找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

5T9316NLGI

型号:

5T9316NLGI

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

15 页

PDF大小:

124 K

2.5V LVDS 1:16  
IDT5T9316  
CLOCK BUFFER  
TERABUFFER™ II  
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES ON OCTOBER 28, 2014  
DESCRIPTION:  
FEATURES:  
TheIDT5T93162.5Vdifferential clockbufferisauser-selectabledifferential  
inputtosixteenLVDSoutputs. ThefanoutfromadifferentialinputtosixteenLVDS  
outputsreducesloadingontheprecedingdriverandprovidesanefficientclock  
distributionnetwork. TheIDT5T9316canactasatranslatorfromadifferential  
HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS input to  
LVDS outputs. A single-ended 3.3V / 2.5V LVTTL input can also be used to  
translate to LVDS outputs. The redundant input capability allows for an  
asynchronouschange-over fromaprimaryclocksourcetoasecondaryclock  
source. SelectablereferenceinputsarecontrolledbySEL.  
• Guaranteed Low Skew < 25ps (max)  
• Very low duty cycle distortion < 125ps (max)  
• High speed propagation delay < 1.75ns (max)  
• Up to 1GHz operation  
• Selectable inputs  
• Hot insertable and over-voltage tolerant inputs  
• 3.3V / 2.5V LVTTL, HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V),  
CML, or LVDS input interface  
• Selectable differential inputs to sixteen LVDS outputs  
• Power-down mode  
TheIDT5T9316outputscanbeasynchronouslyenabled/disabled. When  
disabled,theoutputswilldrivetothevalueselectedbytheGLpin. Multiplepower  
and grounds reduce noise.  
• 2.5V VDD  
• Available in VFQFPN package  
• use replacement part: 8516FYILF, (8T349316NLGI)  
APPLICATIONS:  
• Clock distribution  
FUNCTIONALBLOCKDIAGRAM  
GL  
G1  
Q1  
OUTPUT  
CONTROL  
Q1  
Q2  
OUTPUT  
CONTROL  
Q2  
Q3  
OUTPUT  
CONTROL  
PD  
Q3  
Q4  
OUTPUT  
CONTROL  
Q4  
Q5  
Q5  
OUTPUT  
CONTROL  
A1  
A1  
1
0
Q6  
Q6  
OUTPUT  
CONTROL  
A2  
A2  
Q7  
Q7  
OUTPUT  
CONTROL  
SEL  
G2  
Q8  
Q8  
OUTPUT  
CONTROL  
Q9  
Q9  
OUTPUT  
CONTROL  
Q10  
Q10  
OUTPUT  
CONTROL  
Q11  
Q11  
OUTPUT  
CONTROL  
Q12  
Q12  
OUTPUT  
CONTROL  
Q13  
Q13  
OUTPUT  
CONTROL  
Q14  
Q14  
OUTPUT  
CONTROL  
Q15  
Q15  
OUTPUT  
CONTROL  
Q16  
Q16  
OUTPUT  
CONTROL  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
MARCH 20, 2014  
1
© 2014 Integrated Device Technology, Inc.  
DSC-6174/18  
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
PINCONFIGURATION  
48 47 46 45 44 43 42 41 40  
51 50 49  
52  
G1  
VDD  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
VDD  
A1  
1
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
G2  
2
VDD  
Q12  
3
4
Q12  
Q11  
Q11  
Q10  
Q10  
Q9  
5
6
7
GND  
8
9
10  
11  
12  
13  
Q9  
VDD  
A2  
A1  
A2  
20 21 22 23 24 25 26  
14 15 16 17 18 19  
VFQFPN  
TOP VIEW  
2
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
CAPACITANCE(1) (TA = +25°C, F = 1.0MHz)  
ABSOLUTEMAXIMUMRATINGS(1)  
Symbol  
VDD  
VI  
Description  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDD +0.5  
–65 to +150  
150  
Unit  
V
Symbol  
Parameter  
Min  
Typ.  
Max.  
Unit  
Power Supply Voltage  
CIN  
Input Capacitance  
3
pF  
Input Voltage  
V
NOTE:  
VO  
Output Voltage(2)  
Storage Temperature  
Junction Temperature  
V
1. This parameter is measured at characterization but not tested  
TSTG  
TJ  
°C  
°C  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. Not to exceed 3.6V.  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
VDD  
PINDESCRIPTION  
Symbol  
A[1:2]  
I/O  
Type  
Description  
I
I
Adjustable(1,4) Clockinput. A[1:2] isthe"true"sideofthedifferentialclockinput.  
Adjustable(1,4) Complementaryclockinputs. A[1:2] isthecomplementarysideofA[1:2]. ForLVTTLsingle-endedoperation, A[1:2] shouldbesettothe  
A[1:2]  
desiredtogglevoltageforA[1:2]:  
3.3V LVTTL VREF = 1650mV  
