找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

5T9310NLI8

型号:

5T9310NLI8

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

13 页

PDF大小:

225 K

2.5V LVDS 1:10  
IDT5T9310  
CLOCK BUFFER  
TERABUFFER™ II  
DESCRIPTION:  
FEATURES:  
TheIDT5T93102.5Vdifferential clockbufferisauser-selectabledifferential  
• Guaranteed Low Skew < 25ps (max)  
Very low duty cycle distortion < 125ps (max)  
High speed propagation delay < 1.75ns (max)  
Up to 1GHz operation  
inputtotenLVDSoutputs. ThefanoutfromadifferentialinputtotenLVDSoutputs  
reduces loading on the preceding driver and provides an efficient clock  
distributionnetwork. TheIDT5T9310canactasatranslatorfromadifferential  
HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS input to  
LVDSoutputs. Asingle-ended3.3V/2.5VLVTTLinputcanalsobe usedto  
translate to LVDS outputs. The redundant input capability allows for an  
asynchronouschange-over fromaprimaryclocksourcetoasecondaryclock  
source. Selectablereferenceinputs arecontrolledbySEL.  
• Selectable inputs  
Hot insertable and over-voltage tolerant inputs  
• 3.3V / 2.5V LVTTL, HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V),  
CML, or LVDS input interface  
• Selectable differential inputs to ten LVDS outputs  
• Power-down mode  
TheIDT5T9310outputscanbeasynchronouslyenabled/disabled. When  
disabled,theoutputswilldrivetothevalueselectedbytheGLpin. Multiplepower  
and grounds reduce noise.  
• 2.5V VDD  
Available in VFQFPN package  
APPLICATIONS:  
• Clock distribution  
FUNCTIONALBLOCKDIAGRAM  
GL  
G1  
Q1  
OUTPUT  
CONTROL  
Q1  
PD  
Q2  
Q2  
OUTPUT  
CONTROL  
A1  
A1  
1
0
Q3  
Q3  
OUTPUT  
CONTROL  
A2  
A2  
Q4  
Q4  
OUTPUT  
CONTROL  
SEL  
G2  
Q5  
Q5  
OUTPUT  
CONTROL  
Q6  
Q6  
OUTPUT  
CONTROL  
Q7  
Q7  
OUTPUT  
CONTROL  
Q8  
Q8  
OUTPUT  
CONTROL  
Q9  
Q9  
OUTPUT  
CONTROL  
Q10  
Q10  
OUTPUT  
CONTROL  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
MARCH 2005  
1
© 2005 Integrated Device Technology, Inc.  
DSC-6175/18  
IDT5T9310  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
PINCONFIGURATION  
39 38 37 36 35 34 33 32 31  
40  
30  
G1  
VDD  
1
2
3
4
5
6
7
8
9
10  
G2  
29  
PD  
VDD  
Q7  
Q7  
Q6  
Q6  
28  
27  
26  
25  
24  
23  
22  
21  
GND  
Q1  
Q1  
Q2  
Q2  
VDD  
A1  
GND  
VDD  
A2  
A1  
A2  
17 18 19 20  
11 12 13 14 15 16  
VFQFPN  
TOP VIEW  
2
IDT5T9310  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
ABSOLUTEMAXIMUMRATINGS(1)  
CAPACITANCE(1) (TA = +25°C, F = 1.0MHz)  
Symbol  
VDD  
VI  
Description  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDD +0.5  
–65 to +150  
150  
Unit  
V
Symbol  
Parameter  
Min  
Typ.  
Max.  
Unit  
Power Supply Voltage  
CIN  
Input Capacitance  
3
pF  
Input Voltage  
V
NOTE:  
Output Voltage(2)  
Storage Temperature  
Junction Temperature  
V
1. This parameter is measured at characterization but not tested  
VO  
TSTG  
TJ  
°C  
°C  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. Not to exceed 3.6V.  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
VDD  
PINDESCRIPTION  
Symbol  
A[1:2]  
I/O  
Type  
Description  
I
I
Adjustable(1,4) Clockinput. A[1:2] isthe"true"sideofthedifferentialclockinput.  
Adjustable(1,4) Complementaryclockinputs. A[1:2] isthecomplementarysideofA[1:2]. ForLVTTLsingle-endedoperation, A[1:2] shouldbesettothe  
A[1:2]  
desiredtogglevoltageforA[1:2]:  
3.3V LVTTL VREF = 1650mV  
2.5V LVTTL VREF = 1250mV  
G1  
G2  
GL  
I
I
I
LVTTL  
LVTTL  
LVTTL  
GatecontrolfordifferentialoutputsQ1 andQ1 throughQ5 andQ5. WhenG1isLOW, thedifferentialoutputsareactive. WhenG1is  
HIGH,thedifferentialoutputsareasynchronouslydriventotheleveldesignatedbyGL(2).  
GatecontrolfordifferentialoutputsQ6 andQ6 throughQ10 andQ10. WhenG2isLOW, thedifferentialoutputsareactive. WhenG2is  
HIGH,thedifferentialoutputsareasynchronouslydriventotheleveldesignatedbyGL(2).  
Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true"  
outputsdisableLOWand"complementary"outputsdisableHIGH.  
Qn  
Qn  
SEL  
O
O
I
LVDS  
LVDS  
LVTTL  
LVTTL  
Clockoutputs  
Complementaryclockoutputs  
Reference clock select. When LOW, selects A2 and A2. When HIGH, selects A1 and A1.  
PD  
I
Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both  
"true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation.(3)  
VDD  
GND  
N C  
PWR  
PWR  
Power supply for the device core and inputs  
Power supply return for all power  
Noconnect;recommendedtoconnecttoGND  
NOTES:  
1. Inputs are capable of translating the following interface standards:  
Single-ended 3.3V and 2.5V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels  
Differential LVDS levels  
Differential CML levels  
