找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

5T9310NLGI

型号:

5T9310NLGI

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

15 页

PDF大小:

168 K

2.5V LVDS 1:10 CLOCK BUFFER  
TERABUFFER™ II  
IDT5T9310  
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES JANUARY 27, 2015  
DESCRIPTION:  
FEATURES:  
The IDT5T9310 2.5V differential clock buffer is a user-selectable  
differential input to ten LVDS outputs. The fanout from a differential input  
to ten LVDS outputs reduces loading on the preceding driver and provides  
an efficient clock distribution network. The IDT5T9310 can act as a  
translator from a differential HSTL, eHSTL, LVEPECL (2.5V), LVPECL  
(3.3V), CML, or LVDS input to LVDS outputs. A single-ended 3.3V / 2.5V  
LVTTL input can also be used to translate to LVDS outputs. The redundant  
input capability allows for an asynchronous change-over from a primary  
clock source to a secondary clock source. Selectable reference inputs are  
controlled by SEL.  
• Guaranteed Low Skew < 25ps (max)  
• Very low duty cycle distortion < 125ps (max)  
• High speed propagation delay < 1.75ns (max)  
• Up to 1GHz operation  
• Selectable inputs  
• Hot insertable and over-voltage tolerant inputs  
• 3.3V / 2.5V LVTTL, HSTL, eHSTL, LVEPECL (2.5V), LVPECL  
(3.3V), CML, or LVDS input interface  
• Selectable differential inputs to ten LVDS outputs  
• Power-down mode  
TheIDT5T9310outputscanbeasynchronouslyenabled/disabled. When  
disabled, the outputs will drive to the value selected by the GL pin. Multiple  
power and grounds reduce noise.  
• 2.5V VDD  
• Available in VFQFPN package  
APPLICATIONS:  
• Clock distribution  
FUNCTIONAL BLOCK  
DIAGRAM  
GL  
G1  
Q1  
OUTPUT  
CONTROL  
Q1  
PD  
Q2  
Q2  
OUTPUT  
CONTROL  
A1  
A1  
1
0
Q3  
Q3  
OUTPUT  
CONTROL  
A2  
A2  
Q4  
Q4  
OUTPUT  
CONTROL  
SEL  
G2  
Q5  
Q5  
OUTPUT  
CONTROL  
Q6  
Q6  
OUTPUT  
CONTROL  
Q7  
Q7  
OUTPUT  
CONTROL  
Q8  
Q8  
OUTPUT  
CONTROL  
Q9  
Q9  
OUTPUT  
CONTROL  
Q10  
Q10  
OUTPUT  
CONTROL  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
INDUSTRIAL TEMPERATURE RANGE  
JANUARY 2014  
1
© 2014 Integrated Device Technology, Inc.  
DSC-6175/18  
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
PIN CONFIGURATION  
39 38 37 36 35 34 33 32 31  
40  
30  
G1  
VDD  
1
2
3
4
5
6
7
8
9
10  
G2  
29  
PD  
VDD  
Q7  
Q7  
Q6  
Q6  
28  
27  
26  
25  
24  
23  
22  
21  
GND  
Q1  
Q1  
Q2  
Q2  
VDD  
A1  
GND  
VDD  
A2  
A1  
A2  
17 18 19 20  
11 12 13 14 15 16  
VFQFPN  
TOP VIEW  
2
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
ABSOLUTE MAXIMUM RATINGS(1)  
CAPACITANCE(1) (TA = +25°C, F = 1.0MHz)  
Symbol  
VDD  
VI  
Description  
Power Supply Voltage  
Input Voltage  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDD +0.5  
–65 to +150  
150  
Unit  
V
Symbol  
Parameter  
Min  
Typ.  
Max.  
Unit  
CIN  
Input Capacitance  
3
pF  
V
NOTE:  
Output Voltage(2)  
V
1. This parameter is measured at characterization but not tested  
VO  
TSTG  
TJ  
Storage Temperature  
Junction Temperature  
°C  
°C  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. Not to exceed 3.6V.  
RECOMMENDED OPERATING RANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
Ambient Operating Temperature  
Internal Power Supply Voltage  
VDD  
PIN DESCRIPTION  
Symbol  
A[1:2]  
I/O  
Type  
Description  
I
I
Adjustable(1,4) Clock input. A[1:2] is the "true" side of the differential clock input.  
Adjustable(1,4) Complementary clock inputs. A[1:2] is the complementary side of A[1:2]. For LVTTL single-ended operation, A[1:2] should be set  
A[1:2]  
to the desired toggle voltage for A[1:2]:  
3.3V LVTTL VREF = 1650mV  
2.5V LVTTL VREF = 1250mV  
G1  
G2  
GL  
I
I
I
LVTTL  
LVTTL  
LVTTL  
Gate control for differential outputs Q1 and Q1 through Q5 and Q5. When G1 is LOW, the differential outputs are active. When  
G1 is HIGH, the differential outputs are asynchronously driven to the level designated by GL(2).  
Gate control for differential outputs Q6 and Q6 through Q10 and Q10. When G2 is LOW, the differential outputs are active.  