2.5V LVTTL VREF = 1250mV  
G1  
G2  
GL  
I
I
I
LVTTL  
LVTTL  
LVTTL  
GatecontrolfordifferentialoutputsQ1 andQ1 throughQ8 andQ8. WhenG1isLOW, thedifferentialoutputsareactive. WhenG1is  
HIGH,thedifferentialoutputsareasynchronouslydriventotheleveldesignatedbyGL(2).  
GatecontrolfordifferentialoutputsQ9 andQ9 throughQ16andQ16. WhenG2isLOW, thedifferentialoutputsareactive. WhenG2is  
HIGH,thedifferentialoutputsareasynchronouslydriventotheleveldesignatedbyGL(2).  
Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true"  
outputsdisableLOWand"complementary"outputsdisableHIGH.  
Qn  
Qn  
SEL  
O
O
I
LVDS  
LVDS  
LVTTL  
LVTTL  
Clockoutputs  
Complementaryclockoutputs  
Reference clock select. When LOW, selects A2 and A2. When HIGH, selects A1 and A1.  
PD  
I
Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both  
"true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation.(3)  
VDD  
GND  
PWR  
PWR  
Power supply for the device core and inputs  
Power supply return for all power  
N C  
Noconnect;recommendedtoconnecttoGND  
NOTES:  
1. Inputs are capable of translating the following interface standards:  
Single-ended 3.3V and 2.5V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels  
Differential LVDS levels  
Differential CML levels  
2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt  
pulses or be able to tolerate them in down stream circuitry.  
3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-  
up after asserting PD.  
4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal.  
3
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
μA  
InputLOWCurrent  
VDD = 2.7V  
VIK  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
V
V
VIN  
VIH  
VIL  
- 0.3  
1.7  
DC Input HIGH  
DC Input LOW  
0.7  
VTHI  
VREF  
DCInputThresholdCrossingVoltage  
Single-EndedReferenceVoltage(3)  
VDD /2  
1.65  
1.25  
3.3VLVTTL  
2.5VLVTTL  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. For A[1:2] single-ended operation, A[1:2] is tied to a DC reference voltage.  
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR DIFFER-  
ENTIALINPUTS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
μA  
InputLOWCurrent  
VDD = 2.7V  
VIK  
VIN  
VDIF  
VCM  
ClampDiodeVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
DCInputVoltage  
- 0.3  
0.1  
0.05  
DCDifferentialVoltage(3)  
DC Common Mode Input Voltage(4)  
VDD  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential  
voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
DCELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATING  
RANGE FOR LVDS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
OutputCharacteristics  
VOT(+)  
VOT(-)  
ΔVOT  
VOS  
DifferentialOutputVoltagefortheTrueBinaryState  
DifferentialOutputVoltagefortheFalseBinaryState  
ChangeinVOT BetweenComplementaryOutputStates  
OutputCommonModeVoltage(OffsetVoltage)  
ChangeinVOS BetweenComplementaryOutputStates  
OutputsShortCircuitCurrent  
247  
247  
1.2  
12  
6
454  
454  
50  
mV  
mV  
mV  
V
1.125  
1.375  
50  
ΔVOS  
IOS  
mV  
mA  
mA  
VOUT + and VOUT - = 0V  
VOUT + = VOUT -  
24  
IOSD  
DifferentialOutputsShortCircuitCurrent  
12  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, TA = +25°C ambient.  
4
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
1
750  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR,tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
1
900  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR,tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL (2.5V) AND  
LVPECL(3.3V)  
Symbol  
VDIF  
Parameter  
Value  
Units  
mV  
InputSignalSwing(1)  
732  
VX  
DifferentialInputSignalCrossingPoint(2)  
LVEPECL  
LVPECL  
1082  
mV  
1880  
DH  
Duty Cycle  
50  
%
V
VTHI  
tR,tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point levels are specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment.  