2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt  
pulses or be able to tolerate them in down stream circuitry.  
3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-  
up after asserting PD.  
4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal.  
3
IDT5T9310  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORLVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
- 1.2  
+3.6  
µA  
InputLOWCurrent  
VDD = 2.7V  
VIK  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
V
V
V
V
V
V
VIN  
VIH  
VIL  
- 0.3  
1.7  
DC Input HIGH  
DC Input LOW  
0.7  
VTHI  
VREF  
DCInputThresholdCrossingVoltage  
Single-EndedReferenceVoltage(3)  
VDD /2  
1.65  
1.25  
3.3VLVTTL  
2.5VLVTTL  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. For A[1:2] single-ended operation, A[1:2] is tied to a DC reference voltage.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORDIFFER-  
ENTIALINPUTS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
µA  
InputLOWCurrent  
VDD = 2.7V  
VIK  
ClampDiodeVoltage  
DCInputVoltage  
DCDifferentialVoltage(3)  
DC Common Mode Input Voltage(4)  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
VIN  
VDIF  
VCM  
- 0.3  
0.1  
0.05  
VDD  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential  
voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
DCELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATING  
RANGE FOR LVDS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
OutputCharacteristics  
VOT(+)  
VOT(-)  
VOT  
VOS  
DifferentialOutputVoltagefortheTrueBinaryState  
DifferentialOutputVoltagefortheFalseBinaryState  
ChangeinVOT BetweenComplementaryOutputStates  
OutputCommonModeVoltage(OffsetVoltage)  
ChangeinVOS BetweenComplementaryOutputStates  
OutputsShortCircuitCurrent  
247  
247  
1.2  
12  
6
454  
454  
50  
mV  
mV  
mV  
V
1.125  
1.375  
50  
VOS  
IOS  
mV  
mA  
mA  
VOUT + and VOUT - = 0V  
VOUT + = VOUT -  
24  
IOSD  
DifferentialOutputsShortCircuitCurrent  
12  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, TA = +25°C ambient.  
4
IDT5T9310  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
1
750  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
1
900  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL (2.5V) AND  
LVPECL(3.3V)  
Symbol  
VDIF  
Parameter  
Value  
Units  
mV  
InputSignalSwing(1)  
732  
VX  
DifferentialInputSignalCrossingPoint(2)  
LVEPECL  
LVPECL  
1082  
mV  
1880  
DH  
Duty Cycle  
50  
%
V
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point levels are specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment.  
This device meets the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
5
IDT5T9310  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVDS  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
mV  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
400  
1.2  
DH  
Duty Cycle  
50  
%
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
VDIF  
VIX  
Parameter  
Min.  
0.1  
Typ.  
Max  
3.6  
Unit  
V
ACDifferentialVoltage(2)  
DifferentialInputCrosspointVoltage  
CommonModeInputVoltageRange(3)  
InputVoltage  
0.05  
0.05  
- 0.3  
VDD  
VDD  
+3.6  
V
VCM  
V
VIN  
V
NOTES:  
1. The output will not change state until the inputs have crossed and the minimum differential voltage range defined by VDIF has been met or exceeded.  
2. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage  
must be achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
POWERSUPPLYCHARACTERISTICSFORLVDSOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions  
VDD = Max., All Input Clocks = LOW(2)  
Outputsenabled  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
295  
mA  
ITOT  
Total Power VDD Supply Current  
Total Power Down Supply Current  
VDD = 2.7V., FREFERENCE CLOCK = 1GHz  
PD = LOW  
305  
5
mA  
mA  
IPD  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.  
2. The true input is held LOW and the complementary input is held HIGH.  
6
IDT5T9310  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE(1,5)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
SkewParameters  
tSK(O)  
Same Device Output Pin-to-Pin Skew(2)  
Pulse Skew(3)  
25  
ps  
ps  
ps  
tSK(P)  
125  
300  
tSK(PP)  
Part-to-PartSkew(4)  
PropagationDelay  
tPLH  
tPHL  
fO  
Propagation Delay A, A Crosspoint to Qn, Qn Crosspoint  
1.25  
1.75  
1
ns  
FrequencyRange(6)  
GHz  
OutputGateEnable/DisableDelay  
tPGE  
Output Gate Enable Crossing VTHI to Qn/Qn Crosspoint  
3.5  
3.5  
ns  
ns  
tPGD  
Output Gate Disable CrossingVTHI to Qn/Qn Crosspoint Driven to GL Designated Level  
Power Down Timing  
tPWRDN  
PD Crossing VTHI to Qn = VDD, Qn = VDD  