When G2 is HIGH, the differential outputs are asynchronously driven to the level designated by GL(2).  
Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true"  
outputs disable LOW and "complementary" outputs disable HIGH.  
Qn  
Qn  
SEL  
O
O
I
LVDS  
LVDS  
LVTTL  
LVTTL  
Clock outputs  
Complementary clock outputs  
Reference clock select. When LOW, selects A2 and A2. When HIGH, selects A1 and A1.  
PD  
I
Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled.  
Both "true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation.(3)  
VDD  
GND  
NC  
PWR  
PWR  
Power supply for the device core and inputs  
Power supply return for all power  
No connect; recommended to connect to GND  
NOTES:  
1. Inputs are capable of translating the following interface standards:  
Single-ended 3.3V and 2.5V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels  
Differential LVDS levels  
Differential CML levels  
2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be  
able to tolerate them in down stream circuitry.  
3. Itisrecommendedthattheoutputsbedisabledbeforeenteringpower-downmode. Itisalsorecommendedthattheoutputsremaindisableduntilthedevicecompletespower-upafterasserting  
PD.  
4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal.  
3
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
μA  
Input LOW Current  
VDD = 2.7V  
VIK  
VIN  
VIH  
VIL  
Clamp Diode Voltage  
DC Input Voltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
V
V
- 0.3  
1.7  
DC Input HIGH  
DC Input LOW  
0.7  
VTHI  
VREF  
DC Input Threshold Crossing Voltage  
Single-Ended Reference Voltage(3)  
VDD /2  
1.65  
1.25  
3.3V LVTTL  
2.5V LVTTL  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. For A[1:2] single-ended operation, A[1:2] is tied to a DC reference voltage.  
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR DIF-  
FERENTIAL INPUTS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
μA  
Input LOW Current  
VDD = 2.7V  
VIK  
VIN  
VDIF  
VCM  
Clamp Diode Voltage  
DC Input Voltage  
DC Differential Voltage(3)  
DC Common Mode Input Voltage(4)  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
- 0.3  
0.1  
0.05  
VDD  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential voltage  
must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
DC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING  
RANGE FOR LVDS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
Output Characteristics  
VOT(+)  
VOT(-)  
ΔVOT  
VOS  
Differential Output Voltage for the True Binary State  
Differential Output Voltage for the False Binary State  
Change in VOT Between Complementary Output States  
Output Common Mode Voltage (Offset Voltage)  
Change in VOS Between Complementary Output States  
Outputs Short Circuit Current  
247  
247  
1.2  
12  
6
454  
454  
50  
mV  
mV  
mV  
V
1.125  
1.375  
50  
ΔVOS  
IOS  
mV  
mA  
mA  
VOUT + and VOUT - = 0V  
VOUT + = VOUT -  
24  
IOSD  
Differential Outputs Short Circuit Current  
12  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, TA = +25°C ambient.  
4
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
1
750  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR, tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification  
under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under actual  
use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
1
900  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR, tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification  
under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under actual  
use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL (2.5V) AND  
LVPECL (3.3V)  
Symbol  
VDIF  
Parameter  
Input Signal Swing(1)  
Value  
Units  
mV  
732  
VX  
Differential Input Signal Crossing Point(2)  
LVEPECL  
LVPECL  
1082  
mV  
1880  
DH  
Duty Cycle  
50  
%
V
VTHI  
tR, tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V/ns  
NOTES:  
1. The732mVpeak-to-peakinputpulselevelisspecifiedtoallowconsistent, repeatableresultsinanautomatictestequipment(ATE)environment. ThisdevicemeetstheVDIF (AC)specification  
under actual use conditions.  