This device meets the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
5
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVDS  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
mV  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
400  
1.2  
DH  
Duty Cycle  
50  
%
VTHI  
tR,tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
VDIF  
VIX  
Parameter  
Min.  
0.1  
Typ.  
Max  
3.6  
Unit  
V
ACDifferentialVoltage(2)  
DifferentialInputCrosspointVoltage  
CommonModeInputVoltageRange(3)  
InputVoltage  
0.05  
0.05  
- 0.3  
VDD  
VDD  
+3.6  
V
VCM  
V
VIN  
V
NOTES:  
1. The output will not change state until the inputs have crossed and the minimum differential voltage range defined by VDIF has been met or exceeded.  
2. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage  
must be achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
POWER SUPPLY CHARACTERISTICS FOR LVDS OUTPUTS(1)  
Symbol  
Parameter  
Test Conditions  
VDD = Max., All Input Clocks = LOW(2)  
Outputsenabled  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
350  
mA  
ITOT  
Total Power VDD Supply Current  
Total Power Down Supply Current  
VDD = 2.7V., FREFERENCE CLOCK = 1GHz  
PD = LOW  
360  
5
mA  
mA  
IPD  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.  
2. The true input is held LOW and the complementary input is held HIGH.  
6
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE(1,5)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
SkewParameters  
tSK(O)  
Same Device Output Pin-to-Pin Skew(2)  
Pulse Skew(3)  
25  
ps  
ps  
ps  
tSK(P)  
125  
300  
tSK(PP)  
Part-to-PartSkew(4)  
PropagationDelay  
tPLH  
tPHL  
fO  
Propagation Delay A, A Crosspoint to Qn, Qn Crosspoint  
1.25  
1.75  
1
ns  
FrequencyRange(6)  
GHz  
OutputGateEnable/DisableDelay  
tPGE  
Output Gate Enable Crossing VTHI toQn/Qn Crosspoint  
3.5  
3.5  
ns  
ns  
tPGD  
Output Gate Disable Crossing VTHI toQn/Qn Crosspoint Driven to GL Designated Level  
Power Down Timing  
tPWRDN  
PD Crossing VTHI to Qn = VDD, Qn = VDD  
Output Gate Disable Crossing VTHI to Qn/Qn Driven to GL Designated Level  
100  
100  
μS  
μS  
tPWRUP  
NOTES:  
1. AC propagation measurements should not be taken within the first 100 cycles of startup.  
2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.  
3. Skew measured is the difference between propagation delay times tPHL and tPLH of any differential output pair under identical input and output interfaces, transitions and load conditions  
on any one device.  
4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions  
at identical VDD levels and temperature.  
5. All parameters are tested with a 50% input duty cycle.  
6. Guaranteed by design but not production tested.  
7
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIAL ACTIMING WAVEFORMS  
1/fo  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
tPHL  
tPLH  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
tSK(O)  
tSK(O)  
+ VDIF  
VDIF = 0  
- VDIF  
Qm - Qm  
Output Propagation and Skew Waveforms  
NOTES:  
1. Pulse skew is calculated using the following expression:  
tSK(P) = | tPHL - tPLH |  
Note that the tPHL and tPLH shown above are not valid measurements for this calculation because they are not taken from the same pulse.  
2. AC propagation measurements should not be taken within the first 100 cycles of startup.  
8
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
VIH  
VTHI  
VIL  
GL  
tPLH  
VIH  
VTHI  
VIL  
Gx  
tPGE  
tPGD  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
Differential Gate Disable/Enable Showing Runt Pulse Generation  
NOTE:  
1. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
+VDIF  
VDIF=0  
-VDIF  
A2 - A2  
Gx  
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
