Deviation Accept  
Frequency Deviation Reject  
Accept Signal Level per tone  
Reject Signal Level per tone  
1.1%  
3.5%  
Within this range, tones are  
accepted.  
Outside this range, tones are  
rejected.  
The gain setting as in Fig. 11.  
Production tested at 3 V ±10%,  
or 5V ±10%.  
FDA  
FDR  
SIGAC  
SIGRJ  
TA  
-40  
-37.78  
-2  
0.22  
-46  
-43.78  
dBV  
dBm  
dBV  
dBm  
dB  
Positive and Negative Twist  
Accept #  
7
Signal to Noise Ratio  
20  
dB  
Both tones have the same  
amplitude and at nominal  
SNR  
frequencies.  
Band  
limited  
random noise 300-3400 Hz.  
Measurement valid only when  
tone is present.  
# Twist = 20 log ( fH amplitude / fL amplitude ).  
Page-16  
NW6003  
Type II Caller ID Decoder  
AC Electrical Characteristics (Continued)  
Gain Adjustable Op Amp  
Parameter  
IIN  
Description  
Input Leakage Current  
Input Resistance  
Min  
Typ  
Max  
0.8  
Units  
Test Conditions  
GND VIN VCC  
µA  
MΩ  
mV  
dB  
dB  
dB  
15  
RIN  
VOS  
PSRR  
CMRR  
AVOL  
fC  
Input Offset Voltage  
25  
Power Supply Rejection Ratio  
Common Mode Rejection  
DC Open Loop Voltage Gain  
Unity Gain Bandwidth  
Output Voltage Swing  
45  
40  
40  
0.3  
0.4  
1kHz ripple on VCC  
CMmin VIN VCMmax  
V
MHz  
V
VCC -0.4  
100  
VO  
Load 50 kΩ  
Maximum Capacitive Load (GS)  
Maximum Resistive Load (GS)  
Common Mode Range Voltage  
pF  
kΩ  
CL  
RL  
VCM  
50  
1.0  
VCC-1.0  
FSK Detection  
Parameter  
Description  
Input Detection Level  
Min  
-40  
-37.78  
10.0  
Typ  
Max  
-8  
-5.78  
398.1  
Units  
dBV  
dBm  
Notes  
Production tested at  
VCC =3V ±10%, or 5V  
±10%. Both mark and  
space have the same  
amplitude.  
ID  
mVrms  
Transmission Rate  
Input Frequency Detection  
Bell 202 ‘1’ (mark)  
1188  
1188  
1200  
1200  
1212  
1212  
baud  
Hz  
TR  
FMARK  
Input Frequency Detection  
Bell 202 ‘0’ (space)  
2178  
2200  
2222  
Hz  
Hz  
Hz  
dB  
FSPACE  
FMARK  
FSPACE  
SNR  
Input Frequency Detection  
ITU-T V.23 ‘1’ (mark)  
Input Frequency Detection  
ITU-T V.23 0 (space)  
Signal to Noise Ratio  
1280.5 1300  
2068.5 2100  
20  
1319.5  
2131.5  
Both mark and space  
have the same  
amplitude and at  
nominal frequencies.  
Band limited random  
noise: 200-3400 Hz.  
Present only when FSK  
signal is present. #  
# BT band is 200-3400 Hz, while Bellcore band is 0-4 kHz.  
Notes:  
dBV = decibels above or below a reference voltage of 1 Vrms.  
dBm = decibels above or below a reference power of 1 mW into 600 ohms, 0 dBm = 0.7746 Vrms.  
Page-17  
NW6003  
Type II Caller ID Decoder  
AC Timing Characteristics  
Power Up/Down and FSK Detection  
Parameter  
Description  
Power Up Time  
Power Down Time  
Input FSK to CD low delay  
Input FSK to CD high delay  
Hysteresis  
Min  
Typ  
Max  
50  
1
Units  
ms  
ms  
ms  
ms  
Test Conditions  
t1  
t2  
t3  
t4  
t5  
25  
8
8
ms  
Dual Tone Alert Signal  
Parameter  
Description  
Min  
0.5  
0.1  
Typ  
Max  