2. 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point levels are specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This  
device meets the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
5
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVDS  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
mV  
V
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
400  
1.2  
DH  
Duty Cycle  
50  
%
VTHI  
tR, tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTES:  
1. The400mVpeak-to-peakinputpulselevelisspecifiedtoallowconsistent, repeatableresultsinanautomatictestequipment(ATE)environment. ThisdevicemeetstheVDIF (AC)specification  
under actual use conditions.  
2. A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under actual use  
conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
AC DIFFERENTIAL INPUT SPECIFICATIONS(1)  
Symbol  
VDIF  
VIX  
Parameter  
Min.  
0.1  
Typ.  
Max  
3.6  
Unit  
V
AC Differential Voltage(2)  
Differential Input Crosspoint Voltage  
Common Mode Input Voltage Range(3)  
Input Voltage  
0.05  
0.05  
- 0.3  
VDD  
VDD  
+3.6  
V
VCM  
V
VIN  
V
NOTES:  
1. The output will not change state until the inputs have crossed and the minimum differential voltage range defined by VDIF has been met or exceeded.  
2. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage must be  
achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
POWER SUPPLY CHARACTERISTICS FOR LVDS OUTPUTS(1)  
Symbol  
Parameter  
Test Conditions  
VDD = Max., All Input Clocks = LOW(2)  
Outputs enabled  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
295  
mA  
ITOT  
Total Power VDD Supply Current  
Total Power Down Supply Current  
VDD = 2.7V., FREFERENCE CLOCK = 1GHz  
PD = LOW  
305  
5
mA  
mA  
IPD  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.  
2. The true input is held LOW and the complementary input is held HIGH.  
6
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE(1,5)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
Skew Parameters  
tSK(O)  
Same Device Output Pin-to-Pin Skew(2)  
Pulse Skew(3)  
25  
ps  
ps  
ps  
tSK(P)  
125  
300  
tSK(PP)  
Part-to-Part Skew(4)  
Propagation Delay  
tPLH  
tPHL  
fO  
Propagation Delay A, A Crosspoint to Qn, Qn Crosspoint  
1.25  
1.75  
1
ns  
Frequency Range(6)  
GHz  
Output Gate Enable/Disable Delay  
tPGE  
tPGD  
Output Gate Enable Crossing VTHI to Qn/Qn Crosspoint  
3.5  
3.5  
ns  
ns  
Output Gate Disable Crossing VTHI to Qn/Qn Crosspoint Driven to GL Designated Level  
Power Down Timing  
tPWRDN  
PD Crossing VTHI to Qn = VDD, Qn = VDD  
Output Gate Disable Crossing VTHI to Qn/Qn Driven to GL Designated Level  
100  
100  
μS  
μS  
tPWRUP  
NOTES:  
1. AC propagation measurements should not be taken within the first 100 cycles of startup.  
2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.  
3. Skew measured is the difference between propagation delay times tPHL and tPLH of any differential output pair under identical input and output interfaces, transitions and load conditions on  
any one device.  
4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions at identical  
VDD levels and temperature.  
5. All parameters are tested with a 50% input duty cycle.  
6. Guaranteed by design but not production tested.  
7
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
DIFFERENTIAL AC TIMING WAVEFORMS  
1/fo  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
tPHL  
tPLH  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
tSK(O)  
tSK(O)  
+ VDIF  
VDIF = 0  
- VDIF  
Qm - Qm  
Output Propagation and Skew Waveforms  
NOTES:  
1. Pulse skew is calculated using the following expression:  
tSK(P) = | tPHL - tPLH |  
Note that the tPHL and tPLH shown above are not valid measurements for this calculation because they are not taken from the same pulse.  
2. AC propagation measurements should not be taken within the first 100 cycles of startup.  
8
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
VIH  
VTHI  
VIL  
GL  
tPLH  
VIH  
VTHI  
VIL  
Gx  
tPGD  
tPGE  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
Differential Gate Disable/Enable Showing Runt Pulse Generation  
NOTE:  
1. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