PD  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
Power Down Timing  
NOTES:  
1. It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after  
asserting PD.  
2. The POWER DOWN TIMING diagram assumes that GL is HIGH.  
3. It should be noted that during power-down mode, the outputs are both pulled to VDD. In the POWER DOWN TIMING diagram this is shown when Qn-Qn goes to VDIF = 0.  
9
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
TESTCIRCUITSANDCONDITIONS  
~50  
VIN  
Transmission Line  
VDD/2  
A
D.U.T.  
Pulse  
Generator  
A
~50  
VIN  
Transmission Line  
-VDD/2  
Scope  
50  
50  
Test Circuit for Differential Input  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
VTHI  
Crossing of A and A  
V
10  
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
VDD  
A
A
Qn  
Qn  
Pulse  
Generator  
RL  
RL  
D.U.T.  
VOS  
VOD  
Test Circuit for DC Outputs and Power Down Tests  
VDD/2  
SCOPE  
CL  
Z = 50  
A
A
Qn  
Qn  
Pulse  
Generator  
50  
50  
D.U.T.  
Z = 50  
CL  
-VDD/2  
Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing  
LVDSOUTPUTTESTCONDITION  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
CL  
0(1)  
8(1,2)  
50  
pF  
RL  
Ω
NOTES:  
1. Specifications only apply to "Normal Operations" test condition. The TIA/EIA specification load is for reference only.  
2. The scope inputs are assumed to have a 2pF load to ground. TIA/EIA - 644 specifies 5pF between the output pair. With CL = 8pF, this gives the test circuit appropriate 5pF equivalent  
load.  
11  
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
RECOMMENDEDLANDINGPATTERN  
NL 52 pin  
NOTE: All dimensions are in millimeters.  
12  
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
ORDERINGINFORMATION  
IDT  
XXXXX  
XX  
X
Device Type Package Package  
I
-40ºC to +85ºC (Industrial)  
NLG  
VFQFPN - Green  
5T9316 2.5V LVDS 1:16 Clock Buffer Terabuffer™ II  
13  
IDT5T9316  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
REVISIONHISTORY  
R e v  
T a b le  
P a g e  
D is c rip tio n o f C h a n g e  
D a te  
A
1
N R N D - N o t R e c o m m e nd e d fo r N e w D e s ig ns  
5 /1 6 /1 3  
P ro d uc t D is c o ntinua tio n N o tic e - L a s t Tim e B uy E xp ire s o n  
O c to b e r 2 8 , 2 0 1 4 , P D N # C Q -1 3 -0 2  
A
A
1
1
11 /2 7 /1 3  
3 /2 1 /1 4  
A d d e d ne w a d d itio na l re p la c e m e nt p a rt num b e r  
14  
IDT5T9316  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:16CLOCKBUFFERTERABUFFERII  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion.All information  
in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express  
or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document  
is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT  
product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written  
agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the  
property of IDT or their respective third party owners.  
Copyright 2014 All rights reserved.  
15  
厂商 型号 描述 页数 下载

IDT

5T9010BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, LEAD FREE, PLASTIC, BGA-144 ] 25 页

IDT

5T9050PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 7 页

IDT

5T905PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 17 页

IDT

5T9070PAGI8 [ Low Skew Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, GREEN, TSSOP-48 ] 9 页

IDT

5T9070PAI [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T9070PAI8 [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T907PAI [ Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, TSSOP-48 ] 19 页

IDT

5T907PAI8 [ Clock Driver, PDSO48 ] 19 页

IDT

5T9110BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, GREEN, PLASTIC, BGA-144 ] 23 页

IDT

5T915PAI [ Clock Driver, CMOS, PDSO48 ] 19 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.252870s