10  
8
Units  
ms  
ms  
Test Conditions  
Alert Signal Present Detect Time  
Alert Signal Absent Detect Time  
t6  
t7  
PWDN  
OSCOUT  
t1  
t2  
Figure-18. Power Up/Down Timing  
FSK Signal  
Tip/Ring  
CD  
t3  
t4  
Figure-19. FSK Detection Time  
Alert Signal  
Tip/Ring  
EST  
t6  
Figure-20. Dual Tone Alert Signal Detection Time  
t7  
Page-18  
NW6003  
Type II Caller ID Decoder  
AC Timing Characteristics (Continued)  
Serial Interface (Mode ‘1’)  
Parameter  
Description  
DCLK Cycle Time  
DCLK High Time  
DCLK Low Time  
DCLK Rise Time  
DCLK Fall Time  
DCLK Low Setup to DR  
DCLK Low Hold Time after DR  
Min  
1
0.3  
0.3  
Typ  
Max  
Units  
Test Conditions  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
20  
20  
500  
500  
t13  
t12  
DCLK  
t14  
t15  
t11  
Figure-21. DCLK Timing in Mode ‘1’  
Nth byte  
b7  
(N+1)th byte  
Internal  
Demodulated  
Bit Stream  
start  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
stop  
start  
stop  
note 1  
note 2  
DR  
t16  
t17  
DCLK  
DATA  
b1  
b6  
(N-1)th byte  
b2 b3  
b5  
b4 b6 b7  
b7 b0  
b0  
Nth byte  
Figure-22. Serial Data Interface Timing in MODE ‘1’  
Notes:  
1. DCLK clears DR.  
2. DR not cleared by DCLK, low for a maximum time of 1/2 bit width.  
Page-19  
NW6003  
Type II Caller ID Decoder  
Serial Interface (Mode ‘0’)  
Parameter  
Description  
Min  
1188  
Typ  
1200  
1
Max  
1212  
5
200  
200  
Units  
baud  
ms  
ns  
ns  
Test Conditions  
Data Rate  
1
DR  
t21  
t22  
t23  
Input FSK to DATA Delay  
DATA Rise Time  
DATA Fall Time  
2
2
Test conditions:  
1. FSK input data at 1200 ± 12 buad.  
2. Load of 50 pF.  
DATA  
t22  
t23  
Figure-23. DATAOutput Timing in Mode ‘0’  
Nth byte  
(N+1)th byte  
start  
stop start  
stop start  
TIP/RING  
DATA  
b7  
1
0
b0 b1 b2 b3 b4 b5 b6 b7  
1
0
b0 b1 b2 b3 b4 b5 b6 b7  
1
0
b0 b1  
t21  
Nth byte  
(N+1)th byte  
start  
start  
start  
b7  
b0 b1 b2 b3 b4 b5 b6 b7  
b0 b1 b2 b3 b4 b5 b6 b7  
b0
stop  
stop  
Figure-24. Serial Data Interface Timing in MODE ‘0’  
Page-20  
NW6003  
Type II Caller ID Decoder  
Physical Dimensions in Millimeters  
Notes:  
1) All dimensions in inches  
2) Form radius MIN. .010 but not to exceed .030  
3) Lead tip coplanarityafter form to be within .004  
4) REF. JEDEC MS-13  
0.018 Typ.  
Typ.  
0.015 × 45 DEG  
0.016 Min.  
0.050 Max.  
0.604 ± 0.005  
Figure-25. NW6003-XS 24 Pin SOIC Package Diagram  
Page-21  
厂商 型号 描述 页数 下载

IDT

NW6003 II型来电显示解码器[ TYPE II CALLER ID DECODER ] 21 页

IDT

NW6005 增强II型来电显示解码器[ ENHANCED TYPE II CALLER ID DECODER ] 20 页

ETC

NW6005-XS 主叫号码ID电路| CMOS |专科| 20PIN |塑料\n[ CALLER NUMBER ID CIRCUIT|CMOS|SOP|20PIN|PLASTIC ] 20 页

IDT

NW6006 与间断拨号音检测器增强型II来电显示解码器[ ENHANCED TYPE II CALLER ID DECODER WITH STUTTER DIAL TONE DETECTOR ] 22 页

IDT

NW6006-XS 与间断拨号音检测器增强型II来电显示解码器[ ENHANCED TYPE II CALLER ID DECODER WITH STUTTER DIAL TONE DETECTOR ] 22 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.205008s