+VDIF  
VDIF=0  
-VDIF  
A2 - A2  
Gx  
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
PD  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
Power Down Timing  
NOTES:  
1. It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting  
PD.  
2. The POWER DOWN TIMING diagram assumes that GL is HIGH.  
3. It should be noted that during power-down mode, the outputs are both pulled to VDD. In the POWER DOWN TIMING diagram this is shown when Qn-Qn goes to VDIF = 0.  
9
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
TEST CIRCUITS AND CONDITIONS  
~50  
VIN  
Transmission Line  
VDD/2  
A
A
D.U.T.  
Pulse  
Generator  
~50  
VIN  
Transmission Line  
-VDD/2  
Scope  
50  
50  
Test Circuit for Differential Input  
DIFFERENTIAL INPUT TEST CONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
VTHI  
Crossing of A and A  
V
10  
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
VDD  
A
A
Qn  
Qn  
Pulse  
Generator  
RL  
RL  
D.U.T.  
VOS  
VOD  
Test Circuit for DC Outputs and Power Down Tests  
VDD/2  
SCOPE  
CL  
Z = 50  
A
A
Qn  
Qn  
Pulse  
Generator  
50  
50  
D.U.T.  
Z = 50  
CL  
-VDD/2  
Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing  
LVDS OUTPUT TEST CONDITION  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
CL  
0(1)  
8(1,2)  
50  
pF  
RL  
Ω
NOTES:  
1. Specifications only apply to "Normal Operations" test condition. The TIA/EIA specification load is for reference only.  
2. The scope inputs are assumed to have a 2pF load to ground. TIA/EIA - 644 specifies 5pF between the output pair. With CL = 8pF, this gives the test circuit appropriate 5pF equivalent load.  
11  
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
RECOMMENDED LANDING PATTERN  
NL 40 pin  
NOTE: All dimensions are in millimeters.  
12  
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
ORDERING INFORMATION  
IDT  
XXXXX  
XX  
X
Device Type Package Package  
-40ºC to +85ºC (Industrial)  
I
Thermally Enhanced Plastic Very Fine Pitch Quad  
Flat No Lead Package (VFQFPN)  
NL  
Green Thermally Enhanced Plastic Very Fine Pitch  
Quad Flat No Lead Package (VFQFPN)  
NLG  
5T9310  
2.5V LVDS 1:10 Clock Buffer Terrabuffer™ II  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
for Tech Support:  
clockhelp@idt.com  
www.idt.com  
13  
IDT5T9310  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
INDUSTRIAL TEMPERATURE RANGE  
REVISION HISTORY  
Rev  
A
Table  
Page  
1
Discription of Change  
Date  
Added NRND - Not Recommended for New Designs markings  
Corrected Ordering Info to include 'G' option  
1/21/2014  
1/21/2014  
A
13  
Product Discontinuation Notice - Last time buy expires  
January 27, 2015, PDN# CQ-14-02  
A
1
1/30/14  
14  
IDT5T9310  
INDUSTRIAL TEMPERATURE RANGE  
2.5V LVDS 1:10 CLOCK BUFFER TERABUFFER II  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
+480-763-2056  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document, including  
descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to  
perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products  
for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights  
of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect  
the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party  
owners.  
Copyright 2013. All rights reserved.  
15  
厂商 型号 描述 页数 下载

IDT

5T9010BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, LEAD FREE, PLASTIC, BGA-144 ] 25 页

IDT

5T9050PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 7 页

IDT

5T905PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 17 页

IDT

5T9070PAGI8 [ Low Skew Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, GREEN, TSSOP-48 ] 9 页

IDT

5T9070PAI [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T9070PAI8 [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T907PAI [ Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, TSSOP-48 ] 19 页

IDT

5T907PAI8 [ Clock Driver, PDSO48 ] 19 页

IDT

5T9110BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, GREEN, PLASTIC, BGA-144 ] 23 页

IDT

5T915PAI [ Clock Driver, CMOS, PDSO48 ] 19 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.209555s