Output Gate Disable Crossing VTHI to Qn/Qn Driven to GL Designated Level  
100  
100  
µS  
µS  
tPWRUP  
NOTES:  
1. AC propagation measurements should not be taken within the first 100 cycles of startup.  
2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.  
3. Skew measured is the difference between propagation delay times tPHL and tPLH of any differential output pair under identical input and output interfaces, transitions and load conditions  
on any one device.  
4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions  
at identical VDD levels and temperature.  
5. All parameters are tested with a 50% input duty cycle.  
6. Guaranteed by design but not production tested.  
7
IDT5T9310  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIALACTIMINGWAVEFORMS  
1/fo  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
tPHL  
tPLH  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
tSK(O)  
tSK(O)  
+ VDIF  
VDIF = 0  
- VDIF  
Qm - Qm  
Output Propagation and Skew Waveforms  
NOTES:  
1. Pulse skew is calculated using the following expression:  
tSK(P) = | tPHL - tPLH |  
Note that the tPHL and tPLH shown above are not valid measurements for this calculation because they are not taken from the same pulse.  
2. AC propagation measurements should not be taken within the first 100 cycles of startup.  
8
IDT5T9310  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
VIH  
VTHI  
VIL  
GL  
tPLH  
VIH  
VTHI  
VIL  
Gx  
tPGD  
tPGE  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
Differential Gate Disable/Enable Showing Runt Pulse Generation  
NOTE:  
1. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
+VDIF  
VDIF=0  
-VDIF  
A2 - A2  
Gx  
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
PD  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
Power Down Timing  
NOTES:  
1. It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after  
asserting PD.  
2. The POWER DOWN TIMING diagram assumes that GL is HIGH.  
3. It should be noted that during power-down mode, the outputs are both pulled to VDD. In the POWER DOWN TIMING diagram this is shown when Qn-Qn goes to VDIF = 0.  
9
IDT5T9310  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
TESTCIRCUITSANDCONDITIONS  
~50  
Transmission Line  
VIN  
VDD/2  
A
D.U.T.  
Pulse  
Generator  
A
~50Ω  
Transmission Line  
VIN  
-VDD/2  
Scope  
50Ω  
50Ω  
Test Circuit for Differential Input  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
VTHI  
Crossing of A and A  
V
10  
IDT5T9310  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
VDD  
A
A
Qn  
Qn  
Pulse  
Generator  
RL  
RL  
D.U.T.  
VOS  
VOD  
Test Circuit for DC Outputs and Power Down Tests  
VDD/2  
SCOPE  
CL  
Z = 50  
A
A
Qn  
Qn  
Pulse  
Generator  
50Ω  
50Ω  
D.U.T.  
Z = 50Ω  
CL  
-VDD/2  
Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing  
LVDSOUTPUTTESTCONDITION  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
CL  
0(1)  
8(1,2)  
50  
pF  
RL  
NOTES:  
1. Specifications only apply to "Normal Operations" test condition. The TIA/EIA specification load is for reference only.  
2. The scope inputs are assumed to have a 2pF load to ground. TIA/EIA - 644 specifies 5pF between the output pair. With CL = 8pF, this gives the test circuit appropriate 5pF equivalent  
load.  
11  
IDT5T9310  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
RECOMMENDEDLANDINGPATTERN  
NL 40 pin  
NOTE: All dimensions are in millimeters.  
12  
IDT5T9310  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:10CLOCKBUFFERTERABUFFERII  
ORDERINGINFORMATION  
XX  
X
XXXXX  
IDT  
Package Process  
Device Type  
I
-40°C to +85°C (Industrial)  
Thermally Enhanced Plastic Very Fine Pitch  
Quad Flat No Lead Package  
NL  
2.5V LVDS 1:10 Clock Buffer Terabuffer™ II  
5T9310  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
clockhelp@idt.com  
www.idt.com  
13  
厂商 型号 描述 页数 下载

IDT

5T9010BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, LEAD FREE, PLASTIC, BGA-144 ] 25 页

IDT

5T9050PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 7 页

IDT

5T905PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 17 页

IDT

5T9070PAGI8 [ Low Skew Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, GREEN, TSSOP-48 ] 9 页

IDT

5T9070PAI [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T9070PAI8 [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T907PAI [ Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, TSSOP-48 ] 19 页

IDT

5T907PAI8 [ Clock Driver, PDSO48 ] 19 页

IDT

5T9110BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, GREEN, PLASTIC, BGA-144 ] 23 页

IDT

5T915PAI [ Clock Driver, CMOS, PDSO48 ] 19 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.214056s